The Influences of SiO₂ on the Sintering Behavior and the Properties of $Na^+-\beta/\beta''-Al_2O_3$ Solid Electrolyte

Sung-Tae LEE, Dae-Han LEE, Sung-Ki LIM*

Department of Materials Ehemistry and Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, 143-701, Seoul, Republic of Korea

crossref http://dx.doi.org/10.5755/j01.ms.25.3.14246

Received 24 February 2016; accepted 15 May 2016

SiO₂-doped Na⁺- β/β'' -Al₂O₃ was synthesized via a solid-state reaction, and the relationship between the SiO₂ content and properties of Na⁺- β/β'' -Al₂O₃ was investigated. Respective specimens were doped with 0 – 5 wt.% SiO₂ as a liquid phase sintering promotor and sintered. The specimens were characterized by XRD, SEM, densimeter and impedance analyzer. In the sintered samples, the phase fraction of β'' -Al₂O₃ decreased as the SiO₂ content increased, whereas the relative sintered density was enhanced with the inclusion of less than 0.7 wt.% SiO₂. The relative sintered density of Na⁺- β/β'' -Al₂O₃ sintered specimen with 0.7 wt.% SiO₂ doping reached 99.2 % of the theoretical density and the sintered density decreased when the amount of SiO₂ was larger than 1 wt.% result from excessive liquid-phase formation during sintering. Similarly, the ionic conductivity of SiO₂-doped Na⁺- β/β'' -Al₂O₃ was enhanced by doping with a small amount of SiO₂, whereas the addition of more than 1 wt.% SiO₂ negatively affected the ionic conductivity of Na⁺- β/β'' -Al₂O₃ due to a decrease in the sintered density and unfavorable phase relationship.

Keywords: Na⁺- β/β'' -Al₂O₃, solid electrolyte, SiO₂, liquid phase sintering, ionic conductivity.

1. INTRODUCTION

 $Na^+-\beta/\beta''-Al_2O_3$ has been widely utilized as a solid electrolyte in sodium/sulfur batteries for electric vehicles and for storage of excess electricity [1, 2], where the Na^+ ions act as charge carriers. $Na^+-\beta/\beta''-Al_2O_3$ is characterized by a highly ionic nature and low electronic conductivity, and extensive research has been dedicated to exploiting these features for practical purposes.

Generally, Na⁺- β/β'' -Al₂O₃ is prepared by a conventional solid-state reaction, in which the raw materials are initially prepared by mechanical mixing [3–6] followed by calcination. The thus-synthesized β/β'' -Al₂O₃ powders are converted to green bodies by cold isostatic pressing, slip casting, and uniaxial pressing, and are then sintered [7–9].

Synthesis of $Na^+-\beta/\beta''-Al_2O_3$ by the conventional solid-state reaction inevitably requires a long holding time at a high sintering temperature, which leads to the loss of sodium, thereby deleteriously eroding the ionic conductivity of the β/β'' -Al₂O₃ ceramics. Small additions of various oxides, such as MgO, TiO₂, MnO₂, and SiO₂ to α -Al₂O₃ have been shown to influence the densification processes by reducing the sintering temperature, suppressing or promoting grain growth, and allowing sintering to theoretical density [10, 11]. Therefore, a variety of oxides, either singly or in combination, is commonly used in the ceramic industry for various purposes, such as for enhancing sintering or for microstructural and mechanical modification. Among these oxides, SiO₂ is well recognized to improve the densification of ceramics by liquid phase sintering. Liquid

phase sintering offers an alternative method of overcoming the lack of densification. Numerous studies have shown that the presence of small amounts of SiO₂ strongly influences the microstructure and the properties of α -Al₂O₃ [12–18]. However, it has not been conclusively demonstrated that SiO₂ is incorporated as a liquid phase sintering promoter in Na⁺- β/β'' -Al₂O₃ electrolytes during the powder synthesis step. This study presents the fabrication of SiO₂-doped Na⁺- β/β'' -Al₂O₃ specimens and evaluates the relationship between the SiO₂ content and the properties of the doped Na⁺- β/β'' -Al₂O₃.

2. EXPERIMENTAL DETAILS

Na⁺-β/β"-Al₂O₃ solid electrolytes doped with SiO₂ were synthesized via a solid-state reaction using commercial powders of α-Al₂O₃ (99.99 %, High Purity Chemicals, Japan), Na₂CO₃ (99 + %, Sigma-Aldrich, USA), 4MgCO₃·Mg(OH)₂·5H₂O (99 + %, Sigma-Aldrich, USA), and SiO₂ (99.9 + %, High Purity Chemicals, Japan) as the starting materials. The synthesized Na⁺-β/β"-Al₂O₃ powders contained 1.6 wt.% MgO (stabilizer), Na₂O at a [Na₂O]/[Al₂O₃] molar ratio of 1 : 5, and various amounts of SiO₂ ranging from 0 to 5 wt.%.

The starting materials were mixed by ball-milling for 5 h in methanol as the liquid medium; the mixture was then calcined at 1200 °C for 2 h after drying at 90 °C. The calcined powders were molded by application of a uniaxial pressure of 100 bars to obtain the green samples with dimensions of Φ 14 mm × 2 mm. To minimize Na₂O loss, the green samples were buried in MgO crucibles packed with packing powder of already synthesized Na⁺- β/β'' -Al₂O₃ and sintered at 1600 °C for 30 min.

The phase composition of the calcined and sintered samples was analyzed using an X-ray diffractometer

^{*} Corresponding author. Tel.: +82-2-450-3500; fax: +82-2-444-3490. E-mail address: *sklim@konkuk.ac.kr* (S.K. Lim)

(XRD, D/max 2200, Rigaku, Japan). XRD analysis was performed at 40 kV and 30 mA using Cu K α radiation. The relative amounts of the phases were determined by calculating the line intensities of the well-separated peaks of each phase using the following equations [19, 20]:

% of
$$\alpha = f(\alpha)/\{f(\alpha)+f(\beta)+f(\beta'')\}\times 100;$$
 (1)

% of $\beta = f(\beta)/\{f(\alpha)+f(\beta)+f(\beta'')\}\times 100;$ (2)

% of $\beta'' = f(\beta'') / \{f(\alpha) + f(\beta) + f(\beta'')\} \times 100;$ (3)

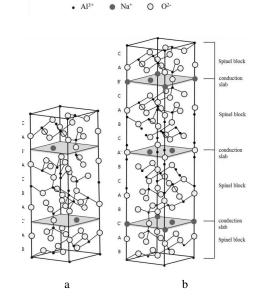
 $f(\alpha) = 1/2 \{ I_{\alpha(104)} \times 10/9 + I_{\alpha(113)} \};$ (4)

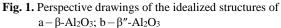
 $\mathbf{f}(\boldsymbol{\beta}) = 1/3\{I_{\beta(102)} \times 10/3 + I_{\beta(206)} \times 10/3.5 + I_{\beta(107)} \times 10/5.5\}; \quad (5)$

 $f(\beta'') = 1/2 \{ I_{\beta(10\underline{11})} \times 10/4 + I_{\beta''(20\underline{10})} \times 10/8 \},$ (6)

where $I_{\alpha(104), \alpha(113)}$ denotes the X-ray intensity of the (104), (113) planes of the α - Al₂O₃ phase, $I_{\beta(102), \beta(206), \beta(107)}$ represents the X-ray intensity of the (102), (206), (107) planes of the β - Al₂O₃ phase, and $I_{\beta^{"}(1011), \beta^{"}(2010)}$ indicates the X-ray intensity of the (10<u>11</u>), (20<u>10</u>) planes of the $\beta^{"}$ -Al₂O₃ phase.

The microstructure of the sintered specimen and the density were assessed by scanning electron microscopy (SEM, Model JSM-6380, Japan) and by using Archimedes method (ASTM 373-88). The ionic conductivities of the sintered specimens were measured by employing blocking silver electrodes using an electrochemical complex impedance analyzer (Zahner, IM6) within the frequency range of 1 Hz to 3 MHz and temperature range of 25 to 350 °C. Sodium conductivities were calculated using Eq. 7.


$$\sigma = L/(R_s \times A) \tag{7}$$


where σ , *L*, *R*_s and *A* denote the ionic conductivity, specimen thickness, impedance of the specimen, and electrode area, respectively.

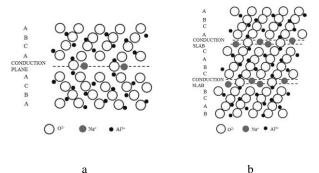

3. RESULTS AND DISCUSSION

Fig. 1 presents schematic structures of Na⁺-β-Al₂O₃ and Na⁺- β'' -Al₂O₃. The crystalline structure of β'' -Al₂O₃ is a rhombohedral structure with an R3m space group with lattice constants of 'a' = 5.614 and 'c' = 33.85 Å. Generally, the 'a' axis is similar to that of the β -Al₂O₃ structure, but the length of its 'c' axis is 1.5 times longer, and the concentration of the alkaline ions on the conduction plane is higher [21, 22]. Fig. 2 shows the projection of β -Al₂O₃ and β "-Al₂O₃ unit cells stacking sequence. The unit cell of β'' -Al₂O₃ is 50 % larger than that of β -Al₂O₃ by virtue of the difference in stacking sequence. Adjacent close packed oxide slabs are again held apart by Al-O-Al spacer units, but alternate sodium atom sites lie above and below the plane through the centre of the oxide spacer atoms and the Na⁺ ion diffusion path actually encompasses a finite volume (the conduction slab) rather than a plane as in the β -Al₂O₃ structure. β'' -Al₂O₃ has a higher sodium content in the conduction slab than β -Al₂O₃, and therefore is more conductive than β -Al₂O₃.

Fig. 3 shows the XRD patterns of the powders doped with different amounts of SiO₂ that were calcined at 1200 °C for 2 h. The Na⁺- β phase has the theoretical fomula Na₂O·11Al₂O₃, or NaAl₁₁O₁₇ [23], and the β "phase has the formula Na₂O·5Al₂O₃, or NaAl₅O₈ [24]. According to Na₂O-Al₂O₃ phase diagram proposed by Fally et al. [25], the $\beta + \beta$ "-phases coexist in a region corresponding to the formula Na₂O·nAl₂O₃(5.33 \leq n \leq 8.5). The XRD patterns of all calcined powders conform to the crystalline phase of NaAl₅O₈ (JCPDS 31-1262) and NaAl₁₁O₁₇ (JCPDS 31-1263). No significant peaks corresponding to SiO₂ were detected in the XRD patterns, which may be due to the low SiO₂ concentration (less than 1 wt.%).

Fig. 2. Projection of $a - \beta$ -Al₂O₃; $b - \beta''$ -Al₂O₃ unit cells stacking sequence

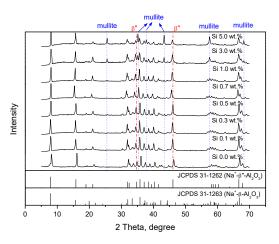


Fig. 3. XRD patterns of the synthesized SiO₂-doped Na⁺- β/β' -Al₂O₃ powders, calcined at 1200 °C for 2 h

However, in the case of the 3 and 5 wt.% SiO₂-doped calcined powders, the mullite $(3Al_2O_3 \cdot 2SiO_2)$ phase was detected. Fig. 4 shows the phase diagram for the binary Al_2O_3 -SiO₂ system, produced by Aramaki and Roy [26], which demonstrates that the mullite phase appeared according to phase diagram for the binary Al_2O_3 -SiO₂ system. The XRD patterns of the sintered specimens presented in Fig. 5 illustrate that after sintering, the Na⁺- β/β'' -Al₂O₃ phase was maintained, the mullite phase was not detected, and the NaAlO₂ and SiO₂ phases appeared in the 3 and 5 wt.% SiO₂-doped specimens. As a result of volatilization of Na₂O at high sintering temperature, the mullite reacted with Na₂O to generate the NaAlO₂ and SiO₂ phases.

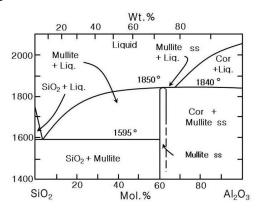


Fig. 4. Al₂O₃-SiO₂ binary phase diagram proposed by Aramaki and Roy [26]

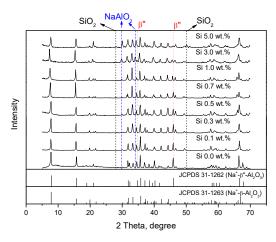
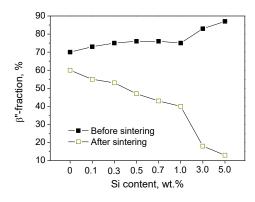



Fig. 5. XRD patterns of specimens sintered at 1600 °C for 30 min

Fig. 6 shows the phase fraction of the β'' -Al₂O₃ analysis. Before sintering, the phase fraction of β'' -Al₂O₃ was generally found to increase with increasing SiO₂ content. This trend is indicative of a tendency towards a rapid increase in the formation of the β'' -Al₂O₃ phase in the 3 and 5 wt.% SiO₂-doped powders. As mentioned above, the theoretical formula of β -Al₂O₃ is Na₂O·11Al₂O₃, and the formula of β'' -Al₂O₃, it is necessary to more Na₂O than the case of forming the β -Al₂O₃. Due to the formation of the mullite (3Al₂O₃·2SiO₂) phase, the molar ratio of Na₂O in the calcined powders increased, and this aided the formation of β'' -Al₂O₃. In contrast, after sintering, the β'' -Al₂O₃ fraction declined with increasing SiO₂ content, and the phase fraction of the β'' -Al₂O₃ decreased significantly in the 3 and 5 wt.% SiO₂-doped specimens. Generally, the phase fraction of the β'' -Al₂O₃ is decreased after sintering by a volatilization of Na₂O at high temperature. And Si in the Na⁺- β/β'' -Al₂O₃ led to an excess volatilization of the Na₂O to adjust the charge balance of the Na⁺- β/β'' -Al₂O₃. So, the phase fraction of β'' -Al₂O₃ to β -Al₂O₃ via the volatilization of Na₂O, while the mullite phase reacted with Na₂O.

Fig. 7 shows the relative sintered density of the specimens sintered at 1650 °C for 30 min. The relative sintered density was improved by doping with small amounts of SiO₂. The relative sintered density of Na⁺ β/β'' -Al₂O₃ sintered specimen with 0.7 wt.% SiO₂ doping reached 99.2 % of the theoretical density. The increase in densification with SiO₂ content occurred partly by the effect of the liquid phase in allowing the rearrangement of the particles. A liquid phase creates an attractive force between the particles, putting the particle contacts in compression. This effect is so strong that complete densification is possible by rearrangement if enough volume fraction of liquid phase is present [27]. However, in the case of the 3 and 5 wt.% SiO₂-doped specimens, the relative sintered density declined. As the SiO₂ content increased, an excess of the liquid phase was formed relative to the liquid phase required for sintering, resulting in hindrance of the contact between the particles and the creation of pores due to the contraction of generated gas during cooling, thereby hampering the sintering process [28].

Fig. 6. β"-Al₂O₃ phase fraction of synthesized powder (before sintering) and sintered specimens (after sintering)

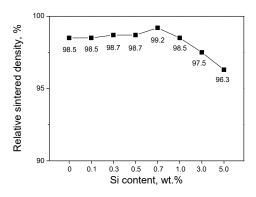


Fig. 7. Relative sintered density of specimens sintered at 1600 °C for 30 min as a function of SiO₂ content

Fig. 8 shows the Nyquist plot of the 0.7 SiO₂-doped sintered specimen at 225, 350 °C and 5.0 wt.% SiO₂-doped sintered specimen at 350 °C. Polycrystalline Na⁺-β/β"- Al_2O_3 has grain bulk resistance (R_B) and grain boundary resistance (R_{GB}), so, it was possible to separate out the semi-circle part and the line part as shown in Fig. 8 a below 250 °C. But, the semi-circle part was substituted by some dots close to the Z' axis when the temperature was higher than 250 °C because the grain boundary or intergranular resistance became negligible at above 250 °C [29–31]. Na⁺ ion in the Na⁺- β/β'' -Al₂O₃ conduct by jump mechanism between lattice sites of the conduction plane and slab, this jump mechanism is activated with rising temperature, so the grain boundary resistance contribution to the total electrolyte resistance becomes negligible above 250 °C [32, 33]. Thus, the Nyquist plot at 350 °C (Fig. 8 b, c) exists the grain bulk resistance, only.

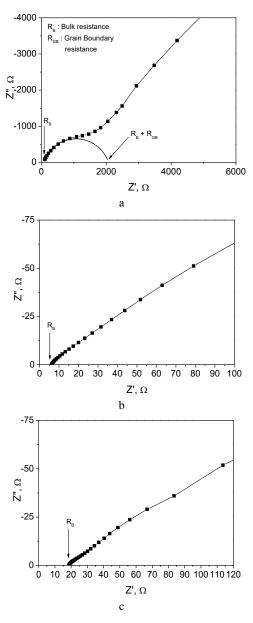


Fig. 8. Nyquist plot of the a−0.7 wt.% SiO₂-doped sintered specimen at 225 °C; b−0.7 wt.% SiO₂-doped sintered specimen at 350 °C; c−5.0 wt.% SiO₂-doped sintered specimen at 350 °C

The measured bulk resistance at 350 °C of 5.0 wt.% SiO₂-doped sintered specimen was higher than the 0.7 wt.% SiO₂-doped sintered specimen.

The ionic conductivity of the specimens sintered at 1600 °C for 30 min is shown in Fig. 9. The relationship conformed to Arrhenius equation of $\sigma T = A\exp(-Ea/kT)$, where *A* is the pre-exponential and *K* is the gas constant and *T* is the absolute temperature. As shown, the activation energy (slope of graph) declines when the temperature is above 250 °C. It means that the resistance of Na⁺ ion conductivity can be improved as the temperature increasing [34].

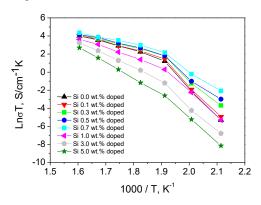


Fig. 9. Ionic conductivity of specimens sintered at 1600 °C for 30 min as a function of temperature in the range of 200-350 °C, with variation in the SiO₂ content

Although doping with a small amount of SiO₂ beneficially affects the ionic conductivity of the Na⁺- β/β'' -Al₂O₃ specimens, the addition of more than 1 wt.% SiO₂ leads to reduction in the ionic conductivity due to a decrease in the relative sintered density and formation of the NaAlO₂ and SiO₂ phases via transformation of β'' -Al₂O₃ to β -Al₂O₃. The maximum ionic conductivity of 1.2×10^{-1} S/cm at 350 °C was achieved with the 0.7 wt.% SiO₂-doped specimen, and the minimum ionic conductivity was achieved with the 5.0 wt.% SiO₂-doped specimen with a value 2.4×10^{-2} S/cm at 350 °C. The ionic conductivities of Si-doped Na⁺- β/β'' -Al₂O₃ specimens at 350 °C are shown in Table 1.

Table 1. Ionic conductivities of Na⁺- β/β'' -Al₂O₃ specimens at 350 °C with various Si doping amounts

Dopant	Content, wt.%	Ionic Conductivity at 350 °C, S/cm
Si	0.0	$8.8 imes 10^{-2}$
	0.1	$8.8 imes 10^{-2}$
	0.3	$9.8 imes 10^{-2}$
	0.5	$1.0 imes10^{-1}$
	0.7	$1.2 imes10^{-1}$
	1.0	$6.0 imes 10^{-2}$
	3.0	$4.1 imes 10^{-2}$
	5.0	2.4×10^{-2}

The phase fraction of β'' -Al₂O₃ of 0.7 wt.% SiO₂doped specimen was lower than the β'' -fraction of specimen without doping, but the ionic conductivity of sintered specimens was enhanced with the inclusion of less than 0.7 wt.% SiO₂. So, it is supposed that the improved relative sintered density was the main cause for an increase in the ionic conductivity.

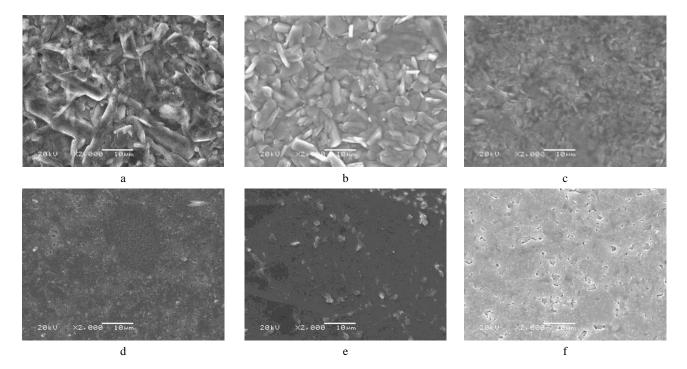


Fig. 10. SEM images of sintered specimens: a – SiO₂ 0.1 wt.%-doped specimen (×2000); b – SiO₂ 0.7 wt.%-doped specimen (×2000); c – SiO₂ 5.0 wt.%-doped specimen (×2000); d – polished SiO₂ 0.1 wt.%-doped specimen (×2000); e – polished SiO₂ 0.7 wt.%-doped specimen (×2000); f – polished SiO₂ 5.0 wt.%-doped specimen (×2000)

 $Na^+-\beta/\beta''-Al_2O_3$ have interesting practical applicability because of their high ionic and low electronic conductivity. So, $Na^+-\beta/\beta''-Al_2O_3$ has been used as solid electrolyte in sodium/sulfur battery and this battery operate at 300 – 350 °C. Thus, the ionic conductivities data were focused at 350 °C, in this study [35, 36]. Table 2 lists ionic conductivity of various dopant doped $Na^+-\beta/\beta''-Al_2O_3$ investigated by other researchers for compared to the value obtained in this study [37–39].

Fig. 10 presents the SEM images of the specimens sintered at 1600 °C for 30 min. There is an apparent decrease in the grain size with increased SiO₂ doping.

Table 2. Ionic conductivities of various dopant doped $Na^+-\beta/\beta''$ Al₂O₃ specimens [37–39]

Dopant	Content	Ionic Conductivity, S/cm
Si (this study)	0.7 wt.%	1.2 × 10 ⁻¹ (350 °C)
Ti	1.0 wt.%	2.1 × 10 ⁻¹ (350 °C)
Zn	4.0 wt.%	8.0 × 10 ⁻² (300 °C)
Со	4.0 wt.%	1.1 × 10 ⁻¹ (300 °C)
Cu	4.0 wt.%	1.2 × 10 ⁻¹ (300 °C)
Zr	15.0 vol.%	1.1 × 10 ⁻¹ (300 °C)

This behavior may be attributed to a decline of the grain migration rate due to the formation of solid solutions at the grain boundaries [13]. Traces of liquid phase sintering with addition of excess SiO_2 in the entire region of the surface were confirmed from microstructural observation of the SiO_2 5.0 wt.%-doped specimen (Fig. 10 c), in contrast with the microstructure of the SiO_2 0.7 wt.%-doped specimen (Fig. 10 b). Fig. 10 f shows the microstructure of the polished SiO_2 5.0 wt.%-doped specimen. On the basis of the relative sintered density

(96.3 %), this sample was somewhat porous compared to Fig. 10 d, e.

4. CONCLUSIONS

 $Na^+-\beta/\beta''-Al_2O_3$ SiO₂-doped specimens were fabricated, and the changes in the properties of the Na+- β/β'' -Al₂O₃ solid electrolyte brought about by variation in the SiO₂ content of the doped samples were investigated. The mullite $(3Al_2O_3 \cdot 2SiO_2)$ phase was observed in the case of the 3 and 5 wt.% SiO₂-doped Na⁺- β/β'' -Al₂O₃ powders. Volatilization of Na₂O at high sintering temperature and subsequent reaction with mullite generated the NaAlO₂ and SiO₂ phases in the 3 and 5 wt.% SiO₂-doped Na⁺- β/β'' -Al₂O₃ sintered specimens. In the sintered samples, the relative proportion of the β'' -Al₂O₃ phase fraction declined with increasing addition of SiO₂; notably, the phase fraction of β'' -Al₂O₃ declined severely in the 3 and 5 wt.% SiO₂-doped specimens. The relative sintered density was augmented by doping with small amounts of SiO₂, whereas, in the case of the 3 and 5 wt.% SiO₂-doped specimens, the relative sintered density decreased. It is deduced that increasing the SiO₂ content lead to excessive liquid phase formation during sintering, and this excessive liquid phase hindered inter-particle contact with consequent formation of pores. The ionic conductivity was enhanced by doping with a small amount of SiO₂, whereas the addition of more than 1 wt.% SiO₂ leads to a decrease in the ionic conductivity due to the phase relationship and reduction in the relative sintered density. In conclusion, the properties of Na⁺- β/β'' -Al₂O₃ were improved by inclusion of less than 0.7 wt.% SiO₂.

Acknowledgments

This paper was supported by Konkuk University in 2017.

REFERENCES

- Kummer, J. T. β-alumina Electrolytes *Progress in Solid* State Chemistry 7 1972: pp. 141–175. https://doi.org/10.1016/0079-6786(72)90007-6
- Battles, J. E. Materials for Advanced High Temperature Secondary Batteries *International Materials Reviews* 34 1989: pp. 1–18. https://doi.org/10.1179/imr.1989.34.1.1
- Johnson, Jr,D.W., Granstaff, S.M., Rhodes, W.W. Preparation of β"-Al₂O₃ Pressing Powders by Spray Drying *Ceramic Bulletin* 58 (8) 1979: pp. 849-852.
- Hodge, J.D. Powder Processing and Crystallization of β and β" Aluminas *American Ceramic Society Bulletin* 62 1983: pp. 244–248.
- Choy, J.H., Yoo, J.S., Han, Y.S., Kim, Y.H. Citrate Sol-Gel Method for The Preparation of β/β"-Alumina *Materials Letters* 16 1993: pp. 226–230. https://doi.org/10.1016/0167-577X(93)90169-X
- Youngblood, G., Vircar, A.V., Cannon, W.R., Gordon, R.S. Sintering Process and Heat Treatment Schedules for Conductive, Lithia-Stabilized Beta Double Prime-Al₂O₃ American Ceramic Society Bulletin 56 1977: pp. 206–210.
- Miller, M.L., Mcentire, B.J., Miller, G.R., Godon, R.S. A Prepilot Process for the Fabrication of Polycrystalline β"-Alumina Electrolyte Tubing American Ceramic Society Bulletin 58 1979: pp. 522–524.
- Rivier, M., Pelton, A.D. A New Slip Casting Technique for The Laboratory Fabrication of β-Al₂O₃ and Other Ceramics *American Ceramic Society Bulletin* 56 1978: pp. 183– 185.
- Powers, R.W. Ceramic Aspects of Forming Beta Alumina by Electrophoretic Deposition American Ceramic Society bulletin 65 1986: pp. 1270–1277.
- Koyama, T., Nishiyama, A., Niihara, K. Effect of a Small Amount of Liquid-Forming Additives on the Microstructure of Al₂O₃ Ceramics *Journal of Materials Science* 28 1993: pp. 5953–5956. https://doi.org/10.1007/BF00365207
- Kaysser, W.A., Sprissler, M., Handwerker, C.A., Blendell, J.E. Effect of a Liquid Phase on the Morphology of Grain Growth in Alumina *Journal of the American Ceramic Society* 70 (5) 1987: pp. 339–343. https://doi.org/10.1007/BF00365207
- 12. Erkalfa, H., Nisirli, Z., Baykara, T. The Effect of TiO₂ and MnO₂ on Densification and Microstructural Development of Alumina *Ceramics International* 24 1998: pp. 81–90. https://doi.org/10.1016/S0272-8842(97)00082-5
- Louet, N., Fantozzi, G., Reveron, H. Sintering Behaviour and Microstructural Evolution of Ultrapure A-Alumina Containing Low Amounts of SiO₂ Journal of the European Ceramic Society 28 2008: pp. 205–215. https://doi.org/10.1016/j.jeurceramsoc.2007.04.015
- 14. Svancarek, P., Lendvayova, S., Galusek, D., Hnatko, M., Vavra, I., Wang, X. Abrasive Wear Resistance of SiO₂-Doped Polycrystalling Alumina Wear 271 2011: pp. 760-769. https://doi.org/10.1016/j.wear.2011.03.016

- Kwon, O.S., Hong, S.H., Lee, J.H., Chung, U.J., Kim, D.Y., Hwang, N.M. Microstructural Evolution During Sintering of TiO₂/SiO₂-doped Alumina: Mechanism of Anisotropic Abnormal Grain Growth Acta Materialia 50 (19) 2002: pp. 4865–4872. https://doi.org/10.1016/S1359-6454(02)00355-5
- 16. Moshe, R., Berner, A., Kaplan, W.D. The Solubility Limit of SiO₂ in α-alumina at 1600 °C Scripta Materialia 86 2014: pp. 40–43. https://doi.org/10.1016/j.scriptamat.2014.05.005
- Louet, N., Gonon, M., Fantozzi, G. Influence of the Amount of Na₂O and SiO₂ on the Sintering Behaviour and on the Microstructural Evolution of a Bayer Alumina Powder *Ceramics International* 31 (7) 2005: pp. 981–987. https://doi.org/10.1016/j.ceramint.2004.10.013
- Woo, K.D., Huo, H.W. Effect of High Energy Ball Milling on Displacement Reactin and Sintering of Al-Mg/SiO₂ Composite Powders *Metals and Materials International* 12 2006: pp. 45–50. https://doi.org/10.1007/BF03027522
- Schmid, C. X-ray Characterization of β- and β"-alumina Journal of Materials Science Letters 5 (3) 1986: pp. 263–266. https://doi.org/10.1007/BF01748072
- Lee, S.T., Kim, S.G., Jang, M.H., Hwang, S.H., Haw, J.R., Lim, S.K. Analysis of the Phase Formation of Na- β/β"-Aluminas using MgO and Li₂O as Phase Stabilizers *Journal of Ceramic Processing Research* 12 2011: pp. 38–45.
- 21. **Yamaguchi, G., Suzuki, K.** On the Structures of Alkali Polyaluminates *Bulletin of the Chemical Society of Japan* 41 1968: pp. 93–99. https://doi.org/10.1246/bcsj.41.93
- De Kroon, A.P., Schafer, G.W., Aldinger, F. Direct Synthesis of Binary K-β-and K-β"-alumina. 1. Phase Relations and Influence of Precursor Chemistry *Chemistry* of Materials 7 1995: pp. 878–887. https://doi.org/10.1021/cm00053a011
- Yao, Y.Y., Kummer, J.T. Ion Exchange Properties of and Rates of Ionic Diffusion in Beta-alumina *Journal of Inorganic and Nuclear Chemistry* 29 (9) 1967: pp. 2453–2475. https://doi.org/10.1016/0022-1902(67)80301-4
- 24. **Certo, J., Furtado, C.S., Ferreira, A.J., Perdigao, J.M.** Na- β Alumina Powder Processing by a Na₂CO₃ Precipitation Method *Ionics* 4 (1) 1998: pp. 124–128. https://doi.org/10.1007/BF02375790
- Fally, J., Lasne, C., Lazennec, Y., Le Cars, Y., Margotin, P. Study of a Beta-alumina Electrolyte for Sodium-sulfur Battery *Journal of the Electrochemical Society* 120 (10) 1973: pp. 1296–1298.
- Aramaki, S., Roy, R. The Mullite-Corundum Boundary in The Systems MgO-Al₂O₃-SiO₂ and CaO-Al₂O₃-SiO₂ *Journal of the American Ceramic Society* 42 (12) 1959: pp. 644–645. https://doi.org/10.1111/j.1151-2916.1959.tb13589.x
- 27. Borsa, C.E., Ferreira, H.S., Kiminami, R.H.G.A. Liquid Phase Sintering of Al₂O₃/SiC Nanocomposites *Journal of the European Ceramic Society* 19 (5) 1999: pp. 615–621. https://doi.org/10.1016/S0955-2219(98)00252-0
- Park, S.H., Park, W.J., Yoon, H.K. Wear Characteristics of Sic by Sintered Temperature and SiO₂ Contents *Transactions of the Korean Society of Mechanical Engineers* A 32 2008: pp. 1003–1009.

- 29. Sudwotrh, J.L., Tilley, A.R. The Sodium Sulfur Battery *Champman and Hall Ltd. London* 1985: pp. 21–47.
- Lin, J., Wen, Z., Wang, X., Song, S., Liu, Y. Mechanochemical Synthesis of Na⁺-β/β"-Al₂O₃ Journal of Solid State Electrochemistry 14 2010: pp. 1821–1827. https://doi.org/10.1007/s10008-010-1053-5
- Hooper, A. A Study of the Electrical Properties of Single-Crystal and Polycrystalline β-alumina Using Complex Plane Analysis *Journal of Physics D: Applied Physics* 10 1977: pp. 1487–1497.
- De Jonghe, L.C. Grain Boundaries and Ionic Conduction in Sodium Beta Alumina *Journal of Materials Science* 14 1979: pp. 34–48. https://doi.org/10.1007/BF01028326
- Rohrer, C.L., Farrington, G.C. Molecular Dynamics Simulation of the Temperature-Dependent Ionic Conductivity in Sodium(I)-β"-alumina Chemistry of Materials 4 1992: pp. 55–62. https://doi.org/10.1021/cm00019a014
- Xu, D., Jiang, H., Li, M., Hai, O., Zhang, Y. Synthesis and Characterization of Y₂O₃ Doped Na⁺-β"-Al₂O₃ Solid Electrolyte by Double Zeta Process *Ceramics International* 41 2015: pp. 5355-5361. https://doi.org/10.1016/j.ceramint.2014.12.094

35. Lu, X., Xia, G., Lemmon, J. P., Yang, Z. Advanced Materials for Sodium-Beta Alumina Batteries: Status, Challenges and Perspectives *Journal of Power Sources* 195 2010: pp. 2431–2442. https://doi.org/10.1016/j.jpowsour.2009.11.120

- Lee, D.H., Lee, S.T., Lee, K.M., Lim, S.K. Analysis of the Crystal Phases of Na⁺-beta-aluminas Synthesized by Infiltration of Alkali Molten Salts *Journal of Industrial and Engineering Chemistry* 18 2012: pp. 1801–1806. https://doi.org/10.1016/j.jiec.2012.04.006
- 37. Yang, L.P., Shan, S.J., Wei, X.L., Liu, X.M., Yang, H., Shen, X.D. The Mechanical and Electrical Properties of ZrO₂-TiO₂-Na⁺-β/β"-alumina Composite Electrolyte Synthesized Via a Citrate Sol-Gel Method *Ceramics International* 40 2014: pp. 9055 – 9060. https://doi.org/10.1016/j.ceramint.2014.01.118
- Sheng, Y., Sarkar, P., Nicholson, P.S. The Mechanical and Electrical Properties of ZrO2- Na⁺-β"-Al₂O₃ Composites *Journal of Materials Science* 23 1988: pp. 958–967. https://doi.org/10.1007/BF01153995
- 39. Wasiucionek, M., Garbarczyk, J., Jakubowski, W. Electrical properties of CoO, NiO, CuO and ZnO Doped Beta"-alumina *Solid State Ionics* 7 1982: pp. 283–286. https://doi.org/10.1016/0167-2738(82)90024-8