Thermal Stability and Decomposition Kinetics of AgO Submicron Particles Prepared by Potassium Persulfate Oxidation

Hui FENG1, Wenning SHEN2*, Lajun FENG2, Ali LEI2, Yanfeng GE2

1 Shaanxi Institute of Zoology, No. 88 Xingqing Road, Xi’an 710032, China.
2 School of Materials Science and Engineering, Xi’an University of Technology, No. 5 South Jinhua Road, Xi’an 710048, China.

Received 29 November 2017; accepted 17 July 2017.

In this study, AgO submicron particles for antimicrobial application were prepared by potassium persulfate oxidation. The characterization of AgO particles was performed by XRD, XPS, SEM, TEM and TGA analysis. Its decomposition kinetics was studied by Doyle mechanism equation, Coats-Redfern equation and Ozawa approximate integration. The results showed that the as-prepared powders were composed of monoclinic AgO and small amounts of carbonate. The average width of AgO particles was about 200 nm with a rod-like morphology. AgO submicron particles could be decomposed to be Ag2O at 123 °C. When the temperature was increased to 405 °C, Ag2O was further transformed to be Ag. The decomposition reaction of AgO was controlled by Avrami-Erofeev random nucleation and subsequently growth mechanism (A1) with the apparent activation energy of 88.34 kJ/mol and the reaction frequency factor of 4.88 × 109 s⁻¹.

Keywords: AgO, TGA, thermal properties, thermodynamic properties.

1. INTRODUCTION

Silver containing compounds and materials have attracted considerable interests in recent years, since silver ions exhibit strong bacteriostatic and sterilization effects as well as a broad spectrum of antimicrobial activities [1 – 7]. The bacteria are difficult to resist silver containing products [8]. Furthermore, the antimicrobial property of different silver containing compounds and materials is relative to silver valence states, which the higher silver valence state has led to the better sterilization effect. So far the different materials have been studied, their effects are ordered in the following sequences: AgO > Ag2O > Ag, AgNO3 > Ag-ZSM-5 > Ag2O > silver exchanged zeolite (granular) > commercial silver exchanged zeolite (pellets) > Ag nanoparticles, respectively [9, 10]. The antimicrobial effect of silver dioxide has been extensively researched recently. Chen et al. [11] and Shen et al. [12] have reported that the antimicrobial effects of AgO are stronger than those of Ag2O. Additionally, the materials in nano and submicron size have special physical and chemical properties, such as antimicrobial property, because of their large ratio of surface area to volume and the high fraction of surface atoms [3, 13]. Thus, AgO submicron particles and nanoparticles might be important in the antimicrobial application; for instance, water treatment.

There are several methods to fabricate AgO particles, such as potassium persulfate oxidation [14, 15], ozone oxidation [12], chlorine oxidation [16], electrochemical process [17, 18], chemical bath deposition [19], etc. However, the thermal stability and decomposition kinetic of AgO bactericide vary depending on the reaction conditions, the preparation technology, the particle size and so on [20, 21]. Therefore, it is difficult to achieve the thermal stability law of AgO, which restricts its wide applications.

In our study, AgNO3 and K2S2O8 were used as precursors to prepare AgO submicron particles. Then the thermal stability of AgO submicron particles and their decomposition kinetics were determined by thermogravimetric analysis-differential thermal analysis (TGA-DTA) method. The present study is aimed to provide theoretical basis for the storage and application of AgO particles.

2. MATERIALS AND METHODS

2.1. Materials

AgNO3 (≥ 99.8 % purity, Xi’an Nonferrous Metals Research Institute), K2S2O8 and KOH (≥ 99.5 % and ≥ 85.0 % purity, Tianjin Tianli Chemical Reagent Co., Ltd.) were employed as reactants for the fabrication of AgO submicron particles. Deionized water was made in our laboratory.

2.2. Fabrication of AgO submicron particles

Potassium persulfate oxidation method was used to synthesize AgO submicron particles. The general procedures were as follows. 300 mL of AgNO3 solution with a concentration of 0.05 mol/L was added into a 1000 mL three-necked flask. The AgNO3 solution was then heated in a thermostat water bath at 60 °C. Subsequently, 200 mL of K2S2O8 solution with a concentration of 0.225 mol/L was added drop-wisely into AgNO3 solution under vigorous stirring. Later, 100 mL of KOH solution of 1.275 mol/L was slowly added into the mixture. The mixture was then mixing constantly for 20 min. After that, the solid product was obtained, followed repeatedly washing and drying at 50 °C for 6 h.

* Corresponding author. Tel.: +86-29-82312733; fax: +86-29-82312733. E-mail address: shenwenning@qq.com (W. Shen)
2.3. Characterization

The prepared particles were characterized by an XRD-7000S X-ray diffractometer (XRD). XRD data were collected at a tube voltage of 40 kV, a tube current of 30 mA, 2 theta of 20°–80°, and scan speed of 10°/min. The X-ray source was Cu X-ray with a λ of 0.15418 nm.

The element quantivalency of Element Ag and C was analyzed by X-ray photoelectron spectroscopy (XPS). The XPS spectra were achieved using a Kratos Axis Ultra instrument. The base pressure of the analytical chamber was 10⁻⁹ Torr. Spectra were excited using monochromatic AlKα (150 W, 15 kV, 1486.7 eV). The pass energy was 20 eV for narrow scanning. Binding energies were calibrated relative to the C1s peak (284.8 eV) from hydrocarbons adsorbed on the product’s surface.

The morphology and particle size of the particles were examined by a JSM-6700F scanning electron microscope (SEM) and JEM-3010 transmission electron microscope (TEM). Before SEM analysis, the sample was covered with Pt thin film. The micrographs were obtained at an accelerating voltage of 20 kV and an accelerating current of 10 μA.

Thermal stability of the product was analyzed by WRT-3P trace thermobalance, using air as measuring atmosphere. The heating rates were 5°C/min, 10°C/min, 15°C/min and 20°C/min respectively. Its corresponding tested sample amounts were 32.92 mg, 40.42 mg, 32.5 mg and 32.67 mg respectively.

3. RESULTS AND DISCUSSION

3.1. Analysis of AgO submicron particles

Fig. 1 shows the XRD pattern of AgO particles. All diffraction peaks observed in the obtained XRD pattern (marked with ‘▼’) corresponded to monoclinic structure of AgO (JCPDS card#89-3081). This indicated that AgO with a crystal structure of monoclinic system was successfully obtained.

![Fig. 1. XRD pattern of obtained AgO particles](image)

Fig. 1. XRD pattern of obtained AgO particles

Fig. 2 shows the XPS results of the particles. The silver electronic state in the particles can be derived from the high-resolution XPS spectrum. The core-level Ag 3d spectrum for the particles was broad, the asymmetric peaks at 374.1 eV and 368.0 eV, which were easily appointed to core-level $\text{Ag}^{3d_{3/2}}$ and $\text{Ag}^{3d_{5/2}}$ photoemissions, respectively.

![Fig. 2. XPS Ag3d spectrum for obtained AgO particles](image)

Fig. 2. XPS Ag3d spectrum for obtained AgO particles

The high-resolution Ag3d spectrum was decomposed into two individual component peaks. This indicated that the element silver in the particles was in two forms. The peak at 368.1 eV corresponded to AgO [22], while the peak at 367.7 eV was carbonate containing silver. Spectroscopic evidence for surface carbonate species was detected in the O1s and C1s spectra (O1s = 531.5 eV, C1s = 288.7 eV, Fig. 3).

![Fig. 3. XPS spectra for obtained AgO particles: a–of O1s; b–C1s](image)

Fig. 3. XPS spectra for obtained AgO particles: a–of O1s; b–C1s

In addition, the peak at 532.8 eV was from the hydroxyl or adsorbed water on the surface of AgO powders. The formation of carbonate was from the reaction of surface oxygen atoms with atmospheric CO$_2$, which was a distinguishing feature common to all silver oxide [18].
This result showed that the particles were composed of AgO and small amounts of carbonate. Since carbonate was just formed on the surface of AgO, its content was too small to be detected by XRD.

Fig. 4 shows the SEM image and TEM micrograph of AgO particles. It can be seen that, the particle has a flake-like morphology. The average width and length of the particles are about 200 nm and 500 nm, respectively.

3.2. Thermal stability analysis of AgO submicron particles

Fig. 5 shows the results of TGA for the AgO submicron particles.

Two peaks of weight loss in the dynamic TGA curve were observed in the whole temperature programming process. AgO was decomposed in two steps. The first peak in the TGA curve was located between 123 °C and 226 °C. The weight loss percentage was about 6.18 %. Since AgO can be decomposed into Ag₂O and release O₂, which is represented as follows

\[4\text{AgO} = 2\text{Ag}_2\text{O} + \text{O}_2 \uparrow. \quad (1) \]

According to Eq. (1), the theoretical weight loss was calculated to be 6.46 %, which was consistent with the theoretical value. AgO was decomposed into Ag₂O. The second stage of weight loss was in the range of 413 ~ 452 °C. It could be resulted from the decomposition of Ag₂O into Ag. Its thermo-gravimetric loss percentage is 6.995 %. The decomposition of Ag₂O is expressed as follows:

\[2\text{Ag}_2\text{O} = 4\text{Ag} + \text{O}_2 \uparrow. \quad (2) \]

The theoretical mass loss caused by O₂ release is 6.9 %, which accords with experimental loss value. It confirmed the hypothesis of the decomposition of Ag₂O into Ag. Thus, as a bactericide for water treatment, AgO particles must be used and store in temperature lower than 100 °C.

3.3. Decomposition kinetic analysis of AgO decomposition

Based on non-isothermal reaction kinetics theory [23], under linear temperature increase condition, the kinetic equation for the decomposition of solid matter is represented as:

\[\beta \frac{d\alpha}{dT} = A \cdot e^{-\frac{x}{E}} \cdot f(\alpha), \quad (3) \]

where \(\alpha \) is the decomposition fraction at temperature \(T \), \(f(\alpha) \) the mechanism function of decomposition kinetics, \(A \) the frequency factor (s⁻¹), \(E \) the activation energy (J/mol), \(T \) the temperature for decomposition reaction, and \(\beta \) the linear heating rate (°C/min).

The non-isothermal kinetics of thermal decomposition of AgO into Ag₂O was studied using single TG curve. Firstly, Doyle mechanism equation was adopted, which is shown as follows [24, 25]:

\[\ln F(\alpha) = \ln \frac{AE}{\beta R} - 5.3305 - 1.08 \left(\frac{E}{R T} \right), \quad (4) \]

where,

\[F(\alpha) = \int_0^\alpha \frac{d\alpha}{f(\alpha)}. \]

As shown in Eq. 4, there is a linear relationship between the \(\ln F(\alpha) \) and \((1/T) \). Ten functions of most commonly used mechanisms of solid state process (Table 1) [25] were separately substituted into equation 4, and the linear correlation coefficient \((r) \) was obtained by least square method. Meanwhile, the activation energy \((E) \) and reaction frequency factor \((A) \) were calculated from the slope and intercept of straight line respectively.

To compare the results above, Coats-Redfern equation (Eq. 5) was used to estimate the kinetic parameters [24].

\[\ln \frac{F(\alpha)}{T} = \ln \left(\frac{AR}{E\beta} \right) - \frac{E}{R} \left(\frac{1}{T} \right), \quad (5) \]
Table 1. Most frequently used mechanisms of solid state process

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Symbol</th>
<th>f(α)</th>
<th>F(α)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – dimensional diffusion</td>
<td>D1</td>
<td>0.5/α</td>
<td>α</td>
</tr>
<tr>
<td>2 – dimensional diffusion (Valensi equation)</td>
<td>D2</td>
<td>1− ln(1−α)</td>
<td>α+(1−α)ln(1−α)</td>
</tr>
<tr>
<td>3 – dimensional diffusion (sphere, Jander equation)</td>
<td>D3</td>
<td>1.5(1−α)−1(1−α)1/3−1</td>
<td>1+(1−α)1/2</td>
</tr>
<tr>
<td>3 – dimensional diffusion (cylinder, G – B equation)</td>
<td>D4</td>
<td>1.5(1−α)−1/3−1/3</td>
<td>1−(1−α)2</td>
</tr>
<tr>
<td>2 – dimensional phase boundary reaction</td>
<td>R2</td>
<td>2(1−α)1/2</td>
<td>1−(1−α)2</td>
</tr>
<tr>
<td>3 – dimensional phase boundary reaction</td>
<td>R3</td>
<td>3(1−α)3/2</td>
<td>1−(1−α)3/2</td>
</tr>
<tr>
<td>Nucleation and nuclei growth (Avrami-Erofeev equation, n = 1)</td>
<td>A1</td>
<td>1−α</td>
<td>ln(1−α)</td>
</tr>
<tr>
<td>Nucleation and nuclei growth (Avrami-Erofeev equation, n = 1.5)</td>
<td>A1.5</td>
<td>1.5(1−α)−(1−α)1/3−1</td>
<td>ln(1−α)2/3</td>
</tr>
<tr>
<td>Nucleation and nuclei growth (Avrami-Erofeev equation, n = 2)</td>
<td>A2</td>
<td>2(1−α)−(1−α)1/2</td>
<td>ln(1−α)2/2</td>
</tr>
<tr>
<td>Nucleation and nuclei growth (Avrami-Erofeev equation, n = 3)</td>
<td>A3</td>
<td>3(1−α)−(1−α)3/2</td>
<td>ln(1−α)3/2</td>
</tr>
</tbody>
</table>

If the value of \((2RT/E)\) changes a little bit with the temperature, it can be considered as constant in temperature programming process. Then \(ln(F(α)/T^2)\) is a linear function for \((1/T)\). Ten functions of most frequently used mechanisms of solid state process (Table 1) were separately substituted into Eq. 5, and the linear correlation coefficient \((r)\) was obtained by least square method. Subsequently, the activation energy was calculated from the straight line slope, and the frequency factor was obtained from the intercept at the mean temperature of decomposition.

It is reasonable to directly obtain the kinetic parameters of the thermal decomposition from the experimental data of \(α\) and \(T\) by adopting above two integration methods, since they can avoid the error introduced by the calculation of \(dα/dT\). The experimental data of \(α\) and corresponding \(T\) for the decomposition of AgO into Ag heated at heating rate of 15 °C/min are shown in Fig. 6. Using Doyle mechanism equation and Coats-Redfern equation, the data in Fig. 6 were separately substituted into Eq. 4 and Eq. 5, and the results are shown in Table 2 and Table 3 respectively.

![Fig. 6. T versus α in the decomposition of obtained AgO at a heating rate of 15 °C/min](image)

In general, the linear correlation was used to determine the decomposition mechanism. If the mechanism function \((F(α))\) might reflect the real situation of decomposition accurately, the linear correlation was better. As shown in Table 2 and Table 3, the results from Doyle mechanism equation and Coats-Redfern equation are not quite different. Among the fitting results, the maximum value of linear correlation coefficient is 0.99095 and the minimum value of standard deviation is 0.0012, corresponding to the mechanism of nucleation and nuclei growth (Avrami-Erofeev equation, n = 1; A1). Thus, the decomposition reaction of AgO submicron particles prepared by potassium persulfate oxidation obeys A1 mechanism.

Table 2. Fitted results of solid state reaction mechanisms for decomposition of AgO from Doyle equation

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>E, kJ/mol</th>
<th>A, s−1</th>
<th>r, a.u.</th>
<th>s, a.u.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>114.587</td>
<td>2.19 × 10^12</td>
<td>0.95912</td>
<td>0.0873</td>
</tr>
<tr>
<td>D2</td>
<td>131.757</td>
<td>1.55 × 10^14</td>
<td>0.97109</td>
<td>0.0791</td>
</tr>
<tr>
<td>D3</td>
<td>153.406</td>
<td>1.75 × 10^16</td>
<td>0.98343</td>
<td>0.0622</td>
</tr>
<tr>
<td>D4</td>
<td>138.897</td>
<td>2.68 × 10^14</td>
<td>0.97626</td>
<td>0.0734</td>
</tr>
<tr>
<td>R2</td>
<td>71.386</td>
<td>2.06 × 10^7</td>
<td>0.97854</td>
<td>0.0175</td>
</tr>
<tr>
<td>R3</td>
<td>76.703</td>
<td>6.14 × 10^7</td>
<td>0.98343</td>
<td>0.0012</td>
</tr>
<tr>
<td>A1</td>
<td>88.343</td>
<td>4.88 × 10^9</td>
<td>0.99095</td>
<td>0.0005</td>
</tr>
<tr>
<td>A1.5</td>
<td>58.869</td>
<td>1.96 × 10^9</td>
<td>0.99095</td>
<td>0.0005</td>
</tr>
<tr>
<td>A2</td>
<td>44.152</td>
<td>4.27 × 10^4</td>
<td>0.99095</td>
<td>0.0028</td>
</tr>
<tr>
<td>A3</td>
<td>29.434</td>
<td>1.05 × 10^3</td>
<td>0.99095</td>
<td>0.0155</td>
</tr>
</tbody>
</table>

Table 3. Fitted results of solid state reaction mechanisms for decomposition of AgO from Coats-Redfern method

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>E, kJ/mol</th>
<th>A, s−1</th>
<th>r, a.u.</th>
<th>s, a.u.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>113.08</td>
<td>1.43 × 10^12</td>
<td>0.95349</td>
<td>0.0878</td>
</tr>
<tr>
<td>D2</td>
<td>131.15</td>
<td>1.33 × 10^14</td>
<td>0.96827</td>
<td>0.0796</td>
</tr>
<tr>
<td>D3</td>
<td>153.92</td>
<td>2.05 × 10^16</td>
<td>0.98168</td>
<td>0.0626</td>
</tr>
<tr>
<td>D4</td>
<td>138.66</td>
<td>2.57 × 10^14</td>
<td>0.97353</td>
<td>0.0739</td>
</tr>
<tr>
<td>R2</td>
<td>67.635</td>
<td>5.26 × 10^6</td>
<td>0.97331</td>
<td>0.0177</td>
</tr>
<tr>
<td>R3</td>
<td>73.229</td>
<td>1.81 × 10^7</td>
<td>0.97966</td>
<td>0.0158</td>
</tr>
<tr>
<td>A1</td>
<td>85.432</td>
<td>1.90 × 10^6</td>
<td>0.98915</td>
<td>0.0114</td>
</tr>
<tr>
<td>A1.5</td>
<td>54.467</td>
<td>3.42 × 10^5</td>
<td>0.98805</td>
<td>0.0051</td>
</tr>
<tr>
<td>A2</td>
<td>38.985</td>
<td>4.27 × 10^3</td>
<td>0.98680</td>
<td>0.0029</td>
</tr>
<tr>
<td>A3</td>
<td>23.502</td>
<td>49.916</td>
<td>0.98364</td>
<td>0.0015</td>
</tr>
</tbody>
</table>

Based on the determined function model of A1 mechanism, the decomposition kinetic parameters of AgO particles were calculated by employing Doyle mechanism equation, which has better linear correlation. The obtained apparent activation energy and the reaction frequency factor were 88.34 kJ/mol and 4.88 × 10^8 s−1 respectively. For the obtained activation energy, the value of \((E/RT)\) was in the range of 21.17 ~ 26.88 at the decomposition temperature, agreeing with the assumption of \(20 ≤ (E/RT) ≤ 60\) for Doyle mechanism equation. This proved that the use of Doyle mechanism equation to study the decomposition kinetics of AgO was reasonable. The dynamical equation for the decomposition of AgO into Ag2O is as follows:

\[
\frac{dα}{dt} = 4.88 \times 10^8 \times e^{-\frac{88,340}{RT}}
\times (1−α)^{1/2}
\]

To further confirm the rationality of the determined A1
mechanism, Ozawa approximate integration was employed to calculate the decomposition kinetic parameters of AgO. The calculation of activation energy by Ozawa approximate integration does not involve the selection of mechanism functions, avoiding the error caused by choosing decomposition mechanism.

Ozawa equation [26]:

\[
\log \beta = \log \left(\frac{AE}{RG(\alpha)} \right) - 2.315 - 0.4567 \frac{E}{RT},
\]

where

\[
G(\alpha) = \int \frac{d\alpha}{f(\alpha)} = \frac{A}{\beta} \int e^{\frac{E}{RT}} dT.
\]

Since the value of \(G(\alpha) \) changes very little with the temperature, it can be regarded as constant during temperature programming. Thus, there has a linear relationship between \(\log \beta \) and \((1/T) \) at different decomposition fraction. The straight slope can be obtained by linear fitting. Subsequently, the apparent activation energy at different decomposition fraction can be derived from the slope.

AgO submicron particles were separately heated at the rate of 5, 10, 15, 20 °C/min to obtain the TG curves. Based on the TG curves, different decomposition fraction and its corresponding temperature are shown in Fig. 7. At the same decomposition fraction, the values of \(\log \beta \) and \(T \) in Fig. 7 were substituted into equation, and the results are shown in Table 4.

| Table 4. Activation energy of AgO decomposition obtained from Ozawa method under different \(\alpha \) |
|---|---|---|---|---|---|
| \(\alpha \) | 30% | 40% | 50% | 60% | 70% | 80% |
| \(E \), kJ/mol | 87.53 | 82.64 | 84.42 | 82.53 | 86.54 | 84.38 |
| r, a.u. | 0.99455 | 0.99297 | 0.98061 | 0.98617 | 0.98894 | 0.95025 |

Fig. 7. \(T \) versus \(\alpha \) in the decomposition of obtained AgO at different heating rate

Among the apparent activation energy in Table 3 and Table 4, only the activation energy derived from A1 mechanism better matches those for different decomposition fraction. This indicated the validity of A1 mechanism was obtained from Doyle equation and Coats-Redfern equation. Thus, the decomposition of AgO particles prepared by potassium persulfate oxidation was a process in which the nucleation and subsequent growth take place concurrently. Since heat from outside environment was adsorbed, the temperature of the lattice points in a monoclinic lattice increased. The increase of temperature intensified the vibration of the lattice points, leading to the formation of local reaction center which caused the decomposition of AgO. Subsequently, the silver oxide phase nucleated, and the dispersed crystal nucleus grew simultaneously, accelerating the decomposition of AgO crystal. In other words, the whole decomposition of AgO was a process in which the monoclinic structure of AgO was destroyed by the breaking of Ag-O-Ag chemical bonds and the ultimate phase of Ag2O formed.

4. CONCLUSIONS

High crystallized AgO submicron particles with a rod-like shape were fabricated by chemical precipitation method using K2SO4 as oxidation in the present study. AgO submicron particles were decomposed to be Ag2O at 123 °C. When the temperature was increased to 405 °C, Ag2O was further transformed to be Ag. This suggested that AgO submicron particles were unstable up to the temperature of 123 °C. The decomposition reaction of AgO obeyed random nucleation and subsequent nuclei growth mechanism (Avrami-Erofeev equation, \(n=1 \)) with an apparent activation energy of 88.34 kJ/mol and a reaction frequency factor of \(4.88 \times 10^4 \text{s}^{-1} \). The corresponding kinetic equation of AgO decomposition is expressed as

\[
\frac{d\alpha}{dt} = 4.88 \times 10^9 \times e^{-88.34 \times 10^7 \frac{RT}{E}} \times (1-\alpha).
\]

Based on the obtained results, it can be concluded that AgO submicron particles prepared by potassium persulfate oxidation should be stored and employed under 120 °C to play the best bactericidal effect.

Acknowledgments

This work was supported financially by Key Project of Agricultural Science and Technology Innovation of Shaanxi Province (2015NY060), Key Laboratory Project of Education Department of Shaanxi Province (No. 15JS080), Key Programe-Scientific Research Project of Education Department of Shaanxi Province for 2018, Science and Technology Co-ordination & Innovation Key Laboratory Project of Shaanxi Province (2014SZS09-Z02) and Program of Shaanxi Academy of Sciences (2016K-24).

REFERENCES

