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The mesoporous silica modified by salicylaldimine was prepared through a co-condensation method. Through the bridge 

effect from metal ion (copper ion, zinc ion, manganese ion), the model drug-avermectin was supported on the metal-Schiff 

base functionalized mesoporous silica (M-MCM-41) to form a highly efficient adsorbents for pesticide 

 delivery and removal. The experimental results showed that the sequence in adsorption capacity (AC)  

for avermectin (AVM) of various mesoporous silica in different adsorption time was  

Zn-MCM-41 > Cu-MCM-41 > Mn-MCM-41 > MCM-41 > SA-MCM-41. The AC of Zn-MCM-41 was 151 mg/g, while 

the MCM-41 was 78 mg/g which increased nearly 100 % after modification due to its strongest coordination ability. The 

FT-IR and XPS results confirmed the existence of coordination bond between SA-MCM-41 and metal ions as well as the 

coordination bond between M-MCM-41 and avermectin. The kinetic data and the equilibrium isotherms are modeled by 

three kinetic models, the pseudo-first-order, the pseudo-second-order and intraparticle diffusion, and two isotherm models, 

Langmuir and Freundlich, respectively. The kinetic mechanism of the adoption changed from physical adsorption to the 

intraparticle diffusion due to the stronger interaction between avermectin and the mesoporous silica through coordination. 

Adsorption isotherm of the samples were well-represented by Freundlich model which indicated that the adsorption was 

reversible. 
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1. INTRODUCION 

Nowadays, the materials with highly dispersed pores 

have drawn significant interests [1]. And the ordered 

mesoporous materials are most attractive among these 

materials [2 – 4] due to their uniform and adjustable pore 

sizes from 2 nm to 50 nm complied with IUPAC 

recommendation [5] especially for mesoporous silica. The 

organic templates (i.e., surfactant-types) are usually applied 

in the synthesis of mesoporous silica materials [6, 7]. Until 

now, the mesoporous silica materials have already been 

applied in many practical areas such as sensors and 

separations [8], catalysis [9], novel functional materials 

[10], selective adsorption [11] as well as being a host to 

guest molecules [12]. 

These silica materials are potential candidates for 

sustained-release and adsorption application due to their 

high thermal stability, easy morphology control, and various 

surface functionalizations. The sustained released of 

pharmaceutical active agents and drug delivery has been 

studied in the literatures [13, 14]. Inspired by the researches 

mentioned above, the following studies of using MCM-41 

as adsorbent [15] and drug delivery [16] systems have 

significant growth. The main reason for using mesoporous 

silica materials for sustained released and adsorption 

systems was due to their high ordered pore network with 

high pore volume which provides more space for the 

quantities of adsorbed samples. What’s more, the fine 

control of the release kinetics and drug load can be achieved 

by the ordered network with homogeneous size. The MCM-
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41 modified with amine groups was also studied for this 

system and resulted in better release kinetics [17].  

The influence of synthesis and surface modification of 

MCM-41 by aminopropyl groups on the immobilization and 

subsequent release of acetylsalicylic acid were also studied 

in several papers [18, 19] in which MCM-41 materials were 

functionalized through the co-condensation method, post-

synthesis treatment and solvothermal processes. 

Meanwhile, the preparation of sustained-release system 

with pH sensitivity coordinated with metal ion which acts as 

a bridge to improve its adsorption and sustained-release 

performance were also frequently reported [20, 21]. 

However, the study based on MCM-41 coordinated with 

metal for the pesticide delivery and adsorption was rarely 

reported. 

In our previous research we proposed the pH responsive 

chlorpyrifos/copper Schiff base modified mesoporous silica 

(Cu-MCM-41) sustained-release system, which was 

prepared by the coordination of copper ions through 

impregnation method and show a high performance 

[22, 23]. But the effect of different metal ion and the 

mechanism of adsorption had not been investigated yet. In 

this paper, the Dodecyl trimethyl ammonium bromide 

(DTAB) was adopted as template and tetraethylorthosilicate 

(TEOS) as silica source respectively. The self-made 

salicylaldimine was used as organic modifying agent to 

prepare salicylaldimine modified mesoporous silica by co-

condensation method. Through the bridge effect from metal 

ion, avermectin (AVM)-a family of macrocyclic lactones 

used in the control of nematode and arthropod parasites 
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which has very poor aqueous solubility and recognized as a 

nuisance less biological pesticide, was supported on the 

Schiff base modified mesoporous silica. The relationship 

between different metal ions with its adsorption 

performance was also investigated. Finally, the highly 

efficient adsorbents with high adsorption capacity for 

pesticide delivery and removal was developed which would 

thus be expected to increase the efficiency of the earth 

recovery project from pesticide pollution and decrease 

pesticide sprayed frequency needed in the agriculture due to 

the pesticide sustained released. 

2. MATERIALS AND METHODS 

2.1. Materials 

Dodecyl trimethyl ammonium bromide (DTAB), 

tetraethyl orthosilicate (TEOS), ethanol, dichloromethane, 

anhydrous magnesium sulfate,ammonia, zinc nitrate, 

manganese nitrate, copper nitrate, sodium hydroxide, 

hydrochloride were obtained from Tianjin Damao Chemical 

Reagents. 3-aminopropyltriethyloxy silane (APTES), 

salicylaldehyde were obtained from Aladdin. And 

avermectin (Hubei Kangsheng Chemical Engineering Co., 

Ltd.) were also used in this work. All chemicals were 

analytical grade and used as received without any further 

purification. 

2.2. Sample preparation and characterization 

According to previous research [22, 23], sol-gel method 

was adopted to prepare MCM-41. 2.0 g of DTAB, 100 mL 

deionized water and 60 mL of ammonia were added to the 

flask to be dissolved at 60 ℃ with stirring for 1 h. 5 g of 

TEOS was added to the solution dropwisely for 6 h before 

being crystalized at room temperature for 3 days. Then the 

samples were obtained after filtered, washed and dried. 

Finally, the template was removed by ethanol to attain 

MCM-41. 

According to the literature [7], 4.42 g of APTES, 2.44 g 

of salicylaldehyde and 100 mL of ethanol were added into a 

flask and reacted at 95 °C for 3 h. Ethanol was removed by 

rotary evaporated, and 20 mL of dichloromethane was 

added, then the products washed with deionized water 

3 times. The organic layer was extracted and standing for 

12 h. Then the product was filtered to remove 

dichloromethane to attain salicylaldimine. 

According to previous research [24], co-condensation 

method was adopted to prepare salicylaldimine -modified 

mesoporous silica. 1.0 g of DTAB, 100 mL deionized water 

and 70 mL of ammonia were added to the flask to be 

dissolved at 60 ℃ with stirring. And 5 g of TEOS was 

added to the solution dropwisely. 1 hour later, 1 g of as 

synthesized salicylaldimin was added and kept on reacting 

for 6 h before being crystalized at room temperature 

respectively, filtered, washed and dried. Finally, the 

template was removed by ethanol to attain SA-MCM-41. 

According to previous research [22], 100 mL of copper 

nitrate, zinc nitrate, manganese nitrate solution (1 mmol/L) 

was added to 200 mg of SA-MCM-41 at 35 ℃ under 

stirring for 24 h. Then M-MCM-41 was attained after being 

filtered, washed and dried.  

According to previous research [22], the supported 

avermectin was prepared via impregnation. M-MCM-41was 

activated under vacuum at 80 ° for 6 h. And 100 mg of 

samples was immersed in 20 mL of avermectin ethanol 

solution (10 mg/mL) at 35 ° under stirring for 24 h, then 

filtered, washed, and dried. The obtained products were 

denoted as AVM-M-MCM-41.  

The samples were analyzed using a Bruker AXS D8 X-

ray diffractometer (Bruker AXSGmbH, Karlsruhe, 

Germany) with Cu radiation (λ = 1.5418 nm) and a graphite 

monochromator at 25 ℃, 40 kV, and 30 mA. The 

measurements were scanned at 2 °/min (angular range 2θ = 

0.5~10°) in 0.02° step size. The structure of the particles was 

analyzed by a Spectrum 100 Fourier infrared spectrometer 

(Perkin Elmer Inc., USA) by using the KBr squash 

technique. The gold particles were sprayed on the surface of 

samples under protection of N2 and the samples were 

characterized by an S4800 scanning electron microscope 

(Hitachi, Japan) to obtain SEM observation. TEM 

observation was conducted on a FEI Tecnai G2 F20 

transmission electron microscope. X-ray photoelectron 

spectra (XPS) were recorded on a ESCALAB 250XI 

spectrometer (Thermo Fisher Scientific, Al Kα, 

hν = 1486.6 eV,   0.05 eV) under a vacuum of  

~2 × 10-7 Pa. Charging effects were corrected by adjusting 

the main C 1 s peak to a position of 284.8 eV.  

2.3. Adsorption properties test 

A UV-2550 UV-Vis spectrophotometer from Shimadzu 

Co., Japan, was applied to measure the amount of 

avermectin adsorbed by mesoporous silica. Linear 

regression of the solution concentration (C) and absorbance 

(A) of avermectin standard solutions of different 

concentrations at  = 245 nm was performed to obtain a 

standard curvilinear equation: C = 26.647A + 2.7776, 

R2 = 0.9782. UV spectroscopy was performed to measure 

the absorbance of this solution before and after the 

adsorption in avermectin ethanol solution. Adsorption 

capacity (AC) may be calculated by the following equation: 

𝐴𝐶 =
(𝐶𝑜−𝐶1)×𝑉

𝑚
, (1) 

where C0 is the origin mass concentration (mg/L) of the 

avermectin in ethanol solution, C1 is the mass concentration 

(mg/L) of the avermectin in ethanol solution after 

adsorption, and m is the mass (g) of mesoporous silica. 

2.4. Kinetic and thermodynamics study 

Adsorption kinetics that describes the rate of an 

adsorbate adsorption on an adsorbent is useful for designing 

of waste water treatment systems. These models are pseudo-

first-order (Eq. 2), pseudo-second-order (Eq. 3) and 

intraparticle diffusion (Eq. 4) kinetic models. The linearized 

forms of these equations are expressed as below [25]: 

log(𝑞𝑒 − 𝑞𝑡) = log 𝑞𝑒 −
𝑘1𝑡

2.303
; (2) 

t

 𝑞𝑡
=

𝑥

𝑘2𝑞𝑒
2 +

t

𝑞𝑒
  ; (3) 

𝑞𝑡 = 𝑘3𝑡0.5 + 𝐶, (4) 
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where qe and qt are the experimental amount of AVM 

adsorbed by mesoporous silica (mg/g) at equilibrium and at 

time t, respectively. k1 (min−1), k2 (g/mg·min) and k3 

(mg/g·min0.5) are the pseudo-first-order, the pseudo-second-

order and the intraparticle diffusion rate constants, 

respectively. Rate constants k1 is calculated from the slopes 

of the linear plots of ln (qe − qt) versus t, while k2 is 

calculated from the intercepts of the linear plots of t/qt 

versus t. 

Two-parameter isotherm models, namely, Langmuir 

and Freundlich are used to describe the adsorption isotherms 

of MCM-41, SA-MCM-41, Zn-MCM-41, Cu-MCM-41 and 

Mn-MCM-41. The linearized forms of Langmuir and 

Freundlich models are given by Eq. 5 and Eq. 6, 

respectively [26]: 

𝐶𝑒

𝑞𝑒
=

𝐶𝑒

𝑄𝑚
+

1

𝑄𝑚𝑏
; (5) 

ln 𝑞𝑒 = ln 𝐾 +
1

𝑛
ln 𝐶, (6) 

where Ce is the avermectin concentration in the liquid-phase 

(mg/L), qe is the amount of avermectin adsorbed by 

mesoporous silica at equilibrium (mg/g) and Qm is the 

maximum adsorption capacity of mesoporous silica (mg/g). 

The Langmuir (b, L/mg) and Freundlich (K, mg1 −n Ln/g) 

isotherm constants are related to the adsorption energy and 

the adsorption capacity, respectively. The constant n 

(unitless) is related to the adsorption intensity. Langmuir 

and Freundlich isotherm parameters are calculated from the 

slope and intercept values of linear plots of Ce/qe versus Ce 

and log qe versus log Ce, respectively. 

3. RESULTS AND DISCUSSION 

3.1. Characterization of mesoporous materials 

Fig. 1 showes the XRD patterns of MCM-41, SA-

MCM-41 and Zn-MCM-41. There were two characteristic 

peaks shown in MCM-41, which could be ascribed to (100), 

and (200) crystal face respectively, which indicated that the 

particles had regular hexagonal pore structure [23, 27].  
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Fig. 1. XRD patterns of MCM-41, SA-MCM-41 and Zn-MCM-41 

As modified by salicylaldimine, the strength of the 

XRD peaks decreased, which proved that APTES was 

introduced to the system and decreased its degree of 

orderliness [23, 28]. The XRD peaks of the sample with 

metal ion has a notable negative shift proving that the lattice 

distortion happened due to the cooperation interaction between 

metal ion and MCM-41. And the loading of metal ion further 

decreased its degree of orderliness due to the block of the 

pores by metal salts. 

Fig. 2 depicted the SEM and TEM image of MCM-41 

(a&b) and SA-MCM-41 (c&d). As shown, the surface of the 

particles presented more rough after salicylaldimine 

modification. And the regular hexagonal pore structure was 

well-maintained without agglomeration after which was in 

consistent with the XRD results. 

  

a b 

  

c d 

Fig. 2. SEM and TEM image of MCM-41 (a and b) and SA-MCM-

41(c and d) 

FTIR was carried out to compare the different 

composition of MCM-41, SA-MCM-41, Zn-MCM-41, Cu-

MCM-41 and Mn-MCM-41. As shown in Fig. 3, two bands 

appeared in 3420 cm-1 and 960 cm-1 for MCM-41 ascribed 

to stretching and bending vibration of Si-OH respectively 

[23, 29]. 
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Fig. 3. FTIR spectra of MCM-41, SA-MCM-41, Zn-MCM-41, 

Mn-MCM-41 and Cu-MCM-41 

Two bands appeared in 2847 cm-1 and 2936 cm-1 were 

ascribed to the characteristic peaks of methylene group due 

to the surfactant residue added during preparation. 1081 cm-

1 and 800 cm-1 were attributed to the characteristic peaks of 

Si-O-Si on the SiO2 framework. Comparing to MCM-41, a 
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new band appeared at 1631 cm-1 belonging to the stretching 

band of C=N and the vibration band of benzene ring in the 

salicylaldimine. The blue shift of C=N from 1631 cm-1 to 

1641 cm-1 happened after the coordination with metal ion. 

The XPS analysis was carried out to identify the surface 

elements chemical states, as shown in Fig. 4. 
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Fig. 4. a – XPS spectra of Zn-MCM-41 and AVM-Zn-MCM-41;  

b – Cu-MCM-41 and AVM-Cu-MCM-41;  

c – Mn-MCM-41 and AVM-Mn-MCM-41 

After loading avermectin, the binding energy (BE) of 

zinc ion decreased from 1022.27 eV to 1022.13 eV. While 

for Cu-MCM-41 and Mn-MCM-41, the binding energy 

(BE) of metal ion increased from 933.49 eV to 934.51 eV 

and 641.50 eV to 642.06 eV respectively after loading 

avermectin which implies that their coordination interaction 

was weaker after loading AVM in contrary to  

Zn-MCM-41. The results above also confirmed the 

coordination interaction between metal ion and avermectin 

[29, 30]. 

3.2. Adsorption performance 

Fig. 5 a showed the adsorption performance of various 

mesoporous silica in different adsorption time with a 

sequence of Zn-MCM-41 > Cu-MCM-41 > Mn-MCM-

41 > MCM-41 > SA-MCM-41 in adsorption capacity. The 

AC decreased because of the pores blocked after modified 

by salicylaldimine, and then increased significantly after 

coordinated with metal ion, which improved the interaction 

between avermectin and mesoporous silica support through 

coordination [21]. Among them, Zn-MCM-41 has the 

biggest AC (151 mg/g) due to its strongest coordination 

ability in accordance with the XPS results among the three 

coordinated metal ion. 
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Fig. 5. a – the AC of mesoporous silica in different time; b – AVM 

concentration 

As shown in Fig. 5b, the AC of the mesoporous silica 

increased while the avermectin concentration of the solution 

increased during the adsorption with the same AC sequence 

of Fig. 5 a. When the avermectin concentration of the 

solution was between 600 μmol/L to 800 μmol/L, the 

increased of the AC was fastest. While the avermectin 

concentration further increased from 800 μmol/L to 

1200 μmol/L, the increased speed of AC slowed down and 

maintained steady above 1200 μmol/L. 

3.3. Kinetics and thermodynamics study 

From the slope and intercept values of linear fittings of 

the experimental kinetics of avermectin onto mesoporous 

silica to the aforementioned kinetic models, the kinetic 

parameters are calculated and the data obtained are 

tabulated in Table 1. Additionally, the determination 

coefficient values, R2, of the plots are also given in this table. 

From the data of this table, it can be observed that linear 

fittings of the experimental kinetic data of MCM-41 to the 

pseudo-first-order kinetic model resulted in higher 

determination coefficient values (R2 = 0.926) than their 

fittings to the pseudo-second-order model (R2 = 0.550) and 

intraparticle diffusion model (R2 = 0.866) proving that the 

physical adsorption is the main process for the mesoporous 

silica without modification. For applicability of the 

intraparticle diffusion kinetic model to the present 

adsorption processes, the plot of qt versus t0.5 must yield 

straight lines passing through the origin. 
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Table 1. Kinetic model of MCM-41, SA-MCM-41, Zn-MCM-41, Cu-MCM-41 and Mn-MCM-41 fitting results for drug adsorption 

curves of avermectin-loaded particles 

Sample 
Pseudo-first-order Pseudo-second-order Intraparticle diffusion 

k1 R2 k2 R2 k3 R2 

MCM-41 0.156 0.926 0.153 0.550 0.262 0.866 

SA-MCM-41 0.159 0.873 0.169 0.435 0.018 0.917 

Zn-MCM-41 0.215 0.930 0.078 0.266 0.844 0.989 

Cu-MCM-41 0.350 0.730 0.109 0.357 0.041 0.887 

Mn-MCM-41 0.288 0.880 0.122 0.332 0.476 0.985 

 

The results obtained in this study illustrate that straight 

lines are obtained for the intraparticle diffusion model for 

MCM-41 after modification. R2 were 0.917, 0.989, 0.887 

and 0.985 for SA-MCM-41, Zn-MCM-41, Cu-MCM-41 

and Mn-MCM-41 respectively which were much higher 

than the other two models. This implies that the intraparticle 

diffusion model is appropriate to fit the kinetic data of 

avermectin onto modified mesoporous silica and is therefore 

the rate-controlling step in the present adsorption processes 

[31]. 

Langmuir and Freundlich isotherm parameters are 

calculated from the slope and intercept values of linear plots 

of Ce/qeversus Ce and log qe versus log Ce, respectively. The 

isotherm parameters obtained for both models are given in 

Table 2 together with the determination coefficient values, 

R2. The R2 values of this table suggest that the equilibrium 

data are well-described by Freundlich model than Langmuir 

mode which implied that their adsorption is reversible. 

Table 2. Thermodynamic model of MCM-41, SA-MCM-41, Zn-

MCM-41, Cu-MCM-41 and Mn-MCM-41 fitting results 

for drug adsorption curves of avermectin-loaded particles 

Sample 
Langmuir model Freundlish model 

b R2 K R2 

MCM-41 -0.0006 0.582 10-8.4 0.913 

SA-MCM-41 -0.0004 0.261 10-6.3 0.834 

Zn-MCM-41 -0.0002 0.024 10-3.6 0.904 

Cu-MCM-41 -0.0001 0.146 10-2.9 0.911 

Mn-MCM-41 -0.0001 0.006 10-3.2 0.940 

Because the former model has higher R2 values (0.913, 

0.834, 0.904, 0.911, 0.940 for MCM-41, SA-MCM-41, Zn-

MCM-41, Cu-MCM-41 and Mn-MCM-41）than the later 

one (0.582, 0.261, 0.024, 0.146 and 0.006 for MCM-41, SA-

MCM-41, Zn-MCM-41, Cu-MCM-41 and Mn-MCM-41.  

By now, the complete drug adsorption of M-MCM-41 

was generally illustrated in consideration of kinetic and 

thermodynamics mechanism and the data in this work. 

Metal ion act as a bridge to coordinate with Schiff base 

modified mesoporous silica and avermectin. The kinetic 

mechanism of the adoption changed from physical 

adsorption to the intraparticle diffusion inducing the 

importance of pore effect on the adsorption process was 

significantly enhanced due to the stronger interaction 

between avermectin and the modified mesoporous silica. 

4. CONCLUSIONS 

In conclusion, the salicylaldimine modified 

mesoporous silica (SA-MCM-41) was prepared by co-

condensation method. Metal-Schiff base mesoporous silica 

was prepared through coordination between metal ion and 

Schiff base. The characterization confirmed the existence of 

coordination bond between MCM-41 and metal ions and 

between M-MCM-41 and avermectin. The AC of Zn-MCM-

41 was 151 mg/g, while the MCM-41 was 78 mg/g which 

increased nearly 100 % after modification due to its 

strongest coordination ability in accordance with the XPS 

results among the three coordinated metal ions. After 

modified by salicylaldimine and metal ions, the kinetic 

mechanism of the mesoporous silica adoption changed from 

physical adsorption to the intraparticle diffusion due to the 

stronger interaction between avermectin and the 

mesoporous silica through coordination. Adsorption 

isotherm of the samples was well-represented by Freundlich 

model which implied that their adsorption is reversible. 
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