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This paper presents the methodology and results of surface roughness simulation of soft polymer materials using 

approximations of fractal interpolation curves. The modeling algorithm and its realization are made so that they can be 

applied to any profilogram. The comparison of created models and real profilograms is done using autocorrelation 

functions and fractal dimensions. The three-dimensional model of the roughened surface is developed and equations, 

relating the area of the surface to the characteristics of abrasive materials, i.e. to the size of an abrasive grain, are 

obtained. Those equations are to be used in forecasting the area of the surface of a butadiene-styrene rubber evading the 

experiment itself. 

Keywords: abrasion, surface roughness, three-dimensional model of a rough surface, autocorrelation function, fractal 
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1. INTRODUCTION

∗

 

The real contact surface area an adhesive joint plays an 

important role in its strength and durability. This parameter 

depends not only on the geometrical dimensions of the 

surface glued, but also on the roughness of the surface  

[1
 

–
 

3]. It is almost impossible to find the real area of a 

rough surface by applying direct methods. Such area could 

be approximately evaluated from the numerical model of 

the surface. In order to forecast the relation between the 

real area of a rough surface and the regimes of surface 

abrasion it is necessary to find the relationship between the 

real contact area and the indicators of surface roughness. 

The size of an abrasive grain of the abrasive material, 

which is used for surface roughening, has influence on the 

characteristics of the surface roughness. These characteris-

tics may be of two types: statistical and fractal, depending 

on positions the profile of the roughened surface is treated. 

Statistical characteristics of the profile are obtained by 

treating the profile of the surface roughness as the 

realization of a stochastic process [4]. The assumptions of 

a stationary, ergodic and normally distributed process are 

also considered. However, those assumptions are not 

always satisfied and researchers are encouraged to develop 

other models of surface profile [5, 6]. 

Currently, methods of fractal geometry and important 

quantitative property of fractals, fractal dimension, are 

used to define surface roughness [7, 8]. It is important to 

create a surface roughness model depending on a specific 

parameter characteristic for that surface only. Such a 

parameter could be the fractal dimension of the profile of 

the rough surface [9
 

–
 

11]. The fractal dimension indicates 

how densely an object appears to fill the space. The 

apparatus of fractal interpolation enables us to obtain a 

rough surface model with different grades of roughness, 
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since particular fractal interpolation parameters have 

influence on the fractal dimension of the surface profile. 

The three-dimensional model of surface roughness 

described in this paper employs a quality of self similarity 

of a two dimensional curve. The real profilogram may not 

hold this quality, but the model is formed in a way that it 

should correspond to the real profilogram in its shape and 

fractal dimension. Consequently, there are no extra 

conditions for profilogram to satisfy (in order to be 

modeled). 

2. FRACTAL INTERPOLATION CURVES AND 

THEIR ESTIMATES 

In this paper, the presented model performs first two 

iterations of fractal interpolation for the set of points 

( ){ }Ni  yx
ii

,1, = , chosen from a profilogram. A simple 

way to perform fractal interpolation is to apply shear 

transformations [12]. 

The number of (two dimensional and bounded) shear 

transformations equals the number of intervals between the 

interpolation points. The i-th ( 1;1 −= Ni ) shear transfor-

mation is written as 
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here 
i

a , 
i
c , 

i
d , 

i
e  and 

i
f  are parameters of the 

transformation. 

The latter parameters are found from the system 

bellow: 
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It follows that 
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Suppose, B is a continuous curve (initial set) 

connecting two interpolation points, ( )
11

, yx  and ( )
NN

yx , . 

Parameters ai and di control the level of stretch of the 

initial set along the abscissa and the ordinate axes, 

respectively. The parameters di are arbitrary, although 

1<
i

d  must hold. The values 
i
c  adjust the level of shear 

of the initial set in a particular interval. The parameters ei 

and fi correspond to the displacement of the initial set. 

The first step in performing fractal interpolation is to 

find the union of transformations ωi acting upon the initial 

set B: 

( ) ( ) ( ) ( ) ( )BBBBWBW
N 121

01

−

== ωωω ΥΚΥΥ . (4) 

The resulting set of points ( )BW
01  is treated as the 

initial set and is transformed using the same transformation 

W, i. e. ( ) ( )( )BWWBW =

02 . 

The fractal interpolation function (FIF), corresponding 

to the set B, is defined to be: 

( )BWFIF
n

n

0
lim

∞→

= , ( ) ( )( )( )BWWBW
nn 100 −

= . (5) 

An illustrative example is presented in Fig. 1. Here, 

the set of five interpolation points, ( )0;0 , ( )2;3 , ( )5.1;6 , 

( )5.2;10 , ( )1;12 , is considered. 
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Fig. 1. First iteration of fractal interpolation of the data: a – the 

initial set B is a segment, b – the initial set B is a 

polygonal line 

Fig. 2 shows the resulting curve after applying  

2 iterations to the data depicted in Fig. 1. 

It should be noted that FIF does not depend on the 

initial set B. If we restrict ourselves with two (three, or 

more) iterations, the fractal interpolation function (FIF) 

becomes dependent on the initial set B (Fig. 2). 
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Fig. 2. Two iterations of the fractal interpolation: a – the initial 

set B is a segment, b – the initial set B is a polygonal line 

3. RESULTS AND DISCUSSION 

3.1. The experiment 

The objects of the experiment are the monolithic 

rubber samples (butadiene-styrene rubber with the density 

and hardness according Shore A, respectively ρ = 1.25 

g/cm3 and H = 75 a.u.), whose surface was abraded with 

abrasive paper of different grades. The pressure force of 

80 N has been used in the process of abrasion. 

According to the FEPA’s (Federation of European 

Producers of Abrasives) standard standing in the European 

Union, abrasive materials, with respect to their graininess, 

are numbered as follows: P24, P60, P1000, etc. The 

greater the grade of the abrasive paper, the smaller the size 

of the abrasive grain. 

In this work, the following grades of abrasive paper 

are used: P24, P40, P60 and P100. The average diameter 

of an abrasive grain for each grade of the abrasive paper is 

shown in Table 1. 

Table 1. The relation between the grade of an abrasive paper and 

the average diameter of an abrasive grain 

The grade of the abrasive paper 

according to the FEPA 

The average diameter of an 

abrasive grain, (mm) 

P24 0.698 

P40 0.382 

P60 0.260 

P100 0.149 

In this paper, the roughness is treated as a whole of 

micro roughness located relatively close to each other. 

From this viewpoint, a surface processed with the grade 

P100 abrasive paper is rougher than the one processed with 

the grade P24 abrasive paper. 

All profilograms were tested by Hommelwerke T500 

surface finish tester – profilograph (Germany; minimal 

limit of measuring is 0.2 µm) perpendicular to the direction 

of abrasion. The profilograms of the surfaces abraded with 

the different grade of the abrasive paper are shown in 

Fig. 3. 
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Fig. 3. The typical profilograms of a rough surface corresponding to the different grade of roughness: a – P24; b – P40; c – P60;  

d – P100 
 

3.2. The simulation of a profilogram 

The profile of surface roughness in the sample interval 

of length l = 10 mm is expressed as a set of points Mi, 

0
;1 Ni = , with coordinates ( )

ii
yx ,  defined. 

To simulate a particular profilogram, at first a certain 

amount of its points must be chosen. These can be specific 

points (peaks or minimums) with respect to the ability to 

preserve the shape of the profilogram. But again, this 

depends on a particular profilogram and its shape. 

There are lots of specific points in an extremely rough 

profilogram. They often reside beside each other in some 

areas of the profilogram and they can be far from each 

other in other areas. In such a case, taking of the union of 

shear transformations leads a huge number of new points 

in areas where the profilogram is extremely rough, i. e. the 

roughness of the model would be inadequately uneven. 

Because of this property, it is not advisable to choose 

specific points from the profilogram to perform fractal 

interpolation. When performing the research, the chosen 

points were distributed uniformly along the 0x axis, at the 

distance u from each other. 

Bellow, we demonstrate the methodic of simulation of 

a profilogram by considering the excerpt from the 

profilogram, which represents the surface abraded with the 

grade P24 abrasive paper. The real profilogram and the 

selected points for simulation are depicted in Fig. 4. 
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Fig. 4. The profilogram of surface roughened using abrasive 

paper P24 and the set of selected points for the simulation 

It is important to decide upon the number of points 

(from the profilogram) to perform fractal interpolation. 

Often, we are forced to predict the resulting number of 

points in the model. Otherwise, the calculation time could 

be wasted or model may have too many or too few details 

compared to the data. 

By performing fractal interpolation and using various 

initial sets (a segment, a polygonal line), it was found out 

that a polygonal line comprising 2 segments fits best for 

simulation of the profilogram. Such a selection of an initial 

set is useful for ensuring the model’s adequacy to the data. 

The total number of resulting points in the model is 

found by applying simple calculations. For example, if 

there are N interpolation points and a polygonal line is 

chosen as the initial set, the total number of points after the 

k-th iteration equals ( ) ( ) 112, +−=
k

NkNf . The 

simulation generates the number of resulting points, which 

is somewhat equal to the number of points N0 in the 

profilogram ( ( )
0

, NkNf ≈ ). Thus, for 2 iterations we 

have: 

( )15.01
0
−+= NN . (4) 

According to the analysis completed, it was noticed 

that there is no need to perform many iterations, as it 

results in a huge number of resulting points in the model. If 

even 3 iterations are performed, the model gets extremely 

rough. On the other hand, the reduction of the number of 

interpolation points leads to the loss of the information of 

the profilogram’s shape, and does not solve the issue. 

The shear transformations, used to perform the first 

iteration of fractal interpolation, are depicted in Fig. 5. 
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Fig. 5. The result of the first iteration applied to the chosen points 

from the profilogram 

Parameters di of shear transformations must be 

selected in a way that the model roughness were similar to 

that of the profilogram. The rougher the profilogram is, the 
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greater di should be chosen in the case of smooth 

profilograms, values of 
i

d  should be close to 0. 

Roughness of the surface could be measured by 

calculating the standard deviation of the profile’s ordinates 

ki
y , nk ;1= , NNn

0
= . Thus, parameters di are 

calculated this way: 

( ) cy yyd
niiiii

...,,,

21
σ= ; (5) 

here: i is the index of the interval between the chosen 

points for interpolation; n is the number of the 

profilogram’s points in this interval and c is a constant. In 

other words, parameters di are ratios of the standard 

deviation σi of the ordinates 
ki

y  in a particular interval 

and the arbitrary constant. By performing experiments with 

various values of c and evaluating the model similarity to 

the profilogram, the value 50=c  was chosen. The 

constant c is positive in a particular interval if the mean of 

profilogram’s ordinates on this interval is higher than the 

arithmetical mean of the first and the last ordinates of the 

same interval and vice-versa. So, 

( ) ( )
niiiniiii

yyy yy ,...,,,

121
µµ >  makes 0>

i
d . 

After a finite number of iterations the resulting curve 

is treated as the model of the profilogram. Two iterations 

transform the initial set to the curve depicted in Fig. 6. 
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Fig. 6. Simulated profile of the roughened surface (using abrasive 

paper P24) after 2 iterations 

The aforesaid technique of profilogram simulation and 

other calculations have been programmed using 

MATLAB 7.9.0 software. 

In order to evaluate the model adequacy, the 

autocorrelation functions of the profilogram and its model 

have been used [13]. The autocorrelation functions of the 

profilogram and its model are calculated according to the 

formula: 

( ) ( )( )( ) 2
σμμτ

τ
−−=

+tt
yyEACF , (6) 

where τ  is an increment, 
t
y , τ−=

0
;1 Nt  – ordinates of 

the  profilogram  and  μ, σ 2 are the mean and the  variance 

of the ordinates yt. The value of the autocorrelation 

function is dimensionless. 

By comparing visually, the autocorrelation functions 

of the model and the profilogram, it is observed (Fig. 7) 

that they are very similar, provided τ is less than about 

150. Thus, the original profilogram and its model 

correspond to each other. It was obtained that both 

autocorrelation functions could be approximated by the 

same analytical expression: 

( ) ( )( ) 1
2

1
−

⋅+= τατACF , (7) 

where α is a parameter, obtained by applying the least 

squares method. 
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Fig. 7. The comparison of the autocorrelation functions: 

----  –  ACF of the real profilogram, —— – ACF of the 

simulated profilogram 

Table 2 shows that the relative error (RE) between the 

autocorrelation functions of the original and modelled 

profilograms increases when the grade of the abrasive 

paper increases, provided the initial set for fractal 

interpolation is a segment. In the case of a polygonal line, 

the shape of the profilogram is preserved better if 

parameters di are calculated in the way of being 

proportional to standard deviations of the profilogram’s 

ordinates on each interval.    

3.3. The model of the three-dimensional surface 

Let us designate the array of ordinates of the surface as 

{ }
021

,,,
N

ppp Κ . Let 
0

N  represent the number of points 

comprising the profilogram. Due to the fact that the 

profilogram is a cut of a particular three-dimensional (3D) 

surface, setting the width enables us to make the 3D 

interpretation of surface roughness (Model 1). 

While making the three-dimensional model of a 

profilogram, we also set the width to the estimate of its 

FIF. If { }
N
fff ,,,

21
Κ  are the ordinates of the FIF’s 

estimate of the profilogram, then the three-dimensional 

interpretation  of  surface  roughness  is  written in a matrix 
 

Table 2. The mean squared (MSE) and the relative (RE) errors between the autocorrelation functions of the real profilogram and its 

model 

The grade of the abrasive paper according to 

the FEPA 

A segment is the initial set for 

interpolation 

A polygonal line consisting of 2 segments 

is the initial set for interpolation 

MSE RE MSE RE 

P24 0.134 8.068 0.339 20.382 

P40 0.199 17.391 0.210 18.338 

P60 0.211 19.112 0.298 26.986 

P100 0.195 16.562 0.181 15.321 
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Table 3. The simulation of profilograms having a different grade of roughness. 

The grade of the abrasive paper 

according to the FEPA 
“Model 1” “Model 2” 

P24 

  

P100 

 
 

form as follows 
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here N1 is arbitrary and denotes the number of zones in the 

model ( 2
1
>N ) and jij ff = , 

1
,1 Ni =∀ . 

The surface is divided into zones along the direction of 

the profilogram, when the model of surface roughness 

(Model 2) is analyzed. We set a random width for each of 

the zones. Then each zone is randomly moved along the 

positive direction of the 0x axis by the value which is 

uniformly distributed on the interval ( )3.0;1.0 . The result 

of this process is depicted in Fig. 8. 

Finally, the extra parts of the surface zones are 

displaced to the front of the model where a free space 

resides now. 

The three dimensional model of surface roughness is 

fractal-stochastic. It is due to the randomness of its 

coordinates and the self-similarity of the model’s profile. 

Creation of it involves the random selection of the points 

of the profilogram; nevertheless, the zones in which we 

divide the model are randomly offsetted in space. 

3.4. The comparison of models with different 

surface roughness 

Each type of the profilogram has been investigated in 

order to compare the models of surface roughness. Table 3 

shows models formed by performing two iterations of 

fractal interpolation. A polygonal line comprising of  

2 segments has been chosen as the initial set for fractal 

interpolation. The surface model covers the real area of 

100 mm2 on the plane x0z. 

Fractal dimension has been used to compare the model 

of a profilogram to the real profilogram. Such a 

comparison is given in Table 4. A segment as the initial set 

 

a 

 

b 

Fig. 8. The 3D models of surfaces: a – Model 1, b – Model 2 

of fractal interpolation has been used, 2 iterations have 

been performed and the area of the surface modelled is 

10 mm × 10 mm. 
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Table 4. Comparison of models of the surfaces 

The grade of the abrasive 

paper according to the 

FEPA 

The surface area of 

„Model 1“ Sp , mm2  

The  surface  area of 

„Model 2“ Sm , mm2 

The estimate of fractal 

dimension of the real 

profilogram, Dp 

The estimate of fractal 

dimension of a model 

of the profilogram, Dm 

P24 101.014 101.359 1.713 1.685 

P40 101.552 101.838 1.739 1.612 

P60 103.302 101.754 1.800 1.644 

P100 105.074 103.369 1.762 1.681 

 

The three-dimensional models considered cover the 

same area (100 mm2) on the plane x0z. By multiplying the 

length of the profilogram’s model by its width, the surface 

area is calculated. The areas of surfaces “Model 1” and 

“Model 2” are denoted by Sp and Sm, respectively. The area 

Sp  is greater for the surface modeled according to the 

rougher profilogram. Table 4 shows that using a segment 

(as the initial set) leads to the estimates of fractal 

dimensions Dp and Dm being comparable between the 

profilograms of grade 24 and 100 and their models. 

Table 5 shows the comparison of the models of surface 

roughness when a polygonal line comprising 2 segments is 

chosen. Using the polygonal line (as the initial set) results 

in higher precision of the models (Dp and Dm differ less). 

The profilogram of grade 24 is an exception. This occurs 

due to the use of the polygonal line which makes the model 

of the profilogram rougher. 

3.5. The relation between the area of the rough 

surface and the grade of the abrasive paper 

The strength of the adhesive joints depends on the area 

of contact surfaces. This indicator depends not only on the 

geometrical dimensions of the substrate, but also on the 

surface roughness. If the appropriate receipt is considered, 

the glue can fill up all the roughness originated in the 

process of surface grinding or polishing. The resulting 

roughness of the surface depends on its inner structure, as 

well as on the roughness of the abrasive paper. Then the 

assumption about the relation between the grade of the 

abrasive paper and the surface could be drawn. 

We have analyzed the relation between the area of the 

rough surface and the grade of the abrasive paper r, 

referring to the assumption above. We showed that the 

greater the size of an abrasive grain (i. e. the smaller the 

grade of the abrasive paper), the smaller the area of the 

roughened surface (Fig. 9). The relationship between the 

real  area  of  the  contact  Sp  and  the  area  of  the original  

surface S0, can be written as follows: 

⎟
⎠

⎞
⎜
⎝

⎛
+=

R
SS

p

0115.0
9981.0

0
; (9) 

here: S0 = 100 mm2, 
s
r

r
R = , r – the average diameter of an 

abrasive grain (see Table 1), rs is the diameter of an 

abrasive grain corresponding to the smallest grade of the 

abrasive paper. 

According to the calculated coefficient of the 

determination, this relationship predicts the data with an 

accuracy of  97.36 %. 
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Fig. 9. The relationship between the area Sp  and the value R 

While forecasting the area Sm , the linear relation fits 

better: 

( )RSS
m

052.0086.1
0

−= . (10) 

According to the calculated coefficient of the 

determination, above relationship (Fig. 10) predicts the 

data with an accuracy of  98.46 %. 

Due to the fact that the grade of the abrasive paper is 

always known, the equations obtained enables the 

researcher to predict the area of surface roughness, affected 

by the abrasive paper of any grade without performing the 

experiment itself. 
 

Table 5. Comparison of models of the surfaces 

The grade of the abrasive 

paper according to the 

FEPA 

The surface area of 

„Model 1“ Sp , mm2 

The  surface area of 

„Model 2“ Sm , mm2 

The estimate of fractal 

dimension of the real 

profilogram, Dp 

The estimate of fractal 

dimension of a model of the 

profilogram, Dm 

P24 101.014 103.463 1.713 1.672 

P40 101.552 105.423 1.739 1.663 

P60 103.302 106.743 1.800 1.680 

P100 105.074 107.594 1.762 1.739 
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Fig. 10. The relation between the area Sm and value R 

4. CONCLUSIONS 

The use of fractal interpolation for modelling surface 

roughness has been investigated in the paper. It has been 

determined that using polygonal lines as initial sets for 

fractal interpolation is preferable while constructing the 

model of a profilogram. 

The model obtained corresponds to the real 

profilogram in terms of both the shape of profile and the 

degree of filling the space. It was found by calculating the 

autocorrelation function and the estimate of fractal 

dimension for the real profilogram and its model. 

The relationship between the real area of the rough 

surface of a butadiene-styrene rubber and the grade of the 

abrasive paper has been determined. So, the researcher is 

able to predict the area of surface roughness, affected by 

the abrasive paper of any grade, without performing the 

experiment itself, because the grade of the abrasive paper 

is always known. 
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