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The synthesis of nanostructured films of 20 mol% Y2O3 stabilized ZrO2 on corundum (Al2O3) substrates was performed 

from different sols using dip-coating technique. All obtained samples were repeatedly annealed at 800 °C temperature 

after each dipping procedure and fully characterized by X-ray diffraction (XRD) analysis. XRD data exhibited that at 

800 °C temperature nano-sized Y0.2Zr0.8O2 thin films with cubic (Fm-3m) crystal structure have been formed. The 

morphological features of obtained coatings were investigated by scanning electron microscopy (SEM) and atomic force 

microscopy (AFM). The surface tension and hydrophility of the synthesized films were determined by contact angle 

measurements (CAM).   
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1. INTRODUCTION
∗

 

The system Y2O3-ZrO2 has been extensively studied 

for last 50 years [1 – 3]. Although many metal-oxide and 

rare-earth oxide compositions have been examined as ionic 

conductors, zirconia-based materials are still the most 

common solid state electrolytes [4]. Yttria-doped zirconia 

materials due to their high ionic conductivity are used as 

electrolytes for electrode supported solid oxide fuel cells 

(SOFCs) [5]. The negligible electronic conductivity even 

under reducing atmosphere, the electrochemical stability as 

well as the mechanical properties of yttria stabilized 

zirconia (YSZ) facilitate the use in fuel-cell applications 

[5 – 7]. SOFCs are devices aimed at converting the 

chemical energy of a fuel directly into electricity [7]. A 

thin film concept for electrode supported designs based on 

the well-known YSZ is very promising, even though it has 

a lower ionic conductivity than other new materials [8]. 

However, the commercialization of SOFC on a big scale 

until today [9] does not occur. 

The use of nanostructured ionic and mixed ionic-

electronic conducting materials within fuel cells may 

facilitate lower operating temperatures and thus enhanced 

long-term stability of the cells [10 – 13]. For the 

development of SOFC systems in the intermediate-

temperature regime of 500 °C < T < 750 °C, the nanoscaled 

thin films are of substantial interest. The decrease in 

physical dimensions down to the nanometer scale is often 

linked with a dramatic change of the physical and 

electrochemical properties of materials [14]. Although 

several techniques, including electrochemical vapour 

deposition, have been used to form thin films, it is 

desirable to develop cost-effective processes for broad 

commercial application of SOFCs [2, 3, 15, 16].  

The technological applications of the sol-gel technique 

range in a very wide field, because of the versatility and 

                                                 

∗

Corresponding author. Tel.: +370-37-313432; fax.: +370-37-313432.  

E-mail address: sigitas.tamulevicius@ktu.lt  (S. Tamulevičius) 

simplicity of the method [17 – 24]. Compared to other 

techniques the sol-gel method has the advantages of a good 

control of the processing parameters. The use of sol-gel 

processing can eliminate major problems such as long 

diffusion paths, impurities and agglomeration, which will 

result in products with improved homogeneity [25 – 29]. 

The sol-gel process is based on liquid-phase hydrolysis of 

organo-metallic salts like metal alkoxides to form a 

colloidal sol and a condensation step with organic 

monomers to form a gel. To produce YSZ thin films 

different precursors have been reported: alkoxide 

precursors (zirconium and yttrium iso-propoxide, 

zirconium n-propoxide and yttrium propoxide), halogenide 

precursors (zirconium oxychloride and yttrium nitrate), 

nitrate and acetate precursors [30]. 

In this paper we report on the synthesis and 

characterization of YSZ thin films on the corundum 

substrates using dip-coating technique. During the dip-

coating process the substrate is immersed in the precursor 

solution then withdrawn from the liquid [30]. For the 

preparation of stable sols two novel sol-gel synthesis 

approaches were suggested. Firstly, an aqueous sol-gel 

synthesis route was developed in which tartaric acid as a 

complexing agent has been used. While the second 

synthesis route was focused on the dissolution of the 

simple salts in the 1.2-propanediol, which was used as both 

solvent and complexing agent. 

2. EXPERIMENTAL 

In the first sol-gel synthesis approach (I) the Y-Zr-O 

nitrate-tartrate sol was prepared by an aqueous sol-gel 

synthesis route. In this case the 0.0025 mol of zirconium 

oxonitrate dihydrate (ZrO(NO3)2·2H2O, 99.9 %) was first 

dissolved in concentrated nitric acid solution (65 % HNO3) 

by stirring at 70 °C – 80 °C. Secondly, tartaric acid (TA) 

with a molar ratio of Zr / TA = 0.25, dissolved in a small 

amount of distilled water was added with a continuous 

stirring at the same temperature. Next, after 5 h the 
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stoichiometric amount (0.000555556 mol) of yttrium 

nitrate hexahydrate (Y(NO3)3·6H2O, 99.99 %) dissolved in 

distilled water was mixed with the previous solution. 

Finally, the same amount of the aqueous solution of the 

complexing agent TA was repeatedly added to the reaction 

mixture to prevent crystallization of metal salts during the 

gelation process. The beaker with the solution was closed 

with a watch glass and left for 1 h with continuous stirring. 

The obtained clear solution was concentrated by slow 

evaporation at 80 °C in an open beaker. A pale yellow 

transparent Y-Zr-O nitrate-tartrate sol formed after nearly 

60 % of the water has been evaporated under continuous 

stirring. 

In the second sol-gel synthesis approach (II) the  

Y-Zr-O nitrate sol in 1.2-propanediol was prepared. 

Firstly, 0.0025 mol (90 %) of ZrO(NO3)2·2H2O was 

dissolved in 50 ml of 1.2-propanediol at 60 °C – 75 °C 

under continuous stirring. Next, 0.000555556 mol (10 %) 

of Y(NO3)3·H2O was added to the above solution. The 

beaker with the solution was closed with a watch glass and 

left for 1 h with continuous stirring at 90 °C – 95 °C 

temperature. Finally, a yellow transparent Y-Zr-O nitrate-

1.2-propanediolate sol formed after all experimental 

procedures. 

YSZ thin films were deposited onto commercial 

corundum (1.5 × 1.5) cm substrates (Al2O3) by dip-coating 

technique from the Y-Zr-O nitrate sols stabilized with 

tartaric acid or 1.2-propanediol, respectively. The films on 

corundum substrate were deposited at 5 mm/min immer-

sion rate and were dried at room temperature for 24 h in air 

at ambient pressure in a horizontal position. Afterwards, 

the dried coated substrate was annealed at 800 °C 

temperature in air for 1 h. According to [31] at this 

temperature the crystallization process begins and presence 

of a pure cubic phase of yttria-stabilized zirconia was 

reported for the YSZ sol-gel film. This process in our case 

was repeated to build up the desired film thickness that 

varied between 400 nm and 1 µm and was dependent on 

dipping counts during the synthesis route (Fig. 1).  

 

 

a b 

Fig. 1. SEM micrographs of cross-sections of YSZ thin films: (a) 

after 2 dipping counts and 2 annealing procedures 

prepared by synthesis route (II), (b) after 30 dipping 

counts and 30 annealing procedures prepared by synthesis 

route (II) 

X-ray diffraction analysis (XRD) was performed on a 

Bruker AXE D8 Focus diffractometer with a LynxEye 

detector using Cu Kα radiation. The measurements were 

recorded at the standard rate of 1.5 2θ / min. The scanning 

electron microscope (SEM) QUANTA 200 FEI and atomic 

force microscope (AFM) NT-206 were used to study the 

surface morphology and microstructure of the obtained 

thin films. For the characterization of coating surface 

hydrophobicity, the measurements of a contact angle on 

KVS Instrument CAM 100 were performed. The instru-

ment includes a CCD camera, a frame grabber, an 

adjustable sample stage and LAD light source. A micro-

droplet of water (volume 6 µl) was allowed to fall onto the 

sample from a syringe tip to produce a sessile drop. Each 

image was analyzed with respect to base, height, and shape 

of the droplet, and from these values the contact angle 

(KVS instrument software) was measured on three 

different points of each sample, repeating the measure-

ments at least twice. The KSV D™ dip-coating apparatus, 

KSV Instruments Ltd., was used for coating preparation. 

The standard immersing (5 mm/min) and withdrawal rates 

(20 mm/min) for dip-coating process were applied for all 

the samples. The obtained suspensions were sonificated for 

30 min with a Sonic Vibracell ultrasonic reactor with a 

2 mm-diameter titanium probe operating at 20 kHz. 

3. RESULTS AND DISCUSSIONS 

It is worth to note that XRD patterns of the YSZ films 

obtained from aqueous and non-aqueous sols (synthesis 

routes (I) and (II)) are very similar. Therefore, Fig. 2 

represents the XRD pattern of YSZ films obtained from 

Zr-Y-O nitrate-1.2-propanediolate sol using dip-coating 

technique.  

20 30 40 50 60 70

0

500

1000

0

500

1000

1500
0

500

1000

1500

2000

2500

0

500

1000

1500

20 30 40 50 60 70

0

500

1000

1500

2000

 

PDF Entry No.: 00-082-1246

 

2 θ

Y
0.2

Zr
0.8

O
1.9 

Fm-3m (cubic) space group

Results after 2 dipping and 2 annealing procedures

*

***

*

*

*

*

*

 

*

*

***

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

R
el

at
iv

e 
in

te
n

si
ty

, 
(a

. 
u

.)

*

**

*

*

**

*

*

*

Results after 5 dipping and 5 annealing procedures

Results after 7 dipping and 7 annealing procedures

Results after 9 dipping and 9 annealing procedures

 

Fig. 2. XRD patterns of the YSZ samples annealed at 800 °C after 

each dipping procedure for 1 h in air (synthesis route (II)). 

* – characteristic peaks of the substrate (Al2O3), (the last 

inset shows intensity distribution for Y0.2Zr0.8O1.9 for Fm-

3m space group) 
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Moreover, these results present the influence of the 

number of coating procedures on the crystallization of 

YSZ coatings. 

As seen from Fig. 2, even after seven immersing, 

withdrawals and annealing procedures no significant peaks 

attributable to the YSZ crystal phase are observed. 

However, already after nine dipping and annealing times 

the main four characteristic peaks attributable to the cubic 

YSZ crystal phase appear in the XRD pattern. 

The XRD patterns of YSZ films obtained from YSZ 

suspension in 1.2-propanediol (synthesis route (II)) are 

shown in Fig. 3. As seen from Fig. 3, the same 

characteristic peaks of the YSZ phase could be 

distinguished in the XRD patterns even after 9 dipping and 

annealing procedures. Thus, according to the XRD analysis 

data all two suggested synthesis routes are suitable for the 

preparation of thin YSZ films on Al2O3 substrate. 
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Fig. 3. XRD patterns of the YSZ samples annealed at 800 °C after 

each dipping procedure for 1 h in air (synthesis route (II)). 

* – characteristic peaks of the Y0.2Zr0.8O1.9 cubic (Fm-3m) 

phase (the last inset shows intensity distribution for 

Y0.2Zr0.8O1.9 for Fm-3m space group) 

The surface morphology of obtained YSZ thin films by 

different synthesis routes was investigated by scanning 

electron microscopy. The representative SEM micrographs 

of YSZ thin film prepared by synthesis (I) and (II) 

approaches are shown in Fig. 4. 

For better understanding of the crystal growth process 

of the YSZ layers and quantitative description of the 

surface morphology, we have investigated the influence of 

the number of dipping and annealing procedures on the 

morphology of the end products using atomic force 

microscopy. The AFM micrographs of corundum Al2O3 

substrate and YSZ thin films obtained after 5 dipping and 

annealing procedures and prepared by the synthesis routes 

(I) and (II) are shown in Figs. 5, 6 (a) and (b), respectively. 

Moreover, the SEM micrographs showed that almost 

identical features were observed for all the samples. 

Consequently, these results let us to conclude that surface 

microstructure of YSZ thin films are independent on the 

used synthesis route. 

a b 

Fig. 4. SEM micrographs of YSZ thin films after different 

dipping counts and annealing procedures and prepared by 

the different synthesis route: (a) 7 dipping by the 

synthesis route (I), (b) 7 dipping by the synthesis route 

(II) 

 

 

Fig. 5. AFM surface image of substrate (Al2O3, corundum) 

Evidently, the AFM images of the samples obtained 

after 5 dipping and 5 annealing procedures in both (I and 

II) synthesis routes are very similar indicating that the root-

mean-square (RMS) average roughness of 5 dipping of 

YSZ films is rather low (Rq varies between 8.3 nm and 

7.8 nm) and is lower than the RMS average roughness 

(9.2 nm) of the alumina substrate (see Table 1).  

The situation, however, significantly differs after 

longer dipping and annealing procedures. The AFM image 

of YSZ thin films obtained after 7 dipping and annealing 

procedures using aqueous synthesis route (I) is shown in 

Fig. 6 (c). The formation of spherical YSZ particles on the 

corundum substrate could be easily seen. The average of 

maximum height of particle size ranges between 52 nm 

and 122 nm. The AFM image of YSZ thin films obtained 

after seven dipping and annealing procedures using non-

aqueous synthesis route (II) is shown in Fig. 6 (d). 

However, during synthesis route (I) the YSZ particles 

on the surface are distributed more evenly. 

Besides, the thickness of the YSZ films as well as 

roughness increases with increasing the dipping and 

annealing time (Fig. 1). 
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a b 

 

 

 

c d 

Fig. 6. AFM surface images of YSZ thin film obtained: (a) after 5 dipping and annealing procedures and prepared by the synthesis route 

(I), (b) after 5 dipping and annealing procedures and prepared by the synthesis route (II), (c) after 7 dipping and annealing 

procedures and prepared by the synthesis route (I), (d) after 7 dipping and annealing procedures and prepared by the synthesis 

route (II) 

 

Table 1. AFM and contact angle measurements of YSZ coatings 

Structure 

Max. 

height,  

Z, nm 

Average 

of max. 

height, 

Zmean, 

nm 

Root-mean-

square 

average 

roughness, 

Rq, nm 

Skewness, 

Rsk, nm 

Al2O3 

substrate 
105.0 49.6 9.2 –0.3 

5 dipping, 

synthesis 

route (I) 

129.8 38.4 8.3 1.3 

5 dipping, 

synthesis 

route (II) 

135.3 52.7 7.8 -0.6 

7 dipping, 

synthesis 

route (I) 

256.9 121.5 26.9 0.3 

7 dipping, 

synthesis 

route (II) 

200.7 52.0 31.5 3.4 

 

These facts illustrate that two proposed methods of 

YSZ synthesis allow formation of submicronic based 

materials (particle size varied between 80 nm and 180 nm) 

with a controlled morphology and mixing of species on the 

atomic scale like it was shown in [32]. These results are in 

a good agreement with the XRD analysis data demonstrat-

ing reduced sintering temperature (800 °C) necessary to 

produce cubic phase of YSZ. One can expect that the 

reduced thickness of the YSZ film will lower ohmic losses 

across the potential fuel cell where these layers could be 

applied as electrolyte [30, 31]. 

 

81° 

 

Fig. 7. Image of water droplet on the surface of YSZ coating 

obtained by the synthesis route (I) 

 

57° 

 

Fig. 8. Image of water droplet on the surface of YSZ coating 

obtained by the synthesis route (II) 

In order to estimate hydrophobic properties of the 

produced thin films using different synthesis techniques 

the contact angle measurements (CAM) were performed. 

Roughness in both different synthesis routes is similar, but 

the hydrophobicity of YSZ films was found to be 

dependent on the used synthesis route. The contact angle 
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measurement results of 5 dipping and 5 annealing 

procedures formed by synthesis routes (I) and (II) are 

presented in Figs. 7 and 8. 

As seen from Fig. 7, the contact angle of the alumina 

surfaces coated with YSZ layers using aqueous Y-Zr-O 

nitrate-tartrate sol is about 81°.  

The highest spreading effect was observed for YSZ 

thin layers from yttrium and zirconium nitrate salts 

dissolved in 1.2-propanediol obtained by the synthesis 

route (II) (57°, Fig. 8).  

4. CONCLUSIONS 

New sol-gel methods for the preparation of 

nanostructured yttrium stabilized zirconia thin films on 

Al2O3 substrates using dip-coating technique have been 

developed. It was demonstrated that both an aqueous and 

non-aqueous sol-gel techniques are suitable for the 

formation of YSZ coatings. According to XRD analysis 

data both suggested synthesis routes are suitable for the 

preparation of thin submicronic YSZ films on Al2O3 

substrate. The surface morphology of obtained YSZ thin 

films was almost identical independent on the used 

synthesis route. The hydrophobic properties of the 

produced thin films using different synthesis techniques 

were dependent on the used synthesis route and contact 

angle with distilled water varied between 81° and 57°. 
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