The Amorphization of Monolayer MoS₂ Induced by Strong Oxygen Plasma treatment

Jian-Ling MENG^{1*}, Jian-Qi ZHU^{2,3}, Shun-Tian JIA⁴, Xiao REN⁵

¹Department of Physics, Shaanxi University of Science and Technology, Xi'an 710021, China

² Institute of Physics, Chinese Academy of Science, Beijing 100190, China

³ School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China

⁴ School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China

⁵ School of Material Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore

crossref http://dx.doi.org/10.5755/j01.ms.26.2.21576

Received 04 September 2018; accepted 26 November 2018

By strong oxygen plasma treatment with 100 W on monolayer MoS_2 , we observe the disappearance of the Raman modes of MoS_2 . The phenomena of no MoO_3 formation shown by Raman spectra and the appearance of the Mo^{6+} peak and decreased O concentration shown by X-ray photoelectron spectroscopy are attributed to that the state of MoS_2 translates from crystal to amorphous after strong oxygen plasma treatment. The amorphization of monolayer MoS_2 is further confirmed by the quenching of photoluminescence (PL) and the disappearance of two absorption peaks related to A, B exciton which demonstrates the disordered bandgap. Finally, we found that the amorphous MoS_2 can improve the absorption fraction at the visible light (500 ~ 750 nm) which is potential for future visible light photocatalysis. *Keywords:* MoS_2 , amorphization, oxygen plasma treatment.

1. INTRODUCTION

Recently, there is a great research interests in the twodimensional (2D) material due to its adjustable properties. Molybdenum disulfide (MoS₂), among the twodimensional semiconductors, offers a layer-dependent energy gap: an indirect gap of 1.2 eV for the bulk MoS₂ and a direct gap of 1.9 eV for the monolayer MoS₂, which has huge potential for optoelectronic applications [1, 2]. Tailoring the properties of MoS₂ can fulfill the requirements of novel applications. Strain engineering can be used to modulate electrical properties of MoS₂, which is a common method of modulating the material optical and electrical properties [3, 4, 5, 6]. For example, MoS₂ experienced а direct-to-indirect bandgap and semiconductor-to-metal transition by mechanical strains [7]. Defects engineering, especially ion bombardment, which is a controllable method of introducing defects can also be used to modulate the electrical and optical properties of MoS₂. The photoluminescence (PL) intensities can be enhanced by oxygen plasma irradiation on the MoS₂, which is due to the enhancement on the radiative recombination exciton caused by p doing on MoS_2 through oxygen adsorbed on the defects. ^[8-9] However, quenching of the PL also is observed by oxygen plasma treatment on monolayer MoS₂ [10]. This phenomenon is explained by the reduction of the radiative recombination efficiency due to the MoO₃ formation which causes the direct bandgap evolves to the indirect bandgap. The electrical properties of MoS₂ can also be tuned from semiconductor to insulator by the oxygen plasma treatment due to the MoO₃ regions formation in the same way [11].

The mechanism of the different phenomenon is caused by the reaction between oxygen and monolayer MoS_2 under different oxygen plasma power (which means that the oxygen plasma is generated at different radio frequency (RF) power), the enhancing of PL is supposed to the mild plasma treatment which means the plasma power is about no more than 20 W while the quenching of PL is supposed to the strong plasma treatment which means the plasma power is no less than 100 W.

In this work, we present the strong oxygen plasma treatment with plasma power 100 W on monolayer MoS₂. The crystalline structure of MoS₂ involves to amorphization after stronger oxygen plasma treatment which is demonstrated by that the Raman spectrum shows no evidence of MoO₃ while the X-ray photoelectron spectroscopy (XPS) shows the evidence of Mo⁶⁺ and the decreased oxygen concentration. The quenching of PL spectrum and the corresponding absorption spectrum also demonstrated that the bandgap lowered due to the amorphization. Also, we find that the amorphized MoS₂ can improve the absorption fraction in the visible light (500 nm - 750 nm).Theoretical calculation and experimental work all found that the pristine MoS₂ is good candidate as photocatalytic due to its bandgap (~ 1.9 eV) which is within the visible light range [12, 13]. For example, the MoS₂ nanosheet-coated TiO₂ exhibits high hydrogen production [14]. Hence, our finding can be applied to the visible light photocatalysis.

2. EXPERIMENTAL DETAILS

2.1. Sample preparation

The pristine monolayer MoS_2 was grown on c-face sapphire via chemical vapor deposition (CVD) method, which has been reported elsewhere [15]. The oxygen

^{*} Corresponding author. Tel.: +86-18391862523

E-mail address: mengjianling@sust.edu.cn (J.L. Meng)

plasma was carried out using Plasma lab 80Plus. The oxygen plasma was operated with 100 sccm oxygen, 100 W power, 25 mtorr pressure and 3 s plasma exposure.

2.2. Characterization

The Raman spectra were measured by micro-confocal laser Raman spectrometer (Renishaw-invia) ($\lambda = 532$ nm, power = ~ 2 mW, beam spot size = ~ 1 µm) with a 532 nm laser in ambient environment at room temperature. The XPS spectra were recorded out using a AIXS supra photoelectron spectrometer (Kratos analytical Ltd, AlK α X-ray) operated at 15 kV and 10 mA and the beam spot size is = ~ 15 µm. PL measurements were carried out by fluorescence spectrometer (Horiba) with 50× objective. The absorption spectra were measured by UV-Visible-Near Infrared Spectrophotometer (Carry 5000).

3. RESULTS AND DISCUSSION

Fig. 1 shows the effect of strong oxygen plasma exposure on the Raman spectra of as-grown monolayer MoS_2 on sapphire substrate. Except for the peaks of c-face sapphire substrate, two new peaks at 384 cm⁻¹ with a full width at half maximum (FWHM) of 6.31 cm⁻¹ and 403 cm⁻¹ with a FWHM of 6.27 cm⁻¹ are observed in the pristine MoS_2 sample which are shown in Fig. 1.

Fig. 1. Raman spectra of as-grown monolayer MoS₂ and MoS₂ treated by oxygen plasma with duration of 3s on sapphire substrate

The two prominent peaks correspond to the in-plane E_{2g} and out-of-plane A_{1g} vibrations of MoS₂ respectively. The narrow position difference (~ 19 cm⁻¹) further confirms the monolayer thickness of MoS₂[16]. Once the sample is treated by strong oxygen plasma with duration of 3 s, here, we called it 3 s oxygen plasma for simplicity, both E_{2g} and A_{1g} vibration modes disappear obviously which is shown in Fig. 1. The disappearance of the modes indicates that the MoS₂ is damaged seriously.

The S atom is supposed to be removed by oxygen plasma firstly and then chemically bonded with O atoms. However, the MoS₂ is not completely oxidized into MoO₃ since the signature peaks (~ 225 cm^{-1} and ~ 820 cm^{-1}) of MoO₃ are not observed, marked by the grey area in Fig. 1. [11, 17]. To analyze the composition of the damaged MoS_2 , XPS spectra of the pristine MoS₂ and 3 s oxygen plasma treated MoS₂ on sapphire substrate is shown in Fig. 2. Fig. 2 a shows the survey XPS spectra of pristine as-grown monolayer MoS₂ and 3 s oxygen plasma treated MoS₂ exhibiting typical signals of sapphire overlaid with Mo4+ and S²⁻ signals. As shown in Fig. 2 b, in pristine MoS₂ sample, a doublet Mo $3d_{3/2}$ and Mo $3d_{5/2}$ at ~ 233.0 eV and ~ 229.9 eV are observed, which has been reported elsewhere [18]. For the 3 s oxygen plasma treated MoS_2 , the binding energy of doublet Mo $3d_{3/2}$ and Mo $3d_{5/2}$ shift little and an additional peak at energy 235.7 eV is observed, corresponding to the higher oxidation state Mo⁶⁺ [11, 19, 20, 21]. However, the decreased instead increased oxygen concentration after 3 s oxygen plasma treatment shown in Fig. 2 d exclude the formation of MoO₃. Since the signature peaks (~ 225 cm^{-1} and ~ 820 cm^{-1}) of MoO₃ are not observed, the data shows the possibility of the amorphization of monolayer MoS2 under strong oxygen plasma treatment [22].

To analyze the energy band of the strong oxygen plasma treated MoS_2 and pristine MoS_2 , we take photoluminescence (PL) measurements and the PL spectra are shown in Figure 3. The sharp peaks at ~611nm, ~692nm and ~694nm appeared in PL spectra of both samples originated form the sapphire substrate. The strong peak centered at 676.5nm (1.83eV) for pristine MoS_2 results from the direct excitonic transition of monolayer MoS_2 [23].

However, after 3s oxygen plasma treatment, the PL spectrum is quenched totally. The phenomenon has been observed and is attributed to the formation of MoO_3 [10]. MoO_3 is an indirect bandgap (3.2eV) semiconductor and the radiative recombination must be assisted by electron-phonon scattering, therefore, leading the PL quenching.

Fig. 2. a−the survey XPS of the as-grown monolayer MoS₂ and MoS₂ treated by oxygen plasma with duration of 3 s on sapphire substrate and XPS spectra: b−Mo 3d; c−S 2p; d−O 1s levels of the pristine MoS₂ and the 3s oxygen plasma treated MoS₂ on sapphire substrate

However, since the MoO_3 is not observed in our experiments, it is more likely attributed to the disordered band gap which is induced by the amorphization of crystalline structure.

Fig. 3. Photoluminescence spectra of pristine MoS_2 and 3 s oxygen plasma treated MoS_2

We also take absorption spectrum measurements of pristine MoS_2 and strong oxygen plasma treated MoS_2 on sapphire substrate to further understand the energy band. In Fig. 4, two prominent peaks located at ~616 nm and ~ 667 nm, corresponding to ~ 2.0 eV and ~ 1.86 eV are observed in the pristine MoS₂. It is known to arise from direct-gap transitions between the maxima of split valence bands and the minimum of the conduction band [1]. The lower absorption (~ 1.86 eV) peak of pristine MoS₂ matches the PL peak (1.83 eV) with 0.3 eV difference within the measurements error which is related the A exciton. The higher absorption ($\sim 2.0 \text{ eV}$) peak of pristine MoS₂ is related to the B exciton though the PL peak is not observed due to the monolayer thickness [1]. However, the two peaks disappeared in strong oxygen plasma treated MoS₂ and it is attributed to the amorphization of crystalline structure which disordered the band gap. It is noted that the absorption of strong oxygen plasma treated MoS2 on sapphire substrate is stronger than the pristine MoS₂ on substrate. It is also due to the disordered band gap which adsorbs the visible light (500 nm ~ 700 nm) more widely. Therefore, it is potential for the application of visible light photocatalysis.

Fig. 4. Absorption spectra of pristine MoS_2 and 3 s oxygen plasma treated MoS_2

4. CONCLUSIONS

In conclusion, the missing of in-plane E_{2g} and out-ofplane A_{1g} vibrations of MoS_2 after strong oxygen plasma treatment with 100 W was observed. The Raman spectra of oxygen plasma treated MoS_2 with no MoO_3 peaks observed and XPS spectra with Mo^{6+} peak observed are attributed to that the state of MoS_2 translates from crystal to amorphous after strong oxygen plasma treatment. The quenching of the PL and the disappearance of two prominent absorption peaks also demonstrate the amorphization of crystalline MoS_2 which causes the bandgap disordered. Also, our findings that the absorption fraction of strong oxygen plasma treated MoS_2 is higher than pristine MoS_2 provide a promising material candidate for future photocatalysis application.

Acknowledgments

The authors would like to thank Professor G. Y. Zhang for helpful discussions.

Project supported by National Science Basic Research Plan in Shaanxi Province of China (Program No. 2019JQ-790).

REFERENCES

- Lee, C., Hone, J., 1. Mark, K.F., Shan, J., Heinz, T. MoS₂: New Direct-Gap Atomically Thin Α Semiconductor Physical Review Letters 105 (13) 2010: pp. 1368051-1368054. https://doi.org/10.1103/PhysRevLett.105.136805
- Yin, Z.Y., Li, H., Li, H., Jiang, L., Shi, Y.M., Sun, Y.H., Lu, G., Zhang, Q., Chen, X.D., Zhang, H. Single-Layer MoS₂ Phototransistors ACS Nano 6 (1) 2012: pp. 74–80. https://doi.org/10.1021/nn2024557
- He, K., Poole, C., Mak, K.F., Shan, J. Experimental Demonstration of Continuous Electronic Structure Tuning via Strain in Atomically Thin MoS₂ Nano Letters 13 (6) 2013: pp. 2931–2936. https://doi.org/10.1021/nl4013166
- Castellanos-Gomez, A., Roldan, R., Cappelluti, E., Buscema, M., Guinea, F., van der Zant, H.S.J., Steele, G.A. Local Strain Engineering in Atomically Thin MoS₂ Nano Letters 13 (11) 2013: pp. 5361-5366. https://doi.org/10.1021/nl4013166
- Scalise, E., Houssa, M., Pourtois, G., Afanas'ev, V.V., Stesmans, A. Strain Induced Semiconductor to Metal Transition in the Two-Dimensional Honeycomb Structure of MoS₂ Nano Research 5 (1) 2012: pp. 43–48. https://doi.org/10.1007/s12274-011-0183-0
- Ben, X., Park, H.S. Strain Engineering Enhancement of Surface Plasmon Polariton Propagation Lengths for Gold Nanowires *Applied Physics Letters* 102 (4) 2013: pp. 041909. https://doi.org/10.1063/1.4790293
- Conley, H.J., Wang, B., Ziegler, J.I., Haglund, R.F., Pantelides, S.T., Bolotin, K.I. Bandgap Engineering of Strained Monolayer and Bilayer MoS₂ Nano Letters 13 (8) 2013: pp. 3626-3630. https://doi.org/10.1021/nl4014748
- 8. Nan, H.Y., Wang, Z.L., Wang, W.H., Liang, Z., Lu, Y., Chen, Q., He, D.W., Tan, P.H., Miao, F., Wang, X.R. Strong Photoluminescence Enhancement of MoS₂ through

Defect Engineering and Oxygen Bonding ACS Nano 8 (6) 2014: pp. 5738–5745. https://doi.org/10.1021/nn500532f

- Shen, C., Zhang, J., Shi, D.X., Zhang, G.Y. Photoluminescence Enhancement in Monolayer Molybdenum Disulfide by Annealing in Air Acta Chimica Sinica 73 (9) 2015: pp. 954–958. https://doi.org/10.6023/A15030220
- Kang, N.R., Paudel, H.P., Leuenberger, M.N., Tetard, L., Khondaker, S.I. Photoluminescence Quenching in Single-Layer MoS₂ via Oxygen Plasma Treatment *The Journal of Physical Chemistry C* 118 (36) 2014: pp. 21258-21263. https://doi.org/10.1021/jp506964m
- Islam, M.R., Kang, N., Bhanu, U., Paudel, H.P., Erementchouk, M., Tetard, L., Leuenberger, M.N., Khondaker, S.I. Tuning the Electrical Property Via Defect Engineering of Single Layer MoS₂ by Oxygen Plasma *Nanoscale* 6 (17) 2014: pp. 10033–10039. https://doi.org/10.1039/C4NR02142H
- Li, Y.G., Li, Y.L., Araujo, C.M., Luo, W., Ahuja, R. Single-Layer MoS₂ as an Efficient Photocatalyst *Catalysis Science & Technology* 3 (9) 2013: pp. 2214. https://doi.org/10.1039/C3CY00207A
- Zhuang, H.L., Hennig, R.G. Computational Search for Single-Layer Transition-Metal Dichalcogenide Photocatalysts Journal of Materials Chemistry C 117 (40) 2014: pp. 20440-20445. https://doi.org/10.1021/jp405808a
- Zhou, W.J., Yin, Z.Y., Du, Y.P., Huang, X., Zeng, Z.Y., Fan, Z.X., Liu, H., Wang, J.Y., Zhang, H. Synthesis of Few-layer MoS₂ Nanosheet-coated TiO₂ Nanobelt Heterostructures for Enhanced Photocatalytic Activities *Small* 9 (1) 2013: pp. 140–147. https://doi.org/10.1002/smll.201201161
- Yu, H., Liao, M.Z., Zhao, W.J., Liu, G.D., Zhao, X.J., Wei, Z., Xu, X.Z., Liu, K.H., Hu, Z.H., Deng, K., Zhou, S.Y., Shi, J.A., Gu, L., Shen, C., Zhang, T.T., Du, L.J., Xie, L., Zhu, J.Q., Chen, W., Yang, R., Shi, D.X., Zhang, G.Y. Wafer-Scale Growth and Transfer of Highly-Oriented Monolayer MoS₂ Continuous Films ACS Nano 11 (12) 2017: pp. 12001–12007. https://doi.org/10.1021/acsnano.7b03819

- Li, H., Zhang, Q., Yap, C.C.R., Tay, B.K., Edwin, T.H.T., Olivier, A., Baillargeat, D. From Bulk to Monolayer MoS₂: Evolution of Raman Scattering *Advanced Functional Materials* 22 (7) 2012: pp. 1385 – 1390. https://doi.org/10.1002/adfm.201102111
- 17. Chow, W.L., Luo, X., Quek, S.Q., Tay, B.K. Evolution of Raman Scattering and Electronic Structure of Ultrathin Molybdenum Disulfide by Oxygen Chemisorption Advanced Electronic Materials 1 (1-2) 2015: pp. 1400037. https://doi.org/10.1002/aelm.201400037
- Chen, W., Zhao, J., Zhang, J., Gu, L., Yang, Z.Z., Li, X.M., Yu, H., Zhu, X.T., Yang, R., Shi, D.X., Lin, X.C., Guo, J.D., Bai, X.D., Zhang, G.Y. Oxygen-Assisted Chemical Vapor Deposition Growth of Large Single-Crystal and High-Quality Monolayer MoS₂ Journal of the Americann Chemical Society 137 (50) 2015: pp. 15632-15635. https://doi.org/10.1021/jacs.5b10519
- Khondaker, S.I., Islam, M.R. Bandgap Engineering of MoS2 Flakes via Oxygen Plasma: A Layer Dependent Study *Journal of Materials Chemistry C* 120 (25) 2016: pp. 13801–13806. https://doi.org/10.1021/acs.jpcc.6b03247
- Verma, P., Jain, K.P., Abbi, S.C. Raman Scattering Probe of Ion-implanted and Pulse Laser Annealed GaAs *Journal* of Applied Physics 79 (8) 1996: pp. 3921–3926. https://doi.org/10.1063/1.361818
- Yang, J., Kim, S., Choi, W., Park, S.H., Jung, Y., Cho, M.H., Kim, H. Improved Growth Behavior of Atomic-Layer-Deposited High-k Dielectrics on Multilayer MoS₂ by Oxygen Plasma Pretreatment ACS Applied Materials & Interfaces 5 (11) 2013: pp. 4739-4744. https://doi.org/10.1021/am303261c
- Brown, N.M.D., Cui, N.Y., McKinley, A. An XPS Study of the Surface Modification of Natural MoS₂ Following Treatment in an RF-oxygen Plasma *Applied Surface Science* 134 (1-4) 1988: pp. 11-21. https://doi.org/10.1016/S0169-4332(98)00252-9
- Splendiani, A., Sun, L., Zhang, Y.B., Li, T.S., Kim, J., Chim, C.Y., Galli, G., Wang, F. Emerging Photoluminescence in Monolayer MoS₂ Nano Letters 10 (4) 2010: pp. 1271–1275. https://doi.org/10.1021/nl903868w