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The behaviour of knitted and woven cotton textile materials during pulling through a circular hole was analysed. Two 
mathematical simulation models have been formed for simulation of this complicated process. The analysis of the 
obtained results showed the sufficient precision of shortened epicycloids, Cassini ovals as well as Buto lemniscate 
mathematical models for modeling the process of knitted material deformation at different stages of the experiment. This 
notwithstanding, only the shortened epicycloids were sufficient precise for mathematical description of the geometrical 
shapes of woven fabrics specimens formed at different stages of experiment. The changes in the parameters of 
simulation models were also investigated. 
Keywords: materials science, textile, punching, geometrical behaviour, mathematical simulation. 

 
1. INTRODUCTION∗  

It is known from the earlier research works that the flat 
yarn materials (woven or knitted) are more anisotropic 
compared with the other flat solid materials, e. g. films, 
foils, similar to textile materials, because of the increased 
mobility of their structure. The anisotropy of textile 
material properties leads the advantageous conditions for 
the formation of complicated shells or for the separate 
parts of them [1].  

In the recent decade, several new methods of punch 
deformation based on the restricted (controlled) pulling of 
disc-shaped specimen through the central hole were 
developed in order to investigate and to evaluate the 
properties of anisotropic textile materials [2 – 5]. These 
methods purposefully can be applied to determine the 
changes of textile hand, friction as well as other specific 
properties depending on the technological treatment as 
well as exploitation conditions [6 – 9]. 

It was shown earlier that during pulling process of the 
part of a disc-shaped specimen lying in space between the 
limiting plates changes to wrinkled shell with the outer 
contour of complicated shapes. During the deformation 
process the shell with outer contour changing to curve 
similar to “four-leaved” clover is formed from the disc-
shaped specimen cut from woven material. The cavities of 
“four-leaved” clover are oriented along both warp and weft 
directions. And, the rises of “four-leaved” clover are 
located along bias material direction. Whereas, when a 
disc-shaped specimen cut from knitted material is pulled 
through a central hole the shell similar to oval with the 
axles oriented towards the directions of loops courses and 
wales is formed [10 – 13]. It must be noted that the shape 
of outer contour of the specimen deformed between the 
limiting plates is sometimes similar to that of polar 
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diagrams of strip-shaped specimens tensioned uni-axially 
in the same sector, i. e. in the directions lying between 0º 
and 90º [13]. Thus, it could be assumed that new pulling 
method could be used to evaluate the material anisotropy 
instead of the complicated and labour-intensive uniaxial 
tension method. 

The primary search of mathematical models suitable to 
simulate the changes of thin yarn-based disc-shaped 
specimen during deformation process had shown that they 
could be shortened epicycloids or Cassini ovals [14, 15]. 

The aim of this research was to find more 
mathematical models suitable to simulate the geometrical 
behavior of yarn systems pulled through a central hole as 
well as to determine the peculiarities of the mathematical 
parameters’ changes depending on the structural parame-
ters of investigated materials and different deformation 
stage.  

2. MATERIALS AND METHODS 
Textile materials having two different structures, i. e. 

woven and knitted (Table 1) were selected for the present 
study. 

The research was performed using KTU-Griff-Tester 
(Fig. 1) with the disc-shaped specimens the radius R of 
56.5 mm. The testing conditions, i. e. the values of the 
radius of the plate and pad and the distance h between the 
supporting plate and the pad were chosen according to the 
thickness of the material δ (Table 1) as well as the 
peculiarities of specimen jamming in the hole of the 
supporting plate and the pad [6]. The changes of the 
specimen shapes occurring during pulling process at each 
deformation stage, i. e. changing the specimen deformation 
height H every other 10.0 mm, were recorded using a 
digital camera (Fig. 1). 

One of the simplest mathematical model is one of the 
shortened epicycloids (or models of epitrochoids) 
sufficiently precisely matching the realistic   displacements 
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Table 1. Structure parameters of investigated materials  

Material  Material code Composition  Wave (knit) type Thickness δ, mm Surface density, g/m2 

Woven  A 100 % cotton Plain  0.29 145.4 ±1 
Knitted  T 100 % cotton Plain jersey 0.57 177.1 ±2 
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Fig. 1. The principal scheme of method applied 

of the outer contour of the specimens cut from yarns’ 
systems (woven and knitted materials) and pulled though a 
central hole [14, 15]. They are plain curves traced by a 
point attached to a small circle (SC) of radius a rolling 
around the outside of a fixed large circle (LC) of radius 2a, 
where the point is a distance d from the center of the small 
circle, and the centre of small circle moves along the 
dotted line (Fig. 2). The shape of curve depends on the 
ratio of circles radiuses. When the radius RDS of LC circle 
is equal to 4a, and the radius RMS of the small circle SC is 
equal to a then the curve is similar to four-leaved clover, 
and when the radius RDS of LC circle is equal to 2a, and 
the radius RMS of the small circle SC is equal to a, then the 
oval-shaped curve is traced. The parameters of both 
curves: eccentricity d, the constituent a of circles radiuses 
as well as inclination points W (Fig. 3) influence the size of 
traced curve as well as its inclination level. 

The parameters a and d can be calculated using the 
measured distances from points X and mostly distant point 
Y to the centre point of the four-leaved curve 0x by using 
the system of equations: 





=+
=−

0Y.5
0X,5

da
da

 (1) 

The model of „four-leaf clover“ shortened epicycloids can 
be described using the system of equations: 
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−=

,5sinsin5
,5coscos5

ϕϕ
ϕϕ

day
dax

 

and then, its equation with polar coordinates is  

( ) .4cos1025 22 dada +−= ϕϕρ  (2) 

It is evident that 0X = ρ (0º), 0Y = ρ (45º). 
The distances from the points of shortened epicycloid 

to its centre point were calculated from the equation 
( )ϕρ=zR . 

The coordinate φ of inclination point W (Fig. 3) is 
determined from the equation: 
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Fig. 2. Schemes of the four-leaved (a) and two-leaved (b) 
shortened epicycloids models 
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The parameters a and d of “two-leaved” shortened 
epicycloid were calculated using the measured distances 
0X and 0Y, i. e. distances from the point X laying on the 
curve farthest to its centre (on the axis 0x) and from the 
point Y laying on the curve nearest to its centre (on the 
axis 0y), respectively, from the equation system: 





=−
=+

,da
,da
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 (4) 

Parametric equations of this shortened epicycloid are 
the following 
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Equation of “two-leaf” shortened epicycloid was derived 
after the substitution of the coordinates x and y with the 
polar coordinates ϕρ cos=x , ϕρ sin=y   

( ) .2cos69 22 dada ++= ϕϕρ  (5) 

From this it is clear, that 0X = ρ (0º), 0Y = ρ (90º). 
Coordinate φ of inclination point W was calculated 

from the equation: 

.
4

32cos
22

ad
da +

−=ϕ  (6) 

For the comparative analysis of the presented 
mathematical model the shape of outer contour of the 
specimen was also simulated using the equations of 
Cassini ovals  

( ) ( ) 4422222 2 cayxcyx −=−−+  

and Buto lemniscate [15]: 

.sincos 22222 ϕϕρ ba +=  

Parameters a2 and c2 of Cassini ovals were calculated 
from the following equation system: 
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Distances from the points of specimen contour to its 
centre point or the values of radiuses Rz were calculated 
from the equation: 

,2cos2cos 442422 cacc −++= ϕϕρ  (8) 

And the coordinate φ of inclination point W was 
determined from the equation:  
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Fig. 4. Scheme of Buto lemniscate and Cassini ovals’ models, 

when c < a < 2c  

Equation of Buto lemniscate model is the following: 

,sincos 2222 ϕϕρ ba +=  (10) 

where a = 0X = ρ (0º), b = 0Y = ρ (90º). 
Difference ∆ between the measured and calculated 

distances was calculated using the following equation: 
( ) ( ).ϕρϕρ calculatedmeasured −=∆  (11) 

3. RESULTS AND DISCUSSION 
From the results presented in Table 2 can be seen that 

the difference ∆ between the displacements Rz º change 
differently in two adjacent sectors: 0º – 90º and 90º – 180º. 
It proves the essence of contour asymmetry influenced by 
the structure parameters of investigated materials, such as 
repeat or the parameters of material loops. 

Visual graphical comparison analysis of the 
geometrical outer contours of the specimens cut from 
investigated materials A (Fig. 5) and T (Fig. 6) had shown 
insignificant differences between their measured and 
calculated parameters. The shapes of specimens at fifth and 
sixth deformation stages are small, and the calculated and 
measured contours differ more significantly. Because of 
the errors occurring during specimens positioning the 
measured contours are more angular than the calculated 
contours having smoother and more formal shapes. 

 

Table 2. Differences ∆ between the measured and calculated values of the displacements Rz of woven material A (in mm)  

φ, º H,  
mm 0 15 30 45 60 75 90 105 120 135 150 165 180 

10 0 0.3 0.4 0 0.9 1.8 2.0 2.1 1.4 0.5 0.9 0.8 0 
20 0 0.6 –0.3 0 1.7 3.1 3.5 2.9 1.2 0.5 0.2 0.6 0 

30 0 1.2 0.5 0 1.8 3.7 4.0 2.5 0 –0.5 0 1.2 0 
40 0 2.5 0.6 0 1.1 3.7 3.3 1.5 0.1 –0.3 –0.1 1.0 0 

50 0 3.4 0.8 0 1.1 3.4 3.3 2.9 0.6 0 0.6 0.9 0 
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Comparison analysis of specimen geometry changes 
(Fig. 3) had shown that the values of both a and d 
parameters of shortened epicycloid depend on the 
deflection H. The value of a parameter decreases, and the 
value of d parameter increases increasing the H deflection. 
For all of investigated cases a parameter is larger than d 
parameter, except the mathematical model parameters of 
woven material when H deflection is equal to 50 mm. 

The comparison analysis between the differences ∆ of 
the displacements Rz of both calculated and measured 
values of specimen outer contour (Table 3) had shown that 
for the simulation of knitted material behaviour during 
pulling process mathematical models of shortened 
epicycloids and Buto lemniscate are more suitable than the 
model of Cassini oval. 

Relations between the parameters of investigated 
mathematical models, such as a and d of shortened 
epicycloids; a and c of Cassini oval as well as a and b of 
Buto lemniscate model and H deflection of both woven 
and knitted material specimens sufficiently precisely 
described by the linear equation (Fig. 7), but not d 
parameter of the model used to simulate the behavior of 
woven fabric specimen as well as c parameter of the 
investigated model in case of knitted material. 

The search of inclination point W was made using 
three  mathematical models, such as shortened epicycloids, 
Cassini oval and Buto lemniscate. But only the simulation 
using the first method was successful, and showed the 
importance of inclination point W. The simulation of the 
deformation  behavior  of  A  and  T  investigated materials 
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Fig. 5. Images of the outer contour of woven fabric A specimen: a – measured, b – calculated from the mathematical model of shortened 
epicycloid 
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Fig. 6. Images of the outer contour of knitted fabric T specimen: a – measured, b – calculated from the mathematical model of shortened 
epicycloid, c – of Cassini oval and d – Buto lemniscate 
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Table 3. Differences ∆ between the measured and calculated geometrical values of the displacements Rz of knitted material T (mm) 

φ, º H,  
mm 0 15 30 45 60 75 90 105 120 135 150 165 180 

Calculated from the model of shortened epicycloid 

10 0 0 0.2 0.3 –0.2 –0.1 0 –0.1 –0.2 0.3 0.2 0 0 
20 0 0.2 0.7 1.3 1.0 0.3 0 0.3 1.7 2.2 1.7 0.7 0 
30 0 0.3 1.2 1.9 2.2 0.7 0 0.7 2.7 3.9 3.0 1.3 0 
40 0 –0.1 1.1 2.3 3.1 1.5 0 1.8 3.9 4.8 3.4 1.7 0 
50 0 –0.3 1.1 2.5 3.2 1.4 0 2.4 5.2 5.0 3.1 1.2 0 
60 0 –0.6 0.5 1.6 2.6 1.3 0 3.1 4.6 2.1 0.2 –1.3 0 

Calculated from the model of Cassini oval 

10 0 0 0.2 0.4 –0.2 0 0 0 –0.2 0.4 0.2 0 0 
20 0 0.2 0.8 1.3 1.1 0.3 0 0.3 1.8 2.2 1.8 0.7 0 
30 0 0.4 1.3 2.1 2.3 0.7 0 0.7 2.8 4.1 3.1 1.4 0 
40 0 0 1.4 2.7 3.4 1.6 0 1.9 4.2 5.2 3.7 1.8 0 
50 0 –0.2 1.5 3.2 3.7 1.5 0 2.5 5.7 5.7 3.5 1.3 0 
60 0 –0.4 1.1 2.5 3.4 1.6 0 3.4 5.4 3.0 0.8 –1.1 0 

Calculated from the Buto lemniscate model  

10 0 0 0.2 0.3 –0.2 0 0 0 –0.2 0.3 0.2 0 0 
20 0 0.2 0.7 1.3 1.0 –0.3 0 0.3 1.7 2.2 1.7 0.7 0 
30 0 0.3 1.2 1.9 2.2 0.6 0 0.6 2.7 3.9 3.0 1.3 0 
40 0 0.8 1.1 2.3 3.1 1.5 0 1.8 3.9 4.8 3.4 2.6 0 
50 0 –0.3 1.1 2.5 3.2 1.4 0 2.4 5.2 5.0 3.1 1.2 0 
60 0 –0.6 0.5 1.6 2.6 1.3 0 3.1 4.6 2.1 0.2 –1.3 0 
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Fig. 7. The dependence of the parameters of mathematical models on the specimen deflection H: a, b – parameters of shortened 
epicycloid; c – parameters of Cassini oval; d – parameters of Buto lemniscate model 
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using other two methods had shown that the inclination 
point doesn’t exist. 

Table 4. Coordinates of inclination point W calculated using an 
epitrochoid method 

Material code Deformation 
stage H, mm 

Position of 
inclination point W 

10 doesn’t exist 

20 10º27′    79º33′ 

30 9º50′   80º10′ 

40 7º56′   82º04′ 

A 

50 doesn’t exist 

10 doesn’t exist 
20 doesn’t exist 

30 doesn’t exist 
40 doesn’t exist 

50 76º21′ 

T 

60 75º59′ 

The position of one inclination point W for both 
investigated materials was near 80º angle (Table 4), and in 
the case of A woven fabric this point didn’t exist at the 
first deformation stage, i. e. when H deflection was equal 
to 10 mm and the specimen still was approximately disc-
shaped as well as at the end of deformation process when 
H deflection was equal to 50 mm, and the break point 
originated. The displacement of inclination point W 
increases when H deflection varies from 20 mm to 40 mm, 
and conversely, near 10º angle, the displacement of 
inclination point decreases increasing H deflection. The 
inclination point W for knitted material appears only under 
the large deformations of specimen, i. e. when H deflection 
equals from 50 mm to 60 mm, while up to these deforma-
tion stages the outer contour of specimen is oval-shaped 
and without any inclinations.  

4. CONCLUSIONS 
1. It was determined, that during deformation changing 

shapes of the outer contour of disc-shaped specimens 
cut from yarn systems can be simulated using some 
mathematical models. But the reliability of model 
depends on material structure, e. g. the shapes of 
woven material specimens more precisely can be 
simulated using shortened epicycloids model. While, 
the shapes of knitted material specimens can be 
simulated applying the models of shortened 
epicycloids, Cassini oval and Buto lemniscate. 
According to the difference ∆, the more suitable are 
the models of Buto lemniscate model and epitrochoid, 
and according to the applying simplicity, the best is 
Buto lemniscate model.  

2. It was determined, that the dependencies of the 
parameters of investigated mathematical models, such 
as a and d of shortened epicycloids; a and c of Cassini 
ovals as well as a and b ones of Buto lemniskate 
model on the H deflection of the both knitted and 

woven material specimens can be sufficiently 
precisely described using a linear equation. 

REFERENCES 

1. Strazdienė, E., Gutauskas, M. The Evaluation of Textile 
Stability by the Methods of Biaxial Loading   The Textiles: 
Research in Design and Technology Priceeding of 
International Conference  ISBN 9986138248   2000:  
pp. 142 – 147. 

2. Grover, G., Sultan, M. A., Spivak, S. M. A Screening 
Technique for Fabric Handle   Journal of the Textile Institute 
ISSN 0040-5167   23 (3)   1993: pp. 486 – 494. 

3. Bishop, D. P. Fabrics: Sensory and Mechanical Properties    
Journal of the Textile Institute   ISSN 0400-5000   26 (3) 
1996: pp. 1 – 63. 

4. Henrich, L., Seidel, A., Rieder, O. Griff-prüfung von 
Maschenwaren   Maschen – Industrine   7   1999: pp. 46 – 47 
(in German). 

5. Seidel, A. Griffbewertung von Strumpf-waren mit dem 
JTV–Griff–Tester   Melliand Textiberichte   ISSN 0341-0781    
6   2001: pp. 491 – 494 (in German). 

6. Martišiūtė, G., Gutauskas, M. A New Approach to 
Evaluation of Fabric Handle   Materials Science 
(Medžiagotyra)   ISSN 1392-1320   7 (3)   2001:  
pp. 186 – 190. 

7. Strazdienė, E., Martišiūtė, G., Gutauskas, M., 
Papreckienė, L. Textile Hand: New Method for Textile 
Objective Evaluation   Journal of the Textile Institut   ISSN 
0400-5000   94 (3/4)   2003: pp. 245 – 255. 

8. Daukantienė, V., Bernotienė, B., Gutauskas, M. Textile 
Hand Control by Using the Device KTU-Griff-Tester  
Tekstil   ISSN 0492-5882   53 (7)   2004: pp. 356 – 360  
(in Croatian). 

9. Daukantienė, V., Bernotienė, B., Gutauskas, M. New 
Aspects of Polymeric Sheet Punch Deformation   Journal of 
Applied Polymer Science   ISSN 0021-8995   102   2006:  
pp. 358 – 361. 

10. Saukaitytė, I., Gutauskas, M. Peculiarity of Geometrical 
Rates Variations of Woven Fabrics Pulling Disc Shape 
Specimen Through a Central Hole   Design and Technology 
of Consumables   Kaunas: Technology   2004: pp. 86 – 90  
(in Lithuanian). 

11. Saukaitytė, I., Daukantienė, V., Gutauskas, M. Woven 
Fabric Behaviour during Pulling Disc-Shaped Specimen 
Through a Central Hole   Indian Journal of Fibre & Textile 
Research   29   June, 2004: pp. 138 – 142. 

12. Martišiūtė, G., Gutauskas, M. The Pulling of Knitted 
Fabric Membrane through a Hole: Geometry Analysis 
Design and Technology of Consumables   Kaunas: 
Technology   2001: pp. 78 – 83 (in Lithuanian). 

13. Daukantienė, V., Papreckienė, L., Gutauskas, M. 
Simulation and Application of the Behaviour of a Textile 
Fabric while Pulling It Through a Round Hole   Fibres and 
Textiles in Easten Europe   ISSN 1230-3666   11 (2)   2003: 
pp. 37 – 41. 

14. Bronshtein, I. N., Semendejiev, K. A. Manual for Mathe-
matics. Moscow: National press of physical – mathematical 
literature, 1963: pp. 106, 110 – 116 (608) (in Russian). 

15. Vygodsky, M. Ja. Manual of higher mathematics. Moscow: 
National press of physical – mathematical literature, 1960: 
293 p.  (in Russian). 

 
Presented at the National Conference "Materials Engineering’2009"  
(Kaunas, Lithuania, November 20, 2009) 
 

 


