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The surface roughness is important design factor for the adhesive bonds. Thus, in this work we have investigated the 
profiles of roughened surface of soft polymeric material. Five different grades of abrasive paper were used to produce 
different degrees of roughness on the monolithic butadiene-styrene rubber surface. The fractal model of surface 
roughness was proposed. It was determined that fractal dimension of profiles of roughened surface depends on grade of 
abrasive paper. It was shown that fractal dimension can be used to characterize the roughness of rubber surface. 
Keywords: abrasion, surface roughness, correlation function, fractal dimension. 

 
1. INTRODUCTION∗

Surface roughness plays an important role in many 
areas of science and technology. The degree of roughness 
is important design factor for the adhesive bonds of soft 
polymeric materials. The surface profile and roughness of 
substrates influence the bond strength. Mechanical 
roughening increases the surface area for effective bonding 
and removes contaminants from the substrate surface. 
Therefore, the abrasion process has been widely used as 
substrate surface pretreatment in various fields of industry. 

The profile characteristics of abraded surfaces inter-
relate with the strength of adhesive joints [1]. Therefore, 
quantitative estimation of this relation is important. 
However, at the first it is necessary to investigate profile 
characteristics of abraded surface by describing a profile of 
rough surface by some models. 

The surface profile produced by roughening using 
abrasive paper usually is irregular, because grains in 
abrasive paper are randomly distributed and they are of 
different size and shape. Therefore, the profile of abraded 
surface is treated commonly as a realization of random 
process, which satisfies the assumptions of stacionarity, 
ergodicity and normality [2, 3]. It is a way to investigate 
the characteristics of rough surface profile as statistical 
characteristics. These assumptions are not always satisfied. 
Therefore, the new models for describing surface 
roughness have to be created. 

Many important spatial patterns of nature are either 
irregular or fragmented and it is impossible to describe 
their form by classical geometry. On the other hand, they 
are nicely described in terms of the concepts of a fractal 
geometry [4]. These forms often present statistical scale 
invariance and can be characterized by few parameters like 
fractal dimensions and scaling exponents [5]. Self-similar 
fractals are invariant under isotropic length scale 
transformation – all the different directions scale in the 
same way. Real surfaces are partially fractal, so they can 
be characterized, approximated or modeled as having 
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irregular or chaotic geometric components over some 
range of observation scales. 

The aim of this investigation was to find out 
description of the profiles of abraded surface of soft 
polymeric materials by fractal model. 

2. THEORY 

2.1. Fractals 
Fractals. Most of man made objects are 

geometrically simple and can be classified as composition 
of regular geometric shapes such as lines, curves, planes, 
circles, etc. Precisely the regular geometric shapes do not 
approximate some objects. One category of these objects is 
so called fractals (from Latin fractus, meaning irregular or 
fragmented). Fractals have two interesting characteristics. 
At the first, fractals are self-similar on multiple scales, 
where a small portion of a fractal often looks similar to the 
whole object. On the other hand, fractals have a fractal 
dimension, as opposite to integer dimension of the regular 
geometrical objects. Because fractals are self similar they 
are constructed by recursion. Typical example is so called 
Koch curve shown in Fig. 1 [5]. 
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Fig. 1. Koch curve (In each step of construction the middle 

portion of each segment is removed and replaced by  
two new line segments. The first step is line, with length 
L = 1) [5] 

The interesting parameter of the Koch curve is its  
length LK. LK is the sum of lengths of segments LS. In the 
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n-th step length of segment is equal to LS = 1/3n and the 
curve consists of 4n segments. Therefore, LK = (4/3)n. This 
value increases without bound; hence the Koch curve has 
infinite length. However, the curve still bounds a finite 
area. 

For stochastic or random fractals the recursion is less 
explicit than for self-similar fractals and may be an artifact 
of an underlying fractal building process that occurs on 
multiple spatial scales. These fractals are called the self-
affine fractals. In general terms, self-affine fractals have 
different scaling properties in different directions. 

“Box counting” method. The main characteristic of 
both fractal types is fractal dimension. A variety of dif-
ferent practical approaches to the measurement of the 
fractal dimension of self-similar structures have been 
developed and evaluated in [6]. One of the simplest 
methods used to characterize fractals is known as 
“box counting”. According to this, the fractal lying in a  
d – dimensional space is covered by a d – dimensional grid 
with elements of size (length scale) l. The box counting or 
capacity dimension is then given by  
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

→→ )/1log(
))(log(lim

)log(
))(log(lim

00 l
lN 

l
lN D

llB ,  (1) 

 

where N(l) is the number of elements of size l needed to 
cover a fractal curve. In practice, it is not possible to reach 
the limit , so D0→l B is estimated by measuring the 
dependence of  on . D for fractals is not 
integer. 

))(log( lN )log(l

For the Koch curve it is in the n-th stage l = LS= 1/3n 
and N(l) = LK/LS = 4n. Then D = log(4)/log(3) = 1.2619. 
The fractal dimension of Koch curve is therefore slightly 
complex in comparison with the line. For random fractals 
is simpler to use power spectral density or related 
functions. 

2.2. The statistical surface roughness parameters 
Roughness includes the finest (shortest wavelength) 

irregularities of the surface. Roughness generally results 
from a particular production process or material condition. 

Mathematically profile is the line of section of a 
surface with a crossing plane, which is (ordinarily) perpen-
dicular to the surface. It is a 2D slice of the 3D surface. 

It is possible to evaluate a lot of roughness parameters 
from a profile of the surface. Classical roughness 
parameters are based on a set of points y(xi), (i = 1, …, N) 
defined in the sample length interval L. A set of parameters 
for profile and surface characterization are collected in [7]. 
Roughness parameters, which are used, are as follows: 

1) Arithmetic average height Ra , also known as the 
center average line, is the most usually used roughness 
parameter for general quality control. It is defined as the 
average absolute deviation of the roughness irregularities 
from the mean line over one sampling length. This 
parameter is easy to define, easy to measure. Besides it 
gives a good general description of the height variation.  

The mathematical definition and the numerical 
representation of the arithmetic average height parameter 
are, respectively, as follows: 
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where y(x) is the function, which describes a profile; yi is 
the height of a profile at i point, and N is the number of 
digitized points yi in a profile. 

2) Root mean square (RMS) roughness is Rq. It 
represents the standard deviation of the distribution of 
surface roughness heights, so it is an important parameter 
to describe the surface roughness by statistical methods. 
This parameter is more sensitive than the arithmetic 
average height Ra to large deviation from the mean line. 

The mathematical definition and the numerical 
representation of this parameter are as follows: 
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3) Autocorrelation function is ACF. The ACF 
describes the general dependence of the data values at one 
position to their values at the other position. It is 
considered a very useful tool for processing signals 
because it provides basic information about the relation 
between the wavelength and the amplitude properties of 
the surface. The ACF can be considered as a quantitative 
measure of the similarity between a laterally shifted and an 
unshifted version of the profile. 

The mathematical definition and the numerical 
representation of this function are as follows: 
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where x∆  is the shift distance and yi is the height of the 
profile at i point. ACF can be normalized to have a value of 
unity at a shift distance of zero. This suppresses any 
amplitude information in ACF but allows a better 
comparison of the wavelength information in various 
profiles. 

3. EXPERIMENTAL 
Some forms of mechanical treatments improve the 

strength of bonds by removing the contaminants from the 
surface as well as increasing the size of bonding area. We 
have studied roughness of soft polymeric materials, 
because surface roughness is the important design factor 
for the adhesive bonds. 

As substrate for investigation monolithic butadiene-
styrene rubber was selected. The density and hardness 
according Shore A of BSR rubber was ρ = 1.25 g/cm3 and 
H = 75 Sh A, respectively. 
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The rubber surface roughening was performed on the 
abrasion machine, which contains special device for 
applying constant pressing force between specimen and 
abrasion disk. 

Five different grades of abrasive paper (N 24, N 36, 
N 40, N 60, N 100) were used to produce different degrees 
of roughness on the rubber surface. 

Surface roughness of the abraded rubber was tested 
by Hommelwerke T500 surface finish tester – profilograph 
(Germany). The profile of abraded surface was carried out 
perpendicular to the abrasion direction. The typical view of 
profiles is presented in Fig. 2. 
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Fig. 2. The profiles of rubber surface abraded by different grade 
of abrasive paper: a – N 24; b – N 36; c – N 40; d – N 60; 
e – N 100 

4. RESULTS AND DISCUSION 

4.1. The profile of surface roughness 
The degrees of surface roughness produced by 

treatment with abrasive paper of different grades in terms 
of the Ra and Rq are presented in Table 1. 
Table 1. Statistical parameters of surface roughness of rubber 

produced by five different grades of abrasive paper 

Statistical parameters Grade of abrasive 
paper Ra (µm) Rq (µm) 

N 24 18.932 19.756 

N 36 18.616 18.840 

N 40 16.514 18.101 

N 60 11.030 16.115 

N 100 10.018 10.825 

It is demonstrated that decreasing of grade of abrasive 
paper increases Ra value. Fig. 2 shows the irregular profiles 
produced by roughening the surface of the rubber. 

In this paper the high frequency (or short wave) 
components of surface profile is referred to the surface 
roughness. According to this definition of roughness a 
profile of rubber surface abraded by abrasive paper N 100 
is rougher than a profile of rubber surface abraded by 
abrasive paper N 24. 

The profiles of abraded rubber surface satisfied the 
assumptions of stacionarity, ergodicity and normality [3]. 
Therefore, geometric structure of abraded surface profile 
can be treated as a realization of random process. 

4.2. Surface roughness and fractal dimension 
A convenient characteristic of isotropic surfaces 

smoothness is fractal dimension. The data of surface 
roughness profile represents curve in plane. Two 
dimensional fractal dimension D of surface profile is the 
number between 1 (for smooth curve) and 2 (for rough 
curve) [5, 6]. This assumption was checked for roughness 
of soft polymeric materials surface. 

The fractal dimensions of surface profiles of 
roughened rubber have been evaluated by “box-counting” 
method according to Eq.(1). The fractal dimensions of 
rubber surface profiles produced by treatment with five 
abrasive paper of different grades are presented in Table 2. 
Table 2. Estimation of fractal dimension 

Grade  
of abrasive paper 

Ra value  
(µm) 

Fractal dimension 
D 

N 24 18.932 1.3856 

N 36 18.616 1.4972 

N 40 16.514 1.5359 

N 60 11.030 1.6611 

N 100 10.018 1.7925 
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Table 2 demonstrates that fractal dimension D 
increases as Ra decreases. One we can seen, the obtained 
results satisfied the assumption that increase of rubber 
surface roughness fractal dimension D increases. 

It was determined that the empirical relationship 
between Ra  and D is fitted to model 
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This model explains 90.26 % of the variability in Ra. 
The fitted model is shown in Fig. 3. The correlation 
coefficient is equal to 0.950047 and it indicates a strong 
relationship between the variables Ra  and D. 
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Fig. 3. The empirical relationship between Ra and D: smooth 

curve corresponds to fitted model (Eq.(8)) 

The empirical relationship between Rq and D was 
described, also. The equation of fitted model is  
 

DRq ⋅−= 6781.218587.50 . (9) 
 

This linear model explains 90.93 % of the variability 
in Rq. The fitted model is shown in Fig. 4. The correlation 
coefficient is equal to –0.9535 and it indicates a strong 
relationship between the variables Rq and D. 

 

0

5

10

15

20

1.2 1.4 1.6 1.8 2
D

Rq, µm

 
Fig. 4. The empirical relationship between Ra and D: smooth 

curve corresponds to fitted model (Eq.(9)) 

Roughness includes the short wave (high frequencies) 
irregularities of the surface. It was shown that statistical 
parameter Rq is the function of fractal dimension and cut-
off frequencies only [8]. The term ”cut-off” numerically 
specifies the frequency bound below or above which the 
components of roughness are extracted or eliminated. Rq 
can be expressed as: 
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where lω  is the lower wave number limit and hω  is the 
higher wave number limit. They are related to the length of 
sample L and sampling interval  respectively: x∆
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Roughness parameter Rq depends on the properties of 
a surface and varies in depending on the conditions of 
measurement. 

The parameter Rq of roughened rubber surface 
according to Eq.(5), Eq.(9) and Eq.(10) was calculated. 
The obtained results are presented in Table 3. 

Table 3. Estimation of root mean square roughness Rq

Grade of abrasive 
paper 

Rq (µm) 
(Eq.(5)) 

Rq (µm) 
(Eq.(9)) 

Rq (µm) 
(Eq.(10)) 

N 24 19.756 20.822 20.541 

N 36 18.840 18.402 19.375 

N 40 18.101 17.563 17.353 

N 60 16.115 14.849 17.246 

N 100 10.825 12.001 15.120 

4.3. Simulation of surface roughness 
Some models of rubber surface profile was analyzed 

in previous works [9, 10]. The surface profile was 
approximated according to cubic splines and Fourier 
series. These models describe a surface profile of 
roughened rubber very well but it is a problem to employ 
these models in practical computation. Therefore, new 
models for describing surface roughness are searched. 

Fractal geometry has been proposed as a mean to 
characterize surface roughness [5, 11, 12].  

Self–affine curves are commonly used to describe the 
surface roughness [5, 6, 13]. The Weierstrass - Mandelbrot 
function (W–M function), satisfying to the self-affinity 
requirement is most widely used by generating self-affine 
curves. It can be expressed as: 
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where y(x) is the height of surface in the point x; 1 < D < 2 
is fractal dimension, G is characteristic length scale of 
surface and γ i determines the frequency spectrum of 
surface roughness. It was determined that the value of this 
parameter is γ = 1.5. The lowest frequency is then related 
to the sample length L according to the relation  
 

Ln /11 =γ .  (13) 
 

The evaluation of D and G from random fractals is 
based on the power spectral density function )(ωP , which 
is expressed as follows: 
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The power spectral density function )(ωP  has power 
law of the form, which is typical feature of fractals. 

The profiles of surface of roughened rubber have been 
generated by W–M function. The autocorrelation functions 
of real and simulated profilogramms were chosen as the 
criterion of equivalence of real and simulated profiles. 

The empirical autocorrelations functions of rubber 
surface profiles produced by treatment with five different 
grades of abrasive paper were compared with the empirical 
autocorrelation functions of profiles simulated by W–M 
function. Two typical normalized autocorrelation functions 
are shown in Fig. 5. 
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Fig. 5. The empirical autocorrelation functions (Markers ■ cor-
respond to autocorrelation function of real profile; smooth 
curve corresponds to autocorrelation function of profile 
generated by W–M function) 

This Figure shows that they are practically identical. 
Therefore, it has been concluded that a rubber surface 
roughness can be generated by W–M function. 

CONCLUSIONS 
According to our simulations the surface of abraded 

rubber can be modeled by W–M function.  
The results show that fractal dimension D determines 

the degree of rubber surface roughness. The profile of 
surface roughness has the fractal dimension D between 1 
(for smooth profile) and 2 (for rough profile). 

Relations between fractal dimension D and statistical 
parameters (Ra, Rq) have been determined. Thus, some 
characteristics of surface roughness can be calculated by 
using fractal dimension only. 
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