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Pure and aluminum (Al) doped ZnO (Al:ZnO) nanorods (NRs) were deposited on silicon substrates by the hydrothermal 

method. The Al composition was kept at 2 % and 5 % for the Al:ZnO NR samples. The surface morphology and 

structural properties of the pure and Al:ZnO NRs were characterized by scanning electron microscopy (SEM) and X-ray 

diffraction (XRD), respectively. The XRD study revealed the hexagonal phase of the ZnO with (101), (002) and (100) 

peaks and it also revealed that the major orientation of ZnO NRs was along the (002) planes. The SEM micrographs 

showed perfectly grown ZnO NRs with hexagonal shaped tips. The electrical characterization of the pure and Al:ZnO 

NR thin film surface was done by scanning tunneling microscopy (STM). Local electron spectroscopy was conducted to 

measure the tunneling current with respect to the applied bias. The n-type behavior and bandgap of the pure and Al:ZnO 

NRs were confirmed from the dI/dV – V characteristics. These studies are of fundamental importance for the fabrication 

of pure and Al:ZnO NR based nanodevices. 
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1. INTRODUCTION 

Among the various transparent conducting oxide 

(TCO) materials, ZnO is of particular interest [1, 2]. It is 

mainly used in photovoltaic cells, organic light-emitting 

diodes (OLEDs) and flat panel displays [3 – 5]. ZnO has a 

wide optical band gap (3.37 eV), high transparency in 

visible region, high exciton binding energy (60 meV) and 

very good conductivity [6]. The properties of ZnO like 

electrical conductivity, bandgap and transparency can be 

tuned and further improved by doping it with different 

impurities [1, 5 – 7]. Various nanostructures of pure ZnO 

and Al:ZnO are extensively used, because of their 

applications in nanogenerators [8], bio-sensors [9], UV-

sensors [10], nanolasers [11] etc. Different kinds of 

nanostructures of pure ZnO and Al:ZnO are popular, 

including nanoparticles [12], nanowires [13], nanotubes 

[14], and nanorods (NRs) [15]. Al:ZnO NRs are one of the 

commonly used nanostructures for various devices [3 – 5]. 

These NRs can be grown by RF sputtering [16, 17], the 

sol-gel method [18], dip-coating [19], electrochemical 

deposition [20], the hydrothermal method [21], and 

chemical vapor deposition [22], etc. In this work, we used 

the hydrothermal method for the growth of the Al:ZnO 

NRs. 

In order to fabricate Al:ZnO NR based devices, a 

detailed study of their surface and electronic properties is 

necessary. In this work, we studied the electronic 

properties of Al:ZnO NR films using scanning tunneling 

microscopy (STM). Previously, STM was used to study 

various semiconductors, such as ZnS, SnS2 and graphene 

[23 – 25]. Few research groups have also reported the STM 
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studies of Al:ZnO thin films deposited by RF-sputtering 

[26, 27]. However, till now, no any research group has 

reported STM studies of Al:ZnO NRs grown by 

hydrothermal method. In this work, we have systematically 

examined the structural and electrical properties of pure 

and Al:ZnO NRs. The characteristics of the pure and 

Al:ZnO NRs samples were investigated by X-ray 

diffraction (XRD), scanning electron microscopy (SEM) 

and STM respectively. 

2. EXPERIMENTAL TECHNIQUE 

NR thin films of pure and Al:ZnO were grown on p-

type silicon wafers. All of the wafers were cleaned in 

acetone and methanol for 10 min using an ultrasonic bath 

and then washed with deionized (DI) water. The NRs were 

grown on Si wafers in two steps. Firstly, a seed layer of 

pure ZnO is deposited on the Si wafer. Then, pure and 

Al:ZnO NR thin films were grown in the second step, on 

the previously grown seed layer. Zinc acetate dihydrate 

powder and ethyl alcohol were used as precursors for the 

growth of the seed layer. The concentration of seed layer 

solution was 60 mM and the solution was mixed for one 

hour at 80 °C temperature [28]. Zinc nitrate hexahydrate 

(ZN), hexa-methylene-tetramine (HMT) and DI water were 

used as precursors for the growth of the pure ZnO NRs. 

The concentration of main-growth solution was 30 mM 

[29]. Aluminum nitrate nonahydrate, ZN, HMT and DI 

water were used as precursors for the growth of the Al 

doped ZnO NRs. For preparing Al doped ZnO NRs 

samples, 2 wt.% and 5 wt.% aluminum nitrate nonahydrate 

was mixed with ZN, HMT and DI water. The more detail 

and the principle experimental scheme of the hydrothermal 

growth setup can be found in the elsewhere [30]. 
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3. CHARACTERIZATION 

The structure of the pure and Al:ZnO NRs was studied 

using XRD (PAN Analytical X’PERT PRO XRD system 

with Cu Kα radiation (λ = 1.540568 Å). The surface 

morphology of the pure and Al:ZnO NRs was 

characterized by SEM (HITACHI S-4800, Japan).  

The I-V characteristics of the surface of pure ZnO and 

Al:ZnO NR thin films were measured with nanoREV 

Ambient Air STM system (from Quazar Technologies Pvt. 

Ltd.). The schematic diagram of STM set-up is shown in 

the Fig. 1. The STM experiment was done with the tip of 

Platinum-Iridium. The electrical continuity was maintained 

during the experiment. A small piece of silver (Ag) paste 

was used to ground the bottom metallic plate and the 

surface of ZnO NR thin films. The I-V charateristics were 

measured at already selected places, during the scanning. 

When the tip reached at that particular locations, the 

feedback loop was stopped for a while and the current 

reading was saved. The sample voltage was increased 

linearly from – 5V to + 5V in very less time interval 

(~100 milli second). The measurement was repeated after a 

small interval of time. Multiple readings has been taken for 

each location and with the average of all those reading the 

resultant curves were obtained. 

 

Fig. 1. Scheme of measurement set-up for STM (inset-2); I-V and 

dI/dV-V (inset-1) characteristics of pure ZnO NR samples 

measured from STM 

4. RESULTS AND DISCUSSION 

Fig. 2 a – c shows the XRD patterns of the pure and 

2 %, 5 % Al:ZnO NRs grown on p-Si substrates 
respectively. It shows a wurtzite structure with hexagonal 

phase and space group, P63mc [31]. 
The growth of NRs are along (101), (002) and (101) 

direction, but, the main XRD peak for the pure and Al:ZnO 

NRs corresponding to the (002) orientation. For 5 % Al 

doped ZnO, there is also a small peak around 48°, that 

corresponds to orientation along (102) planes. This means 

that higher Al concentrations degrade the crystalline 

structure of ZnO NRs. There is no any trace of any other 

diffraction peaks, such as for Zn(1-x)AlxO4, ZnAl2O4 or 

Al2O3. This confirms that all of the Al3+ has been 

successfully substituted for the Zn2+ sites within the ZnO 

lattice [32]. Fig. 3 shows the SEM micrographs of the pure 

and 2 % and 5 % Al:ZnO NRs.  

 

Fig. 2. XRD spectra: a – Pure ZnO NRs; b – 2 % Al:ZnO NRs;  

c – 5 % Al:ZnO, grown by hydrothermal method 

It can be seen that the pure and Al:ZnO NRs were 

successfully grown as vertical-rod like structures with a 

hexagonal shaped rod-tip. The radius of the tip of the NRs 

was measured from the SEM images and found to be in the 

range of 20 to 25 nm. The growth of the NRs was uniform 

and their density increases with the increase in Al doping 

concentration from 0 % (pure) to 5 % [33]. 

To study the effect of Al doping on the electrical 

characteristics of the surface of the pure and Al:ZnO NRs, 

STM-measurements were performed. A schematic diagram 

of the STM set-up is shown in the inset of Fig. 1. The 

voltage was applied in the range of ± 5 V and the tunneling 

current values were plotted as shown in Fig. 1 and Fig. 4. It 

can be seen from the graphs that the I-V characteristics are 

rectifying in nature [34]. This kind of I-V characteristics is 

mainly due to formation of Schottky contact between the 

ZnO and the metal (Pt/Ir) of STM-tip. Earlier Schottky-
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Mott has given one theory, which states that if the electron 

affinity (EA) of  a semiconductor will be smaller than the 

work function (WF) of the metal, Schottky-contact will be 

formed [35]. Hence, in our case, the Pt/Ir and ZnO NRs 

form a Schottky contact, which gives rise to a nonlinear 

tunneling current [36]. For Al:ZnO, the I-V characteristics 

is less rectifying as compared to ZnO NRs. This can be 

attributed to the increase in conductivity of ZnO by Al 

doping. 

The STM-conductance characteristics for the Pt/Ir and 

NRs were also measured, as shown in the insets of Fig. 3 

and Fig. 4, respectively. The position V = 0 in the dI/dV vs. 

V graph corresponds to the Fermi level, whereas the left 

and right sides with respect to V = 0, correspond to the 

valence-band and conduction-band energy-levels of the 

semiconductor, respectively [26]. 

 

Fig. 3. High-resolution micrograph showing hexagonal-tip of 

nanorods (inset); SEM image: a – pure ZnO NRs; b – 2 % 

Al:ZnO NRs; c – 5 % Al:ZnO, grown by hydrothermal 

method 

The dI/dV vs. V graphs in the insets of Fig. 1 and 

Fig. 4 show that the position of the conduction band is 

nearer to the Fermi level, which confirms the n-type nature 

of the ZnO. The dI/dV vs. V graphs for 2 % ZnO NR 

samples shows that the Fermi level is closer to conduction 

band as compared to Fermi level in ZnO NR samples. The 

dI/dV vs. V graphs for 5 % ZnO NR samples reveals that 

the Fermi level is less closer to conduction band as 

compared to Fermi level in 2 % Al:ZnO, but it is more 

closer as compared to pure ZnO NR. These dI/dV vs. V 

graphs were also investigated for the purpose of measuring 

the bandgap of the undoped and 2 % and 5 % Al:ZnO NR 

samples. The bandgaps of the pure and 2 % and 5 % 

Al:ZnO NR surfaces were estimated to be 3.22 eV, 

3.28 eV and 3.25 eV. The increase in the bandgap of 2 % 

Al:ZnO as compared to undoped ZnO NRs may be due to 

Burstein-Moss (B-M) effect. The decrease in bandgap of 

5 % Al:ZnO and as compared to 2 % Al:ZnO may be 

attributed to bandgap narrowing which occurs because of 

heavy doping. 

The thicknesses of the pure and Al:ZnO NR samples 

were measured by cross-sectional SEM (not shown here) 

and found to be ~ 800 – 900 nm, ~ 300 – 400 nm and 

~ 350 – 400 nm for the pure ZnO NR and 2 % and 5 % 

Al:ZnO NR samples, respectively. It is noticed that the 

height of the nanorods were different for pure ZnO and 

Al:ZnO. It can be understood by the facts that the doping 

of Al causes reduction in the growth-rate of nanorods. The 

doping of ZnO lattice was attained by substitution reaction. 
The atomic radius of Zn and Al are 1.35 Å and 1.25 Å 

respectively. Probably this difference in the radius causes 

the difference in the heights of pure ZnO and Al: ZnO 

naorods [27].  

 

Fig. 4. I-V and dI/dV-V (inset) characteristics of 2 % and 5 % 

Al:ZnO NRs samples measured from STM 

4. CONCLUSIONS 

Pure ZnO and 2% and 5% Al:ZnO thin films were 

grown by the hydrothermal method and their structural and 

electrical properties were investigated by XRD, SEM, and 

STM measurements. The XRD patterns of the pure and 

Al:ZnO NRs showed a strong peak for the <002> 

orientation but the crystalline  nature of ZnO was affected 

with the increase in Al concentration. The SEM images of 

all of the NR films showed that their surface was smooth 
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and uniform and density of NRs were found to increase 

with the increase in Al concentration. The electrical 

properties of the surface of the pure and Al:ZnO NRs were 

investigated by STM, and the tunneling current was 

obtained by applying voltage biases in the range of ˗ 5 V to 

+ 5 V. The I–V characteristics of the pure and Al:ZnO NRs 

showed non-linear behavior and the STM conductance 

spectra were also obtained from the dI/dV vs. V curve. 

With the help of conductance spectra, the bandgap of pure 

and Al:ZnO NRs were measured and the bandgap was 

found to be altered with the incorporation and change in 

the Al concentration. 
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