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Doping at A/B-sites can effectively improve the physical properties of perovskite ferrites. In this study, the performance 

of Bi0.8Ca0.2-xSrxFeO3 was investigated using the sol-gel autocombustion method. The results show that with an increase 

in x value, the grain size first increases and then decreases. With an increase in the doping concentration, the reunion 

phenomenon reduces, but the smoothness and flatness of the samples are also destroyed. Moreover, with increasing Sr2+ 

concentration, particle growth is inhibited, resulting in smaller particle sizes. When the Sr2+ concentration increases to a 

certain value, the environment becomes advantageous for particle growth and therefore the particle size increases. For 

x = 0.13, small particles are obtained. With increasing Sr2+ concentration, the spatial modulation of the spin structure is 

destroyed, the lattice distorts, and the magnetic force is freed. Mössbauer spectrum measurements shows that when the 

Ca2+ concentration is greater than the Sr2+ concentration, Sr2+ ions replace Ca2+ ions; as a result, A-A magnetic 

superexchange diminishes, leading to a decrease in the hyperfine field. Appropriate doping of BiFeO3 can improve its 

coercivity and refine its grains and result in a larger magnetic force. 
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1. INTRODUCTION 

A multiferroic material can simultaneously show two 

or more basic magnetic properties including 

ferromagnetism, antiferromagnetism, and ferroelectricity. 

One such novel material is elastic iron [1 – 3]. Multiferroic 

materials have attracted much research attention owing to 

their interesting properties. At present, they are widely 

used in the field of information storage, microwave, 

sensors, and converters [4 – 5]. BiFeO3 is a multiferroic 

material with a rhombohedral distorted perovskite 

structure. It is a rare material that simultaneously shows 

weak ferroelectricity (TC ≈ 830 ℃) and ferromagnetism 

(TN ≈ 370 ℃) [6 – 8]; therefore, it has been studied 

extensively. However, it is difficult to prepare pure-phase 

BiFeO3 because Bi can volatilize relatively easily during 

synthesis and the Fe valence fluctuates. At present, BiFeO3 

is mainly synthesized by the hydrothermal method [9], sol-

gel [10], and coprecipitation method [11]. As Bi in BiFeO3 

can volatilize easily, a second phase such as Bi25FeO40 or 

Bi2Fe4O9 is formed. In addition, the large leakage current 

of BiFeO3 makes it difficult to achieve good 

magnetoelectric properties. Doping can reduce the 

volatility of Bi and greatly improve the magnetoelectric 

properties of BiFeO3 [12]. Many studies have reported the 

doping of BiFeO3 at the A site by alkaline earths such as 

Ca, Mg, Sr, and Ba [13 ,14, 15]. However, few studies 

have reported on double-doping at the A site by alkaline 
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earths, such as doping using Ca and Mg, Ca and Sr, or Ba 

and Ca. 

In this study, we aimed to investigate the performance 

of Bi0.8Ca0.2-xSrxFeO3 (x = 0.04 ~ 0.20) by using the sol-gel 

autocombustion method. This study had three main 

objectives: (1) to use the sol-gel autocombustion method to 

investigate the influence of the double-doping content of 

alkaline earth ions on the structure by synthetizing a 

sample with a single-phase spinel structure; (2) to 

investigate the influence of the doping content by 

synthesizing homogeneously distributed and well-

crystallized ferrite nanopowder samples; and (3) to 

investigate the magnetic properties of samples with 

different double-doping contents of alkaline earth ions at 

the A site by Mössbauer spectroscopy and to confirm the 

magnetic behavior of Bi0.8Ca0.2-xSrxFeO3 nanoferrites. 

2. EXPERIMENTAL SECTION 

2.1. Sample synthesis 

Fig. 1 shows the synthesis route of Bi0.8Ca0.2-xSrxFeO3 

powder prepared using the polyacrylamide sol-gel method. 

Identical mol amounts of Bi(NO3)3·5H2O and 

Fe(NO3)3·9H2O are added to dilute nitric acid (1.6 mol/L). 

Then, some ethylenediamine tetraacetic acid is added as a 

complexing agent. Appropriate amounts of glucose 

(20 g/100 ml), Ca(NO3)2·6H2O, and Sr(NO3)2 are added 

according to the proportion, and the mixture is stirred 

constantly. Then, acrylamide monomer with metal cations 

is added in the molar ratio of 1:9, and the precursor 
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reaction liquids are mixed completely. The precursor 

solution is heated at 70 ℃ in a water bath for 5 – 10 min to 

obtain a transparent solution. Then, an appropriate amount 

of ammonia is added to the transparent solution to adjust 

its pH value to ≈ 3. Finally, the solution is heated at 80 ℃ 

for 5 – 7 h in the water bath until a dry wet gel is obtained. 

The wet gel is placed in a drying chamber and dried at 

120 ℃ for 5 h to obtain a dry gel. Then, the dry gel is 

combusted in air by adding drops of anhydrous ethanol 

propellant to obtain a fluffy powder. This powder is 

ground and placed in a muffle furnace, in which it is 

calcined at 600 ℃ for 3 h to obtain a fluffy yellow mud 

powder. 

 

Fig. 1. Synthesis route of Bi0.8Ca0.2-xSrxFeO3 powder by 

polyacrylamide sol-gel method 

2.2. Sample characterization 

The crystalline structure was investigated by x-ray 

diffraction (XRD, Rigaku D/max- 2500V/PC) with Cu Kα 

radiation (λ = 0.15405 nm). The micrographs were 

obtained by scanning electron microscopy (SEM, NoVaTM 

Nano SEM 430). The Mössbauer spectrum was performed 

at room temperature, using a conventional Mössbauer 

spectrometer (MS, Fast Com Tec PC-moss II), in constant 

acceleration mode. The γ-rays were provided by a 57Co 

source in a rhodium matrix. Magnetization measurements 

were carried out with superconducting quantum 

interference device (MPMS-XL-7, Quantum Design) at 

room temperature. 

3. RESULTS AND DISCUSSION 

3.1. Structure analysis of Bi0.8Ca0.2-xSrxFeO3 

Many studies have reported on the doping of BiFeO3 

at the A site by alkaline earths such as Ca, Mg, Sr, and Ba. 

For example, Khomchenko et al. [15] investigated the 

influence of different Ca2+ and Sr2+ doping ratios on the 

structure analysis of Bi0.7A0.3FeO3 (A = Ca2+, Sr2+) 

samples. However, few studies have reported on double-

doping at the A Site by alkaline earths, such as doping 

using Ca and Sr. Fig. 2 shows the room-temperature X-ray 

diffraction pattern of Bi0.8Ca0.2-xSrxFeO3 (x=0.04~0.20) 

calcined at 600 ℃ for 3 h. All diffraction peaks appear to 

be attributable to a pure phase, and all of them conform to 

the standard diffraction peaks (JCPDS card no. 861518) of 

BiFeO3 with perovskite structure. The impurity in these 

samples is undetectable, and it shows no significant change 

when the doping content is increased from 0.04 to 0.20, as 

shown in Fig. 2 a; this result agrees well with that of 

Chauhan’s study [2]. 

 

a b 

Fig. 2. XRD patterns of various contents for Bi0.8Ca0.2-xSrxFeO3 

samples calcined at 600 ℃ for 3 h 

The diffraction peak changes with Ca2+ and Sr2+ 

codoping; however, no clear impurity phase with good 

crystallinity can be seen. The diffraction peak trends 

toward low 2θ angles, as shown in Fig. 2 a. This may be 

due to the replacement radius of Sr2+ (RSr = 0.118 nm) 

being greater than that of Ca2+ (RCa = 0.1 nm) owing to the 

distortion of the crystal structure [13, 14]. Ca2+ and Sr2+ 

ions can enter the BiFeO3 perovskite crystal structure and 

form a solid solution; this is consistent with the conclusion 

of Khomchenko et al. [15]. Furthermore, with an increase 

in x value, the diffraction peak intensity of the samples 

gradually decreases, because codoping by alkaline earth 

ions reduces the crystalline effect. It should be noted that 

the half high width of the diffraction peak first increases 

and then decreases with an increase in x value. When only 

Sr is doped (x = 0.2), the half high width of the diffraction 

peak tends to increase again [16]. 

Fig. 2 b shows an enlarged view of the (110) peaks of 

Bi0.8Ca0.2-xSrxFeO3 nanoferrites. This figure shows that all 

diffraction peaks widen and move in the direction of 

increasing diffraction angle with increasing amounts of Ca. 

Fig. 2 b also shows the lattice parameters for Bi0.8Ca0.2-

xSrxFeO3 (x = 0.04 ~ 0.20). With increasing proportion of 

doped Sr, the diffraction peaks markedly move in the 

increasing 2θ direction; this agrees well with 

Khomchenko’s results [17]. 

The Scherrer formula is given as follows [18, 19]: 

D = Kλ/βcosθ, (1) 

where K is the Scherrer constant; β is the half high width 

of the peak; D is the grain size; λ is the X-ray wavelength; 

and θ is the diffraction angle. The wider the peak, the 

smaller the grains can be, and the narrower the peak, the 

bulkier the grains can be. Therefore, the grain size first 

increases and then decreases with an increase in x value. 

As mentioned above, when only Sr is doped (x = 0.2), it 

tends to increase, as shown in Fig. 3. 
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Fig. 3. Change in average grain size with proportion of doped Sr 

value 

3.2. SEM microstructure studies of Bi0.8Ca0.2-

xSrxFeO3 

Fig. 4 shows scanning electron microscope (SEM) 

images of Bi0.8Ca0.2-xSrxFeO3 calcined at 600 ℃ for 3 h. 

The particle size of the samples decreases and then 

increases with an increase in the doping amount, and the 

reunion phenomenon reduces. This suggests that an 

increase in the Sr2+ concentration inhibits particle growth, 

resulting in smaller particle size in the samples. When the 

Sr2+ concentration increases to a certain value, the 

environment becomes advantageous for particle growth 

and therefore the particle size increases. Therefore, the 

grain size can be refined effectively by controlling the Sr2+ 

concentration in the samples [20, 21]. 

 

Fig. 4. SEM micrographs of Bi0.8Ca0.2-xSrxFeO3 calcined at 

600 ℃ for 3 h 

A particle size distribution analysis software is used to 

obtain a histogram of the sample’s particle size 

distribution, as shown in Fig. 5. For x = 0.04, the particle 

size is mainly concentrated in the range of 71 – 89 nm. 

Then, for x = 0.13, the particle size obviously decreases to 

the range of 60 – 71 nm. However, for x = 0.17, the particle 

size increases and is mainly concentrated in the range of 

69 – 87 nm. These results indicate that with an increase in 

Sr2+ concentration, the particle size first decreases and then 

increases; these results are consistent with the XRD results 

[22, 23]. 

 

a b c 

Fig. 5. Histogram of Bi0.8Ca0.2-xSrxFeO3 (x=0.04, 0.13, 0.17) 

samples’ particle size distribution 

3.3. Magnetic studies of Bi0.8Ca0.2-xSrxFeO3 

Fig. 6 shows the magnetic hysteresis curves of 

Bi0.8Ca0.2-xSrxFeO3 (x = 0.04, 0.13, 0.17) calcined at 600 ℃ 

for 3 h. All samples almost reach saturation magnetization 

when the field is 10000 Oe. Table 1 shows the 

corresponding parameters. 

 

Fig. 6. Hysteresis curves of Bi0.8Ca0.2-xSrxFeO3 calcined at 600 ℃ 

for 3 h with different Ca2+ and Sr2+ doping contents 

(x = 0.04, 0.13, 0.17) 

Table 1 shows that with Sr2+ doping, the saturation 

magnetization of the samples first increases and then 

decreases. The saturation magnetization can be expressed 

as follows [16, 17, 24]: 

M

nB


5585
s   (2) 

where nB is the magnetic moment (unit: Bohr magneton) 

and M, the relative molecular mass. The relative molecular 

mass of the sample increases with increasing Sr2+ doping. 

Fig. 6 and Table 1 show that with an increase in x value, 

the remanent magnetization and coercive force of the 

samples increase substantially. 
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Table 1. Saturation magnetization (Ms ), coercivity (Hc), residual magnetization (Mr), and magnetic moment (nB) of Bi0.8Ca0.2-xSrxFeO3 

calcined at 600 ℃ for 3 h 

Content, x Ms, emu/g Hc, Oe Mr, emu/g nB 

0.04 2.6222 376.1749 0.5618 0.1319 

0.13 3.2832 877.8747 0.9169 0.1659 

0.17 3.0547 4764.8620 1.5820 0.1534 

Table 2. Mössbauer parameters including isomer shift (I.S.), quadrupole splitting (Q.S.), magnetic hyperfine field (Hhf), line width (Γ), 

and absorption area (A0) of Bi0.8Ca0.2-xSrxFeO3 (x = 0.04, 0.13, 0.17) annealed at 600 ℃ for 3 h 

Content, x I.S., mm/s Q.S., mm/s Hhf, T Γ, mm/s A0, % 

0.04 0.3847 -0.0556 48.9627 0.5969 10.5160 

0.13 0.2591 0.0070 48.7614 0.5974 9.4367 

0.17 0.2419 -0.0325 48.8988 0.5604 18.672 

 

In particular, when x value increases from 0.13 to 0.17, 

the remanent magnetization increases from 0.9169 to 

1.5820 emu/g, respectively, and the coercive force 

increases more than five-fold from 877.8747 to 4764.8620 

Oe, respectively. These large changes are attributable to 

the increase in Sr2+ content in the sample; this increase 

distorts the lattice, destroys the spatial modulation of the 

spin structure, and frees the magnetic force, resulting in a 

larger magnetic force [19, 25, 26].  

3.4. Mössbauer spectroscopy study of Bi0.8Ca0.2-

xSrxFeO3 

 

Fig. 7. Mössbauer spectra of Bi0.8Ca0.2-xSrxFeO3 (x = 0.04, 0.13, 

0.17) calcined at 600 ℃ for 3 h 

Fig. 7 shows the Mössbauer spectra of Bi0.8Ca0.2-

xSrxFeO3 (x = 0.04, 0.13, 0.17). The spectral data of all 

samples are analyzed used Mösswinn 3.0 software, and all 

spectral peaks are fitted with a set of six lines. All maps 

show a six-line spectrum, indicating that the samples are 

ferromagnetic. With an increase in Sr2+ concentration, an 

increasing number of black spots concentrate around the 

red spectrum line and the sinking peak becomes much 

larger.  

Table 2 shows the isomeric shift (I.S.), quadrupole 

splitting (Q.S.), hyperfine field (Hhf), line width (Γ), and 

relative parameters such as absorption area (A0) of samples 

that are calcined at 600 ℃ for 3 h and then naturally 

cooled to room temperature. From Fig. 7 and Table 2, the 

Mössbauer spectrum line width parameter values (Г), 

relative absorption area, lattice distribution, Bi ions, Sr2+ 

ions, and Fe3+ ions can be determined. With an increase in 

Sr2+ concentration, the I.S. decreases. With a change in the 

concentration of Ca2+ and Sr2+ ions, the distance between 

Fe3+ ions and O ions in the lattice changes. This, in turn, 

affects the s orbital’s electron cloud overlap [18, 27, 28] 

and eventually leads to a change in IS. Based on literature 

[19], I.S. for Fe2+ ions lies in the range 0.6 – 1.7 mm/s, and 

that for Fe3+ ions lies in the range of 0.1 – 0.5 mm/s. The 

I.S. values in Table 2 indicate that iron is in the Fe3+ state. 

The Hhf first increases and then decreases with an increase 

in the Sr2+ concentration. This is because when the Ca2+ 

concentration is greater than the Sr2+ concentration, Sr2+ 

ions replace Ca2+ ions; as a result, A-A magnetic 

superexchange diminishes , leading to a decrease in Hhf 

[29, 30]. When the Ca2+ concentration is smaller than the 

Sr2+ concentration, the opposite results are obtained. All 

Q.S. values of samples that show six-line magnetic peaks 

are very small and can be ignored. This suggests that the 

concentration of Ca2+ and Sr2+ ions in the Bi0.8Ca0.2-

xSrxFeO3 sample has little impact on Q.S. [31]. 

Furthermore, the charge distribution around the nucleus of 

perovskite ferrite is symmetric, which could be caused by a 

variation in the ratio of the Fe2+/Fe3+ valence states 

[32, 33, 34]. 

4. CONCLUSIONS 

In this study, the polyacrylamide sol-gel method was 

used to synthesize Bi0.8Ca0.2-xSrxFeO3 nanoferrites. With an 

increase in x value, no impurity was seen in the sample. 

With an increase in the Sr2+ concentration, as the 

replacement radius of Sr2+ ions (RSr = 0.118 nm) is greater 

than that of Ca2+ ions (RCa = 0.1 nm), the crystal structure 

distorts and the diffraction peaks shift toward low angles. 

In addition, with an increase in Sr2+ concentration, the half 

high width of the diffraction peak first increases, then 

decreases, and finally increases again. These results show 

that changes in the Ca2+ and Sr2+ concentrations can 

directly affect grain growth. Doping can reduce the reunion 

phenomenon and also reduce the smoothness and flatness 

of the grain surface. Mössbauer spectrum measurements 

show that when the Ca2+ concentration is greater than the 

Sr2+ concentration, Sr2+ ions replace Ca2+ ions; as a result, 

A-A magnetic superexchange diminishes, leading to a 

decrease in Hhf. With an increase in Sr2+ concentration, the 

coercive force of the sample changes greatly. As the Ca2+ 
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and Sr2+ concentrations in the sample change, the highly 

helical structure is damaged and the magnetic force is freed; 

this can result in an increase in the magnetic force. 

Appropriate doping of BiFeO3 can improve its Hc and 

refine its grains and result in a larger magnetic force. 
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