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A co-continuous ceramic composite (C4) was manufactured by gravity infiltration. The effect of varying machining 

parameters namely, speed, feed and depth of cut during end milling of C4, on the multi-responses of surface roughness, 

tool wear and depth of cut was investigated using response surface methodology. Non-linear regression models were 

generated and optimal machining parameters were determined using desirability analysis. Confirmation experiments 

performed, validated the models with a ± 5 % error in prediction.  
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1. INTRODUCTION 

The term ‘co-continuous’ refers to a class of composites 

in which the two phases namely, metal and ceramic are 

topologically interconnected resulting in a three-

dimensionally interpenetrating structure which possesses 

near to isotropic properties [1]. Co-continuous ceramic 

composites (referred to as C4) possess the advantages of 

higher wear resistance, enhanced thermal and electrical 

conductivity, high stiffness and hardness over discontinuous 

phase composites [2]. C4 with Al and SiC as the metal and 

ceramic phases have been widely researched. These 

composites have potential for applications involving high 

temperature, superior wear characteristics, high strength and 

specific modulus [3]. Specifically, the Al 7xxx series alloys 

with composition Al-Zn-Mg-Cu in varying proportions are 

lightweight, corrosion resistant and possess high specific 

strength. In the 1990s, Al 7068 was specially developed by 

Kaiser Aluminium. It was designed as an alternative to Al 

7075, which is typically used in aerospace and valve 

components. Al 7068 retains its mechanical properties even 

at elevated temperatures and has a higher strength to weight 

ratio compared to Al 7075 [4]. This strongest commercially 

available alloy is widely used as alternative material for 

connecting rods, valve bodies and prosthetic limbs [5]. With 

increasing applications for Al-SiC C4 composites in 

industry, machinability studies are required to analyze how 

the characteristics like tool wear, surface roughness and 

material removal rate vary with cutting speed, feed and 

depth of cut. Machinability studies were performed on Al 

reinforced with 5, 10 and 15 % SiC particles using a TiN 

coated hard carbide tool [6]. It was found that cutting speed 
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and feed had a major effect on tool wear. Also, there was an 

improvement in the surface quality when cutting speeds 

were decreased. A Taguchi and Response Surface 

Methodology (RSM) based analysis for determining the 

optimal machining conditions has been discussed by 

Sarikaya and Gullu [7]. S/N ratio, surface graphs and 

desirability analysis were utilized to determine the optimal 

operating parameters. Results indicated that feed rate 

significantly affected the surface roughness of the 

workpiece. Box Behnken Designs in RSM have been 

deployed to develop mathematical models during 

machining of Ti-6242S alloy using cemented carbide end 

mill [8]. This study, reported a deviation of the RSM 

predicted values from the measured response by 0.53 % 

indicating the robustness of the developed mathematical 

models. Multi-response parameter optimization using RSM 

has been performed on thermal insulation coatings [9]. 

Here, optimization of unique multi-WATIC thermal 

insulation was conducted using single factor experiments by 

RSM. A good fit between experimental and test data with 

0.4 °C deviation was reported.   

A review of previous literature reveals that RSM in 

conjunction with Taguchi design has been extensively used 

to optimize machining parameters. However, very few 

studies have investigated the machinability of co-

continuous composites. The present study focuses on 

ascertaining the optimal process parameters to achieve 

desirable response values of machining characteristics 

during end milling of a C4. Fig. 1 illustrates the 

methodology followed for optimizing the machining 

process parameters.

http://dx.doi.org/10.5755/j01.ms.25.4.21000
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2. EXPERIMENTAL METHODS 

2.1. Design of experiments (DOE) 

Statistical DOE has been extensively used in 

machinability studies to determine the most significant 

factors affecting the output of the machining process. 

Experimental analyses involving one-factor at a time 

consume time and are expensive. On the other hand, 

analyzing a limited set of statistically fitting data can yield 

reliable results. Therefore, DOE techniques such as Taguchi 

methods, response surface design and factorial design are 

widely applied in order to overcome the limitations of one-

factor approach [10, 11]. To determine the most effective 

machining conditions, literature indicates that an extensive 

study of machining parameters and their responses is 

essential. Consequently, the present study investigates the 

effect of three machining parameters namely, speed, feed 

and depth of cut on the responses particularly, surface 

roughness, tool wear and material removal rate. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Flow chart of the methodology 

2.2. Response surface methodology (RSM) 

RSM is an empirical modeling approach, typically 

employed to model and analyze problems in which multiple, 

controllable factors affect a response. By simultaneously 

varying the input parameters and the interactions of these 

independent variables, their effect on the response value can 

be precisely studied using RSM. In RSM, it is possible to 

achieve the exact value in addition to determining the levels 

for optimal design of a factor [12]. Central composite design 

(CCD) and Box-Behnken designs (BBD) are the two most 

widely used response surface designs. Typically, a BBD 

entails fewer experiments and does not examine extreme 

factor combinations [13]. Hence, BBD is chosen to model 

the experimental design in this study. In RSM, the 

relationship between the independent input variables and 

response can be represented by Eq. 1. 

y = ϕ (v, f, d), (1) 

where y and ϕ denote the desired response and response 

function (surface) respectively. Essentially, Eq. 1 depicts 

the response as a function of speed (v), feed (f) and depth of 

cut (d). The response y, can be approximated using the two 

factor interaction model shown in Eq. 2. 

𝑦 =  𝛽0 + ∑ 𝛽𝑖
3
𝑖=1 𝑥𝑖 + ∑ 𝛽𝑖𝑗

3
𝑖<𝑗 𝑥𝑖𝑥𝑗, (2) 

where β0 is a constant, and βi, βij represent the coefficients 

of linear and cross-product terms respectively. The values 

of the coded variable xi (i = 1,2,3) can be obtained from the 

transformation equations shown in Eq. 3 – Eq. 5. 

𝑥1 =  
𝑣− 𝑣0

𝛿𝑣
  ; (3) 

𝑥2 =  
𝑓− 𝑓

𝛿𝑓
  ; (4) 

𝑥1 =  
𝑑− 𝑑0

𝛿𝑑
  , (5) 

where x1, x2 and x3 denote the coded values of the input 

parameters v, f and d. The zero levels of the input parameters 

are represented by v0, f0, d0 and the intervals of the variations 

in the input parameters are indicated by δv, δf and δd. In this 

study, RSM is combined with Taguchi method to find 

optimal values of machining parameters. 

3. EXPERIMENTAL PROCEDURE 

3.1. Test specimen 

In order to fabricate the C4, Al 7068 alloy and 

commercially available SiC foam of size 10 ppi were chosen 

as the metal and ceramic phase respectively. Spectroscopy 

was performed for compositional evaluation of Al 7068. 

From the composition listed in Table 1, it can be inferred 

that the alloy confirms to ASM specifications. This Al alloy 

was then infiltrated to the SiC foam using gravity infiltration 

technique [14] without application of pressure.  

Table 1. Composition of Al 7068 

Element Al Zn Mg Cu Zr Fe 

Composition % 87.1 7.75 2.74 2.05 0.114 0.107 

As evident from the machined composite in Fig. 2, the 

Al and ceramic phase form an interpenetrating structure and 

are yet, clearly distinguishable. 

 

Fig. 2. Manufacturing process of C4 
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3.2. Machinability studies 

A 5 mm solid carbide tool in uncoated condition was 

used to conduct machinability studies on the C4 composite 

thus manufactured. Three control factors, namely, speed (v), 

feed (f) and depth of cut (d) at three levels as shown in 

Table 2, were selected for experimental study.  

Table 2. Control factors and levels 

Factors Unit Code Level 1 Level 2 Level 3 

speed (v) rpm A 3000 5000 7000 

feed (f) mm/min B 450 600 750 

depth of cut (d) mm C 0.2 0.4 0.6 

In order to study the effect of the control factors v, f and 

d on the multi-responses of surface roughness (SR), tool 

wear (TW) and material removal rate (MRR), a Taguchi L9 

array shown in Table 3 was formulated. 

End milling of slots was then performed on the C4 using 

a Makino VMC-S33 machine as shown in Fig. 3. 

 

Fig. 3. End milling of C4 

Surface roughness was measured using a Mitutoyo 

Surftest SJ-210 surface roughness tester. Tool wear as 

depicted in Fig. 4, was evaluated using a Dino-Lite 

AM7013MZT digital microscope. MRR, as shown in Eq. 6, 

was calculated from the weight difference of the C4 during 

machining. 

𝑀𝑅𝑅 =  
𝑤𝑏− 𝑤𝑎

𝜌𝑎𝑡
  , (6) 

where wb and wa represent weight of C4 before and after 

machining, ρa is the density of Al 7068 (2.7  10-3 g/mm3) 

and t is the machining time. The values of the responses are 

tabulated in Table 3. 

  

Fig. 4. Tool wear during machining of C4 

Table 3. Taguchi L9 orthogonal array for machining of C4 

Exp 

No 

Levels of control 

factors 
Values of response  

A B C SR, µm TW, mm 
MRR, 

mm3/min 

1 1 1 1 2.572 0.032 535 

2 1 2 2 3.545 0.031 1202 

3 1 3 3 5.569 0.029 1970 

4 2 1 2 2.742 0.028 1075 

5 2 2 3 3.731 0.027 1866 

6 2 3 1 4.180 0.027 767 

7 3 1 3 2.967 0.026 1559 

8 3 2 1 3.362 0.025 675 

9 3 3 2 5.014 0.023 1462 

4. RESULTS AND DISCUSSION 

4.1. ANOVA and RSM 

A non-linear regression analysis was performed on the 

responses using statistical analysis software by defining a 

custom BBD - response surface design for Taguchi L9 

array. Certain insignificant terms were discarded through 

the backward elimination process to arrive at the fitted 

regression models with interaction effects. The response 

equations for SR, TW and MRR in terms of coded factors 

are shown in Eq. 7 – Eq. 9. 

SR = 3.55 + 0.11A + 1.08B + 0.36C + 0.33BC + 

0.29B2;  (7) 

TW = 0.028 – 0.003A – 0.001167B – 0.00053C – 

0.0004AB;  (8) 

MRR = 1234.56 + 11.67A + 155.24B + 606.24C + 

73.14AB – 32.86AC + 27BC. (9) 

An ANOVA was performed to evaluate the significance 

of the fitted models of SR, TW and MRR as shown in 

Table 4. A model can be considered to be statistically fit 

when the P value is less than 0.05 at 95 % confidence level. 

It is evident from Table 4 that the P values for the regression 

models of SR, TW and MRR are less than 0.05 and hence, 

significant. The coefficient of determination R2, is a 

measure of the closeness of the response data to the fitted 

regression model. The closer the value of  R2 is to unity, the 

better the response equations fit the observed data [15]. In 

particular, R2 
pred denotes the ability of the fitted regression 

model to predict responses for new observations. It can be 

observed from Table 4 that, the values of R2, R2 
pred, and R2 

adj for all the three responses, approach unity. Additionally, 

the value of R2
pred lies in close proximity to R2 

adj indicating 

the ability of the regression model to predict new 

observations. The normal probability plots revealed that the 

residuals are normally distributed. The plots of residuals 

versus predicted response displayed no obvious pattern 

implying that the three proposed models are adequate and 

no violation of the constant variance assumption exists [16]. 

4.2. Effect of machining parameters on SR 

Since the regression models are adequate, 3D surface 

plots of all the three responses can be utilized to predict new 

observations for a given combination of machining 

parameters. 
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Table 4. ANOVA table for the fitted models 

 

Sum of 

squares 

(Seq SS) 

Degrees 

of 

freedom 

Mean 

square (Adj 

MS) 

F value P value 

For surface roughness (SR)  PRESS = 0.78 

Model 8.23916 5 1.65 80.44 0.0021 

Residual 

Error 
0.061 3 0.020   

Total 8.30 8    

R2 = 99.26 % R2
pred = 90.60 % R2

adj = 98.03 % 

For tool wear (TW) PRESS = 4.51E-06 

Model 0.000063 4 0.000015 63.94 0.0007 

Residual 

Error 
0.000001 4 0.0000002   

Total 0.000064 8    

R2 = 98.46 % R2
pred = 92.98 % R2

adj = 96.92 % 

For material removal rate (MRR) PRESS = 88749.3 

Model 0.000002 6 0.000035 499.1 0.002 

Residual 

Error 
1431 2 715.54   

Total 0.000002 8    

R2 = 99.93 % R2
pred = 95.86 % R2

adj = 99.73 % 

The estimated response surface in Fig. 5 a shows a non-

linear variation of SR. The interactions in Fig. 5 a show that, 

when speed is constant, SR increases moderately at high 

DoC and rapidly with higher feed rate. Significantly, the 

value of SR peaks at high feed and DoC. Therefore, better 

surface quality can be obtained at lower feed rate and DoC. 

The contour lines in Fig. 5 a, signify a curvilinear surface. 

This indicates the existence of a second order regression 

model in which the maximum power of the terms in the 

model is two. The response equation for SR in Eq. 7 

contains a second order term for feed. This confirms the 

inference from the contour plot. 

4.3. Effect of machining parameters on TW 

The 3D surface plot of tool wear is depicted in Fig. 5 b. 

The plot reveals that, at constant DoC, the interaction 

between speed and feed is significant. In particular, higher 

tool wear occurs at lower cutting speed and lower feed 

values. This can be attributed to high cutting forces and 

built-up edge formation during end milling at low speeds 

and feeds [17]. The contour lines of TW for the interaction 

between speed and feed in Fig. 5 b reveal a linear 

relationship between speed and feed. The slopes of the 

graphs reveal that, variation in speed has a higher influence 

on the TW. 

4.4. Effect of machining parameters on MRR 

The three dimensional surface plots of the effect of 

machining parameters on MRR are displayed in Fig. 5 c, d 

and e. It can be seen from the surface plots that, invariably, 

a high MRR is attained at higher values of speed, feed and 

DoC. It can also be deciphered from the contour plot in 

Fig. 5 c that, the interaction between speed and DoC 

significantly affects MRR. 

 

 

   
a b c 

  
d e 

Fig. 5. The response surfaces of the regression models: a – the effect of interaction of BC on surface roughness; b – the effect of interaction 

of AB on toll wear; c – the effect of interaction of AB on MRR; d – the effect of interaction of AC on MRR; e – the effect of 

interaction of BC on MRR 

Design-Expert® Software

SR
5.569

2.572

X1 = B: Feed (f)
X2 = C: DoC (d)

Actual Factor
A: Speed (v) = 5000.00

  450.00

  525.00

  600.00

  675.00

  750.00

0.20  

0.30  

0.40  

0.50  

0.60  

2.7  

3.45  

4.2  

4.95  

5.7  

  
S

R
  

  B: Feed (f)  

  C: DoC (d)  

Design-Expert® Software

TW
0.032

0.023

X1 = A: Speed (v)
X2 = B: Feed (f)

Actual Factor
C: DoC (d) = 0.40

3000.00  

4000.00  

5000.00  

6000.00  

7000.00    450.00

  525.00

  600.00

  675.00

  750.00

0.0229  

0.025025  

0.02715  

0.029275  

0.0314  

  
T

W
  

  A: Speed (v)  

  B: Feed (f)  

Design-Expert® Software

MRR
1970

535

X1 = A: Speed (v)
X2 = B: Feed (f)

Actual Factor
C: DoC (d) = 0.40

  3000.00

  4000.00

  5000.00

  6000.00

  7000.00

450.00  

525.00  

600.00  

675.00  

750.00  

1010  

1127.5  

1245  

1362.5  

1480  

  
M

R
R

  

  A: Speed (v)    B: Feed (f)  

Design-Expert® Software

MRR
1970

535

X1 = A: Speed (v)
X2 = C: DoC (d)

Actual Factor
B: Feed (f) = 600.00

  3000.00

  4000.00

  5000.00

  6000.00

  7000.00

0.20  

0.30  

0.40  

0.50  

0.60  

500  

850  

1200  

1550  

1900  

  
M

R
R

  

  A: Speed (v)    C: DoC (d)  

Design-Expert® Software

MRR
1970

535

X1 = B: Feed (f)
X2 = C: DoC (d)

Actual Factor
A: Speed (v) = 5000.00

  450.00

  525.00

  600.00

  675.00

  750.00

0.20  

0.30  

0.40  

0.50  

0.60  

500  

900  

1300  

1700  

2100  

  
M

R
R

  

  B: Feed (f)    C: DoC (d)  



475 
 

The contour lines in Fig. 5 d and e lie close together, 

indicating a steep slope of the 3D surface. 

4.5. Response optimization using desirability 

function 

In addition to understanding the effect of varying 

machining parameters on the response values, one of the 

principal objectives of applying RSM technique is to 

determine the optimal values of machining parameters. 

Response surface optimization is performed using 

desirability function approach outlined by Derringer and 

Suich [18]. In this approach, a dimensionless value of 

desirability ‘di’ is calculated by transforming the values of 

each predicted response on a scale from 0 to 1 where, di = 0 

indicates an unacceptable value of response and di = 1 

denotes response achieving the target value. Desirability 

functions are of three types (i) smaller the better (ii) nominal 

the better and (iii) larger the better. For a response yi to be 

minimized, the desirability is defined by Eq. 10. 

           0            if  yi < Li 

 

𝑑𝑖 =   (
𝑈𝑖− 𝑦𝑖

𝑈𝑖− 𝐿𝑖
)

𝑟

 if  Li < yi < Ui ; weight r ≥ 0. (10) 

 

           1            if  yi > Ui 

The desirability function to maximize a response yi is 

described by Eq. 11. 

           0            if  yi < Li 

 

𝑑𝑖 =   (
𝑦𝑖− 𝐿𝑖

𝑈𝑖− 𝐿𝑖
)

𝑟

 if  Li < yi < Ui ; weight s ≥ 0. (11) 

 

           1            if  yi > Ui 

In Eq. 10 and Eq. 11, Ui and Li refer to the acceptable 

range of upper and lower values of the response. The values 

of the weights r and s influence the closeness of the response 

yi to minimum or maximum, depending on the optimization 

problem. Subsequently, the individual desirability functions 

of all the responses can be combined to form a unique 

function termed as composite desirability (D) [7], defined 

by Eq. 12 

𝐷 =  (𝑑1
𝑤1𝑥 𝑑2

𝑤2𝑥 𝑑3
𝑤3 … … … 𝑥 𝑑𝑖

𝑤𝑖  )
1

∑ 𝑤𝑖, (12) 

where wi refers to the weight of each response relative to the 

other. Factor settings leading to higher values of composite 

desirability represent optimal machining conditions. The 

optimization goals set for each of the responses are tabulated 

in Table 5.  

Table 5. RSM optimization results 

Respons
e 

Goal 
Individual 
desirability

, di 

Predicte
d value, 

y 

Optimal 
machining 
parameters 

SR Min 0.98130 2.6828 v = 3000 rpm 

f = 450 

mm/min 

d = 0.6 mm 

TW Min 0.86335 0.0308 

MRR Max 0.92284 1752.89 

Optimal composite desirability (D) = 0.92124 

SR and TW are to be minimized whereas MRR is to be 

maximized. The results of the desirability analysis from 

statistical software are shown in Fig. 6. The individual 

desirabilities for SR, TW and MRR have been estimated as 

0.9813, 0.86335 and 0.92284 respectively. Further, the 

composite desirability for the combination of all the goals is 

0.92124, close to the highest attainable desirability of 1.  

 

Fig. 6. Composite desirability of responses 

4.6. Confirmation Experiment 

In order to validate the model developed using RSM, 

three confirmation experiments were conducted. The test 

conditions were selected within the range of the 

experimental values. The predicted values were compared 

with the experimental values. The deviations as quantified 

by the error percentages in Table 6 reveal that, the measured 

values are close to predicted values.  

Table 6. Results of confirmation experiments 

S. 
No 

v, rpm 
f, 

mm/min 
d, 

mm 
Experimental 

result 
RSM 

predicted 
Error, % 

1 3000 600 0.6 

SR 3.921 3.7975 3.15 

TW 0.029 0.030  – 3.44 

MRR 1838 1861.9841  – 1.30 

2 5000 750 0.4 

SR 4.776 4.9210  – 3.04 

TW 0.027 0.0264 2.22 

MRR 1335 1389.7937  – 4.11 

3 7000 450 0.4 

SR 2.952 2.8677 2.86 

TW 0.025 0.0261  – 4.40 

MRR 1062 1017.8413 4.16 

This affirms that, the response equations obtained 

through RSM can reliably predict the values of SR, TW and 

MRR for a given combination of speed, feed and DoC 

within the range of the experiments performed. 

5. CONCLUSIONS 

In the present work, end milling of a co-continuous 

ceramic composite was performed using Taguchi method. 

Regression models were developed using response surface 

methodology and experimental results were evaluated using 

ANOVA, surface and contour plots. The optimal operating 
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parameters were then identified by desirability analysis. The 

following conclusions are established based on this work: 

1. The P values in the ANOVA indicate that the fitted 

regression equations are statistically significant. 

2. The surfaces, contours and equations reveal that feed 

rate and depth of cut have a major influence on surface 

roughness followed by cutting speed. The interaction 

between feed rate and depth of cut also influences the 

smoothness of the surface. 

3. Tool wear depends primarily on feed rate and depth of 

cut. The interaction of speed and feed also influences 

the life of the tool. 

4. MRR was particularly affected by the depth of cut, 

interactions between all factors being significant. 

5. The confirmation experiments exhibit that the 

developed models can reliably predict experimental 

results as, the deviations between predicted and 

measured values vary within a narrow range of ± 5 %. 

6. Applying composite desirability in RSM, the optimal 

machining parameters were established as: speed (v) at 

3000 rpm, feed (f) at 450 mm/min, depth of cut (d) at 

0.6 mm. At these levels, the values of surface 

roughness, tool wear and material removal rate were 

2.6828 µm, 0.0308 mm, 1752.89 mm3/min 

respectively. 

7. The composite desirability of the three responses was 

0.92124, close to 1, indicating the ability of the model 

to reliably predict with 95 % confidence. 

Therefore, this work presented experimental results to 

develop a statistical prediction model which can be 

employed to ascertain the favorable combination of cutting 

conditions to achieve the desired surface roughness, tool 

wear and material removal rate in a C4. 
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