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In this critical analysis on the base of randomly moving (RM) electrons, presented the resistivity dependence on 

temperature for elemental metals both above and below the Debye’s temperatures. There also are presented the general 

relationships for estimation of the average diffusion coefficient, the average velocity, mean free path and average 

relaxation time of RM electrons on the Fermi surface at mentioned temperature range. It is shown that the scattering of 

RM electrons mainly is due to electronic defects associated with distortion of the periodic potential distribution in the 

periodic lattice, and accounting the exchange of the thermal energies between phonon and RM electron. The calculation 

results of resistivity dependence on temperature in the temperature range from 1 K to 900 K are demonstrated for Au and 

W and compared with the experimental data. There also is presented the simple method for determination of the basic 

kinetic characteristic dependences on temperature only from the resistivity dependence on temperature. It is at first time 

determined for Au and W the temperature dependences of the mean free path, average diffusion coefficient, average 

relaxation time of RM electrons from 1 K to 900 K. 
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1. INTRODUCTION  

The foundations of the electron theory of metals were 

laid on the preposition of free electrons, which are assumed 

to be of the same order of valence electrons per unit volume, 

which contradicts to the Fermi-Dirac statistics for electrons. 

In order to obtain the correct order of the magnitude for 

conductivity and correct temperature variation of the mean 

free path of electrons at room temperature range, it was 

assumed that electron mean path is caused by thermal 

vibrations of lattice [1  8]. It is well known that electrons 

obey the Pauli principle and that electrons are described by 

the Fermi-Dirac statistics. The latter statistics let to explain 

the experimental results of the electron heat capacity of 

metals: why metals and insulators have around the same 

heat capacity. The resolution of this paradox is one of the 

greatest successes of the Sommerfeld’s model [3].  

According to Fermi-Dirac statistics and Pauli principle 

description of the electrical conductivity of the metals 

including all valence electrons is unacceptable [9, 10], 

because randomly can move only a small part of electrons 

which energy is close to the Fermi level energy, and that 

electrons which energy is well below the Fermi level energy 

cannot change their energy, because all neighbor energy 

levels are occupied. Concerning that the Sommerfeld’s 

model is based on the spherical Fermi surface, there also are 

uncertainties in determination of both the density-of-states 

(DOS) in conduction band and the Fermi energy, because 

the Fermi surfaces for many of metals are not spherical [11]. 

The determination of the effective density neff of the 

randomly moving (RM) electrons in elemental metals 

eliminates the mentioned uncertainties [9, 10]. 
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This critical analysis mainly is addressed to application 

of the effective density of RM electrons for description of 

the basic electron transport characteristics of metals, and to 

their dependence on temperature. It is that demonstrated for 

Au and W in the temperature range from 1 K to 900 K. The 

mentioned problems are very important for solid state 

physics.  

2. RESULTS AND DISCUSSION 

2.1. Stochastic description of RM electrons in 

metals 

According to the Fermi-Dirac statistics and Pauli 

exclusion principle, the probability of occupation of energy 

states in conduction band by electrons at thermal 

equilibrium is described by Fermi distribution function f(E):  

    kTEEf /exp11  , (1) 

where E is the electron energy;  is the chemical potential; 

k is the Boltzmann’s constant, and T is the absolute 

temperature. Considering that the difference between the 

chemical potential and Fermi level energy EF is only about 

0.01 for room temperature [3], further for calculation we 

use the Fermi distribution function in the following form: 

    kTEEEf /exp11 F . (2) 

Thus, the total density of the free valence electrons n in 

the conduction band is described by density-of-states (DOS) 

g(E) of the unit volume as  

    EEfEgn d
0




 . (3) 
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The electrical conductivity depends not only on the 

DOS g(E) in conduction band and Fermi distribution 

function f(E), but it also depends on the probability 

f1(E) = 1 – f(E) that any electron with the definite energy E 

at a given temperature T can be thermally excited or can 

change his energy under influence of the external fields. The 

effective density of electrons neff which take part in random 

motion and in conductivity depends on the probability: 

      EfEfEh  1 . (4) 

Therefore, the effective density of randomly moving 

electrons neff is described as [9, 10] 

    EEfEfEgn )]d(-[1
0

eff 


    

     EEEfEgkT d
0

 


. (5)  

From Eq. 5 it follows that the term   EEf   is the 

probability density function p(E) that electron having the 

energy E can randomly move and also can change its energy 

due to thermal and electrical influences: 

       kTEhEEfEp / . (6) 

The function p(E) meets the requirements of the probability 

theory, and also accounts the Pauli exclusion principle.  

The Eq. 5 is valid in all cases: for non-degenerate and 

degenerate electron gas with one type of charge carriers. For 

materials with non-degenerate electron gas the probability 

[1 – f(E)]  1 because f(E) << 1, and, therefore, all electrons 

in conduction band n take part in random motion, and their 

density can be described as 

    EEfEgnn d
0

eff 


 . (7) 

This is the case when the classical statistics is 

applicable. In the case of highly degenerate electron gas, and 

considering that probability density function   EEf   

has a sharp maximum at E = EF, the Eq. 5 can be presented 

in the following form: 

  nkTEgn  Feff
, (8) 

where g(EF) = g(E) at E = EF. The DOS at Fermi energy 

g(EF) can be obtained from the measurements of the electron 

heat capacity of elemental metals [13]. 

Illustration of the effective density of RM electrons at 

room temperature and EF = 2eV for elemental metals and 

normal state superconductors with the composite DOS is 

presented in Fig. 1. It must be pointed that the effective 

density of RM electrons is completely described by DOS at 

Fermi surface, but not by the total density of free valence 

electrons. 

2.2. Electrical conductivity of metals 

The electrical conductivity  of the homogeneous 

materials with one type of randomly moving carriers 

(electrons or holes) can be described by such general 

expression [12]: 

        EEEfEfEgE
kTm

q
d]-[1

3

2

0

2






 , (9) 

where (E) is the relaxation time of electrons with kinetic 

energy E in conduction band, m is the conductivity 

effective mass.  

 

Fig. 1. Illustration of the effective density of RM electrons at room 

temperature (295 K), and EF = 2eV for metals and normal 

state superconductors with the composite DOS. The light 

grey area represents the total density of free electrons n in 

conduction band, and the black area represents the effective 

density neff of RM electrons 

This expression after simple transfer can be presented 

as [14]: 

      dEEfEfEg
kT

Dq
 



1

0

2

 (10) 

or as 

 σ =
𝑞2𝐷

𝑘𝑇
𝑛eff, (11) 

where D = (1/3)  2v  is the diffusion coefficient of 

RM electrons, here v and , respectively is the velocity and 

relaxation time of RM electrons. The conductivity also can 

be described as [14]: 

T

n
Dq 















 2

, (12) 

where  is the chemical potential. There all Eq. 9  Eq. 12 

are equivalent, because they can be derived one from other. 

Moreover, they are valid in both cases: for homogeneous 

material with non-degenerate and degenerate electron gas. 

From Eq. 11 follows such general description of the drift 

mobility of RM electrons:  

 kT

E

m

q

kT

vq

kT

qD

2/33

2

drift











,  (13) 

where <E> = mv2/2 is the average kinetic energy of RM 

electrons. The Eq. 13 also is valid for all homogeneous 

materials with a single type of charge carriers at any their 

degeneracy degree [15]. For metals the Eq. 11 can be 

rewritten as 
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    F

2

FF

2

F

2

3

11



 vEgqDEgq  . (14) 

The diffusion coefficient D of RM electrons for various 

metals can be estimated from Eq. 14. The data of the 

experimental values of the electrical conductivity and the 

electronic heat capacity for different metals at T = 295 K is 

taken from [13].  

From Eq. 14 it follows that diffusion coefficient of RM 

electrons is related minimum with the five transport 

parameters of RM electrons: 

    FFF

2

F

F

2

F

2 3

1

3

11
vlv

EgqEgq
D  




, (15) 

where FFF vl   is the mean free path of the electrons on the 

Fermi surface. What parameters mostly cause the spread of 

the resistivity and diffusion coefficient of RM electrons for 

metals at E = EF?  

2.3. Scattering of RM electrons in metals at 

temperatures above the Debye’s temperature  

The very important parameter characterizing the 

scattering mechanism of RM charge carriers is their mean 

free path. According to the quantum mechanics, the free 

electrons can freely move in ideal periodic lattice of the 

metal crystal without any scattering by ions [3, 7]. 

Therefore, the resistivity of the ideal crystal with periodic 

lattice having periodic distribution of the potential energy 

must be equal to zero. Scattering of electron can be only in 

the spots where there are distortions of the periodicity of the 

potential energy of the ideal lattice structure. The resistivity 

of metals is caused due to scattering of free electrons by 

impurities, vacancies, interstitial atoms, dislocations, 

boundaries of grains, and by surface. An usual explanation 

considering that all free valence electrons n are scattered due 

to increasing the amplitude of thermal vibration of atoms in 

lattice, and that causes the increase of electron-phonon 

scattering cross-section el-ph [1 – 8] is not right. From such 

model it follows that electron mean free path must be of the 

order of the lattice constant, what is about one or two orders 

smaller than the real electron mean free path.  

The randomly moving electrons in geometric ideal 

lattice produce the local fluctuation of the charge due to 

escape some of electrons to distance of the free path. Such 

deviation from the ideal periodicity of the potential energy 

is named by “electronic defect” [13], it is caused by not 

completely screened native material ion by electrons (in 

future we will use the term “electronic defect” for 

description of such defect). There we want to point that 

thermal vibrations of the lattice play other role, than it has 

been described in [1 – 8]. With temperature increase there at 

the Fermi surface are excited the electrons, which can be 

scattered and their mean free path is a many orders higher 

than the lattice constant. The density of such electrons is 

equal to  kTEgn Feff  . At the same time there are 

produced the same number of distortion spots Neff from the 

ideal periodicity of the potential energy distribution due to 

appearance native material ions not completely screened by 

electrons (electronic defects): Neff = neff = g(EF)kT. These 

electronic defects cause the scattering of the free electrons 

on the Fermi surface, and produce the random moving of 

free electrons. 

Then the mean free path lF and average relaxation time 

F of scattered electrons for metals can be described as 

   kTEgNvl )(11 FeffeffeffFFF   , (16) 

    kTvEgvN FFeffFeffeffF 11   , (17) 

where eff is the effective electron scattering cross-section 

due to electron scattering by electronic defects. 

 

Fig. 2. Mean free path lF (Eq. 16) distribution on DOS g(EF) for 

elemental metals at T = 295 K (DOS g(EF) are taken from 

[13]) 

The mean free path of RM electrons distribution on 

DOS for different elemental metals at T = 295 K is 

presented in Fig. 2. Considering that  kTEgn Feff   at a 

given temperature linearly depends on DOS g(EF), it means 

that analogical patterns will depend on neff. 

From Eq. 16 it follows that electron mean free path 

dependence on temperature above the Debye’s temperature 

Θ is completely determined by effective density of 

electronic defects Neff. From Eq. 16 also follows that 

effective electron scattering cross-section eff doesn’t 

depend on temperature above the Debye’s temperature Θ. 

So, the statement that scattering cross-section at this 

temperature range is proportional to temperature [1 – 8] is 

not right. The Eq. 16 directly shows that electron mean free 

path is in inverse proportion not only to temperature, but 

also to DOS at the Fermi surface.  

In paper [16], it was shown that electron mean free path 

in the linear resistivity dependence on temperature range 

can be expressed by the diffusion coefficient for RM 

electrons of elemental metals as 

      TTTDTl 0
3/2

0F 39.1 , (18) 

where lF is in nm, and D(T0) is in cm2/s at T0 = 295 K. The 

calculation results obtained from Eq. 18 well agree to the 

data published in paper [16], and data estimated from the 

dimension effect [17]. The Eq. 18 at T > Θ can be performed 

as 

     TTTl 0
3/2

F 9.21  ,  (19) 

where lF is in nm, non-dimensional parameter 

 = rel/grel(EF) is estimated at T = T0 = 295 K, where the 
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relative conductivity rel = /0 = /105:  = (295 K) and 

0 = 105 are in units -1cm-1; the relative DOS 

grel(EF) = g(EF)/g0(EF) = g(EF)/1022: g(EF) and g0(EF) = 1022 

are in units eV-1cm-3. The data for calculation of parameter 

 are taken from [13]. 

In similar way, the average electron velocity vF at Fermi 

surface for elemental metals can be expressed as 

  3/1
F 58.8 v , (20) 

here vF is in units 105 m/s and does not depend on 

temperature. 

 

Fig. 3. Distribution of the electron Fermi velocity vF (Eq. 20) on 

the DOS g(EF) at the Fermi surface for elemental metals 

(DOS g(EF) are taken from [13]) 

 

Fig. 4. Electron average relaxation time F (Eq. 21) distribution on 

DOS g(EF) for elemental metals at T = 295 K (DOS g(EF) 

are taken from [13]; the value 2.6  10-14 s is according to 

[19]) 

The electron average relaxation time F at T>Θ can be 

described as 

   TT /54.2 0
3/1

F  , (21) 

where F is in units 10-14 s. The distribution of the electron 

Fermi velocity on DOS for different metals is presented in 

Fig. 3. From this figure it is seen that electron Fermi velocity 

on average decreases with DOS increasing as 

 F
2/1

F /1~ Egv .  

In Fig. 4, there is shown the distribution of average 

electron relaxation time on the DOS at Fermi surface for 

elemental metals. There must be pointed that statement that 

average relaxation time for all metals in the range of the 

linear resistivity dependence on temperature can be 

expressed as kTF /  [19] is not right, because the 

average relaxation times for different metals at room 

temperature are in range (0.6 – 4) 10-14 s (Fig. 4), while this 

value under [19] at T = 295 K must be about 2.6  10-14 s 

(horizontal dash line in Fig. 4. 

The effective electron scattering cross-sections data 

calculated using Eq. 16 and Eq. 19 are presented in Fig. 5. 

The effective electron scattering cross-sections are 

distributed in the range (0.40 – 3.6) 10-15 cm2, and they do 

not depend on temperature for that temperature range where 

the resistivity is proportional to temperature T. 

 

Fig. 5. The effective scattering cross-section (calculated from 

Eq. 16 and Eq. 19) distribution on DOS for elemental 

metals above the Debye’s temperature (DOS g(EF) are 

taken from [13]; eff is calculated by Eq. 16 at T = 295 K) 

 
Fig. 6. Relationships of the mean free path lF, average velocity vF, 

and average relaxation time F of randomly moving charge 

carriers dependences on parameter  for different metals at 

T = 295 K. The data dots for the same metals are connected 

with vertical dash lines. 

The effective electron scattering cross-section for every 

metal has a particular value, which depends on the 

electronic defect structure. The results presented in 

Fig. 2  Fig. 5 show that RM electrons basic parameter such 

as mean free path, Fermi velocity, relaxation time, and 

effective scattering cross-section values are scattered, and 

have some tendency of changes with DOS at Fermi energy. 

From obtained results follows that the resistivity linear 

dependence on temperature above the Debye temperature Θ 

is caused by electronic defect density Neff dependence on 
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temperature with constant scattering cross-section. In the 

case of electron-phonon scattering the cross-section must 

increase with temperature increasing as T, and it would 

originate the resistivity dependence on temperature as T2 in 

the range of temperature T > Θ, but it does not take place.  

From Eq. 19 – Eq. 21 it is possible to design the 

following important pattern (Fig. 6) where there are shown 

the relationships of the mean free path, average velocity, and 

the average relaxation time of the RM electrons with 

parameter  for elemental metals at room temperature. The 

results presented in Fig. 6 integrate the main transport 

properties of randomly moving electrons in metals.  

2.4. Influence of phonons to resistivity of metals 

below the Debye’s temperature 

In Fig. 7 there are presented the measurement results of 

electrical resistivity dependences on temperature for gold 

and tungsten [20 – 22]. What effects cause such steep 

resistivity decreasing with temperature in temperature range 

below the Debye’s temperature Θ? 

The independent resistivity part on temperature below 

10 K is the residual electrical resistivity due to scattering of 

electrons from chemical and structural imperfections in the 

lattice of the investigated samples. 

The intensity of the scattering of electrons by electronic 

defects depends on the exchange of thermal energies 

between phonon and electron. Accounting that electron 

scattering by electronic defect is inelastic, and that electron 

energy fluctuations cause the excitation and annihilation of 

phonons, then the ratio of the exchange of the thermal 

energies between phonon and RM electron can be described 

as [4, 16]: 

    /83.1/
64.1

3

1

1
TT

kT

kT

E

E

el

ph
 ,(22) 

where 

 
  

x
ee

xT
T

T

xx
d

11

4
/

/

0

54















  (23) 

is the phonon mediation factor for electron scattering on 

electronic defects, and Θ is the Debye’s temperature? 

Then the metal resistivity in the overall temperature 

range can be described as  

      TTTT 000res / , (24) 

where 0 is the residual electrical resistivity due to scattering 

of electrons from imperfections of the lattice structure, T0 is 

the reference temperature for the linear range of the 

resistivity dependence on temperature (here for calculation 

we take T0 = 300 K). So, the phonon mediated resultant 

electron scattering cross-section res can be described as 

  /effres T , (25) 

where the effective electron scattering cross-section eff is 

independent on T, and it accounts the constant multiplier 

1.83 from Eq. 22. The resultant average relaxation time res 

can be described as 

   impeffres /1/1/1   , (26) 

where     kTvEgvN FFresFeffreseff 11   , and 

 Fimpimpimp 1 vN  ; imp is the average scattering cross-

section of the impurity (imperfection) defect density Nimp. 

The calculation results for Au and W electrical 

resistivity dependence on temperature by using  

Eq. 22 – Eq. 25 are presented in Fig. 7 by solid lines. The 

Debye’s temperature Θ has been chosen to the best 

agreement between calculation data and experimental dots. 

Here the calculations have been performed by using 

constant quantity Θ: ΘAu = 185 K and ΘW = 350 K.  

 

Fig. 7. The electrical resistivity dependence on temperature for 

gold and tungsten (dots are the experimental results  

[20 – 22], the solid lines are the calculations data by using 

Eq. 24 

 

Fig. 8. Electron diffusion coefficient D dependence on 

temperature for Au and W calculated by using relation 

D(T) = 1/[q2(T)g(EF)] 

Applying the following sequence: 

 
   

 
 

 
 

F
F

F
F

F
2

31

v

Tl
T

v

TD
Tl

TEgq
TD F




 (27) 

and using the measurement data of electrical resistivity for 

gold and tungsten [20 – 22] (Fig. 7) it is easy to find their 

basic kinetic characteristics in temperature range from 1 K 

to 900 K. In Fig. 8 there is presented the electron diffusion 

coefficient D(T) of the RM electrons dependence on 

temperature for Au and W.  
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The comparison of the mean free path lmean(T) and the 

resultant electron relaxation time res(T) of the RM electrons 

dependences on temperature for these metals in temperature 

range from 1 K to 900 K are presented in Fig. 9 and Fig. 10, 

respectively. For the most of metals the atom cross-section 

is in the range (0.5 – 1.2)·10-15 cm2 [3] (here for estimation 

of impurity density Nimp we take imp  0.7·10-15 cm2). 

Thus, considering that density-of-states g(EF), and 

velocity of electrons at Fermi surface vF don’t depend on 

temperature, it is easy entirely from resistivity 

(conductivity) data to find the basic electron transport 

characteristics of metals. Of course, it does not include the 

temperature range where particular metal is in 

superconducting state. 

 

Fig. 9. Electron mean free path lF dependence on temperature for 

Au and W by using relation lF(T)=3D(T)/vF 

 

Fig. 10. The resultant electron relaxation time dependence on 

temperature for Au and W by using relation res=lmean/vF 

It is interesting to note that at cryogenic temperature 

range the conductivity and the electron mean free path for 

tungsten is about three orders higher than that in gold. It is 

because the residual neutral impurity density in gold at this 

temperature range is about 0.01 , while in tungsten it 

reaches only 3·10-6 . 

3. CONCLUSIONS 

In this work on the base of randomly moving (RM) 

electrons it is shown that the resistivity dependence on 

temperature for elemental metals mainly is due to RM 

electrons scattering by electronic defects, accounting the 

exchange thermal energies between phonon and RM 

electron. There are presented the general relationships for 

estimation of the average diffusion coefficient, the average 

velocity, mean free length and average relaxation time of 

RM electrons at the Fermi surface in very wide temperature 

range. The effective electron scattering cross-sections for all 

elemental metals also are estimated, and it is shown that the 

effective electron scattering cross-section does not depend 

on temperature above the Debye temperature.  

There also is presented the simple method for 

determination of the metal basic kinetic characteristic 

dependence on temperature only from the resistivity 

dependence on temperature. It is at first time demonstrated 

for Au and W the temperature dependences of the mean free 

path, average diffusion coefficient, average relaxation time 

of RM electrons from 1 K to 900 K. 
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