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An innovative flow model incorporating the mixture hardening law, anisotropic yield function, and incremental strain 

formulations was elaborated and applied to DP590 ferrite-martensite dual phase steel. To verify the flow model, both the 

macro/micro stress-strain responses and the forming patterns of DP590 steel with different martentite contents were 

simulated during the processes of the cup deep-drawing and the unconstrained cylindrical bending to evaluate the 

influence of martensite content on the mechanical and forming behavior of the steel. It was found that maternsite content 

has a significant impact on the macro/micromechanical and forming behavior of the steel, i.e., the ferrite and steel 

effective stresses and the effective macro/micro-strain distribution in the cup. Under the unconstrained cylindrical 

bending, the simulated effective maximum macro/micro-strains were in good agreement with the calculated results from 

the mixture law-based model. It was concluded that the Buaschinger effect is the main reason for an 8 % error between 

the simulated and experimental results. The flow model was proved to predict the macro/micro flow and forming 

behavior of the dual phase steels with a good accuracy. 

Keywords: stress-strain response, deep-drawing cup forming, unconstrained cylindrical bending, ferrite-martensite dual 

phase steel. 
 

1. INTRODUCTION 

Multiple-phase advanced high strength steels including 

ferrite-martensite dual phase (DP) steels and 

transformation-induced plasticity (TRIP) steels have been 

used mainly in the manufacture of the auto-parts and 

structures due to their excellent mechanical and forming 

behavior. Because of the heterogeneous characteristics in 

their microstructure, the mechanical responses of these 

multiple-phase high strength steels (especially for 

micromechanical properties) cannot be predicted 

reasonably and precisely. 

However, some methods and models were developed 

to solve this problem in describing the material mechanical 

properties, e.g., the representative volume element (RVE) 

method [1 – 8] and the inclusion theory [9 – 15]. Moreover, 

many studies about the macro/micromechanical properties 

of TRIP and DP steels were conducted according to the 

Mori-Tanaka [10] and the self-consistent schemes, e.g., 

Tsuchida and Tomota [16], Garion et al. [17], Skoczen 

[18], Delannay et al. [19], Sitko et al. [20], X. Peng et al. 

[21], Berbenni et al. [22], Jia et al. [23], Franz et al. [24], 

Long et al. [25], and Fan [26]. 

In this paper, a flow model for the multi-phase high 

strength steels was investigated in details to evaluate the 

macro/micro stress-strain responses and the forming 

behavior of these multi-phase high strength steels based on 

the continuum mechanics theory. The flow model includes 
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a mixture strain hardening law, a mixture anisotropic yield 

function, and an incremental formulation, respectively. To 

describe the macro/micro stress-strain responses of the 

ferrite-martensite DP steel, the flow model was employed 

in the ABAQUS/UMAT code. The forming behavior of 

DP590 steel was simulated during the processes of the cup 

deep-drawing and the unconstrained cylindrical bending 

tests. The accuracy of the model was verified by 

comparing the simulated spring-back angle with the 

experimental value and the value given in Lee’s work [27]. 

2. THEORY MODEL 

2.1. Mixture hardening law 

Based on the strain partitioning between the soft and 

the hard constituents [19], the strain hardening model [20], 

the stress flow of DP600 steel in dynamic tensile [28] and 

the strain distributions within the ferrite-martensite 

microstructure [29 – 31], Dan et al. [32] developed a multi-

phase stress-strain relationship to study the mechanical 

behavior of DP and TRIP steels, the mixture strain 

hardening law is simplified as: 

  i i if R ,  (1) 

where fi,  i
 and Ri are the individual phase volume 

fraction, the individual phase stress and the material 

parameter, respectively. 

The stress-strain relationship of individual phase obeys 

the classical Swift law. Therefore, the stress of individual 

phase can be written as 
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( )   in

i i i ik a , (2) 

where ki, ai and ni are the materials parameters. 

The individual phase effective strain 
i
 is supposed to 

be controlled by the overall effective strain of material   

[32]: 

 
i i

b , (3) 

where bi is the strain coefficient of individual phase which 

is described as 

 1 2exp  i i ib p p , (4) 

where
1ip and 

2i
p are the parameters of the material. 

The hardening rate of the material is described as 

'  

  
   i i i

i i i i i

i i

d d d
H f R f R b

d d d
, (5) 

where 



  i

i

d
b

d
 is the material parameter. 

The hardening rate of individual phase can be 

described as 




  i

i

i

d
H

d
. (6) 

2.2. Anisotropic yield function 

For the ferrite-martensite DP steel sheet, the yield 

function can be defined using the anisotropic coefficient 

matrix M, as shown in Eq. 7. 

0T M      . (7) 

Therefore, the individual phase yield function can be 

written in a similar form as 

0T

i i i iM      . (8) 

According to Eq. 1, Eq. 7 and Eq. 8, the material yield 

function can be rewritten as 

i i i i if R B     . (9) 

2.3. Constitutive model 

The elasto-plastic deformation of the ferrite-martensite 

DP steel can be described as 

i i

i i

B
B

 
 



  
  

  


, (10) 

where 
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
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
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Thus, Eq. 10 can be simplified as 

pi
i i i i

i

B H


  


 
  

 
 , (11) 

where Hi and i are the hardening rate and the stress 

increment of individual phase, respectively. 

The stress increment of individual phase 
i can be 

described using the modulus matrix 
i

eD , the individual 

phase strain i and the plastic strain increment 
p

i of 

individual phase as 

 e p

i i i iD    . (12) 

Based on the associated plastic flow rule, the 

individual phase strain increment i  and its plastic strain 

increment 
p

i  can be expressed by the material strain 

increments  and  p respectively. 

   
   

   

  
   

  

i i i

i i m m
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b b ; (13) 

   
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   

  
   
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p p p pi i i

i i m m

i i i

b b . (14) 

For the associated plastic flow rule, the effective 

plastic strain increment of the material  p  can be 

described as: 

p 
 







  (

p  ). (15) 

Substituting Eq. 12, Eq. 13, Eq. 14 and Eq. 15 into 

Eq. 11, we can get that: 

0ei i
i i i i

i i

B b D H
   

   
   

    
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
. (16) 

Finally, the increment of the plastic strain in the multi-

phase steel can be described as: 

ei i
i i i

p i i

ei i
i i i i

i i
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. (17) 

3. MATERIAL 

The 1.0 mm thick 0.112 wt.% C, 1.428 wt.% Mn, 

0.39 wt.% Si, 0.011 wt.% P, 0.011 wt.% S DP590 steel 

sheet was employed in present work. Elastic modulus, 

yield strength and tensile strength of the material were 

205 GPa, 409 MPa and 600 MPa, respectively. The 

uniform and total elongations of the steel were 17.11 % 

and 31.01 % respectively. The volume fractions of ferrite 

and martensite phases (fi) in DP590 steel was 

approximately evaluated using the investigated 

microstructure (as shown in Fig. 1), and they are 84.2 % 

for ferrite and 15.8 % for martensite, respectively. 

According to works of Dan et al. [32 – 34], the 

corresponding material parameters referring to ki, ai, ni, pi1 

and pi2 are given in Table 1. 

Table 1. Material parameters of DP590 steel for the proposed 

model [34] 

Individual 

phase 
ki, MPa ai ni pi1 pi2 Ri 

Ferrite 746 0.002 0.19 0.1426  – 0.2349 1.12 

Martensite 2478 10-7 0.52  – 1.0853 0.3172 1.45 
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Fig. 1. The investigated microstructure of DP590 steel 

4. RESULTS AND DISCUSSION 

Using the ABAQUS/UMAT code, solid element with 

the reduced integration (C3D8R) was employed in the 

following simulations. Under tensile test, the model 

validity was verified by Dan et al. [34] and Tasan et al. 

[30]. It was found that the model can predict the 

macro/micromechanical properties of DP590 steel 

precisely, i.e., the strain energy densities of ferrite and 

martensite phases, the stress-strain responses of the 

material, ferrite phase, and martensite phase. 

4.1. Cup deep-drawing forming 

The cup deep-drawing simulation has been carried out, 

and the geometry of the cup forming is shown in Fig. 2. 

The diameter of the steel sheet blank is 200 mm, the 

thickness of the blank is 1.0 mm, and the punch stroke is 

40 mm. The anisotropic coefficients for the mixture yield 

function in Eq. 8 are Fi = 0.436, Gi = 0.44, Hi = 0.56, 

Mi = 1.0, Ni = 1.524 and Li = 1.0, respectively. The blank-

holder force is 50 kN. The friction coefficient is assumed 

to be 0.15 for the blank-punch contact and 0.10 for both 

the blank-die and the blank-holder contacts. 

 

Fig. 2. The dimension of cup drawing tools 

The effective stress/strain distribution of the material 

and two individual phases after the cup deep-drawing 

forming is shown in Fig. 3. 

In Fig. 3, after the deep-drawing forming, the 

maximum effective stress occurs in the martensite phase at 

the upper corner of the cup (i.e., die round), while the 

maximum effective strain happens in ferrite phase at the 

same location of the cup. The stress and strain distribution 

of the material is similar to that of the ferrite phase. This 

result shows that martensite and ferrite are largely 

responsible for the stress and strain distribution of the 

material. 

To investigate the influence of the martensite volume 

fraction on the stress-strain responses of the material and 

individual phase, the effective stress/strain distribution of 

the material and individual phase were calculated when the 

martensite volume fraction is equal to 0.1, 0.2, 0.3 and 0.4, 

respectively. The simulated results are shown in Fig. 4 and 

Fig. 5, respectively.  

 
a 

  

b 

Fig. 3. The effective stress/strain distribution of the material and 

two individual phases after the cup deep-drawing 

forming: a – stress; b – strain 

   

a b c 

Fig. 4. The effective stress distribution of the material and individual phase with different martensite volume fractions: a – material;  

b – ferrite; c – martensite 
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a b c 

Fig. 5. The effective strain distribution of the material and individual phase with different martensite volume fractions: a – material;  

b – ferrite; c – martensite 

 

As seen in Fig. 4 and Fig. 5, with an increase of the 

martensite volume fraction: (1) the effective stresses of the 

material and martensite increase, while the ferrite effective 

stress decreases except for fm = 0.3 (Fig. 4); (2) the 

effective strains of the material and individual phase 

increase both at the bottom and the bottom corner (i.e., 

punch round) of the cup, but decrease at the upper corner 

(i.e., die round) and the side wall of the cup (Fig. 5). 

The decrease in the effective strain in the cup upper 

corner reveals that the increment of martensite content 

worsens the formability of the steel. The increase in 

effective stress at the bottom of the cup further proves that 

martensite can improve the strength of the material. 

4.2. Unconstrained cylindrical bending 

The unconstrained cylindrical bending system which is 

without blank holders is shown in Fig. 6. The initial 

dimension of the steel blank was 120.0 mm in length and 

30.0 mm in width. The initial position of the punch barely 

makes a contact with the blank sheet, and the total stroke 

of the punch is 27.5 mm.  

The measuring method of the spring-back angle for the 

bending test agrees with the requirements of references 

[27, 35]. The friction coefficient was assumed to be a 

constant of 0.1 in the simulation. 

 

Fig. 6. The unconstrained cylindrical bending system 

(R1 = 23.5 mm; R2 = 25.5 mm; R3 = 4.0 mm) 

The simulated strain distribution of the material and 

individual phase after spring-back is shown in Fig. 7. To 

verify the flow model, the simulated result of the spring-

back angle was compared with the simulation and 

experimental values obtained from Lee’s work [35], as 

shown in Fig. 8.  

Fig. 7 shows that the largest value of effective strain 

for the material is 0.2835. The largest effective strain 

values for ferrite and martensite are 0.3677 and 0.0173, 

respectively. Base on Eq. 1 and parameters in Table 1, if 

the effective strain value of the material is 0.2835, the 

corresponding effective strain values of ferrite and 

martensite are 0.3677 and 0.0173, respectively. This means 

that the simulation and calculation results are almost the 

same. 

 

a 

 

b 

 

c 

Fig. 7. Strain distribution of the material and individual phase 

after spring-back of the unconstrained cylindrical 

bending: a – material; b – ferrite; c – martensite 

From Fig. 8, the spring-back angle of the 

unconstrained cylindrical bending in the experiment is 

55.827 degree obtained from [35], while the angle 

calculated by the multi-phase constitutive model is 60.32 

degree. The error between the simulated and calculated 

results is about 8% because of the Bauschinger effect was 

not considered during the process of the spring-back. 
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Fig. 8. Comparison of spring-back angles of the unconstrained 

cylindrical bending 

4.3. Verification of the flow model 

The cup deep-drawing forming simulation shows that 

the steel strength is determined mainly by the hard 

martensite phase and the deformation of the material 

depends mostly on the soft ferrite phase. Moreover, it was 

found that high martensite content can improve the steel 

strength significantly but worsen the formability of the 

steel. The simulated results of the cup deep-drawing 

forming are consistent with the previous works of literature 

[36 – 41]. Meanwhile, the predicted spring-back angle of 

the flow model was in good agreement with the 

experimental and Lee’s results under the unconstrained 

cylindrical bending forming. Thus, the flow model can 

predict the macro/micromechanical properties and the 

forming behavior of the investigated steel precisely. 

5. CONCLUSIONS 

To decrible the mechanical and forming behavior of 

ferrite-martensite DP steels precisely, an innovative flow 

model incorporating the mixture hardening law, 

anisotropic yield function, and incremental strain 

formulations was elaborated and applied to DP590 steel. 

The following conclusions can be drawn based on the 

results discussed in this works: 

1. For the cup deep-drawing, both the effective stresses 

of the steel and martensite increase with increasing the 

martensite volume fraction, whereas the ferrite stress 

generally decreases. The effective strains of the 

material and two individual phases both at the bottom 

and punch round of the cup are positively related to 

the martensite volume fraction, while the strain is 

negatively related to the martensite volume fraction at 

the other parts of the cup. The results further prove 

that high martensite volume fraction would improve 

the material strength but deteriorate the formability of 

DP steels.  

2. For the unconstrained cylindrical bending, the 

maximum simulated effective strains of the material 

and two individual phases are almost the same as the 

calculated results from Eq. 1. It was found that the 

spring-back angle error between the simulated and 

experimental results was about 7 % because the 

Bauschinger effect in spring-back was not considered 

in the incremental formulation for the ferrite-

martensite DP steels. 

3. The validity of the investigated model was verified by 

the stress/strain distribution in the cup deep-drawing 

and the spring-back angle in unconstrained cylindrical 

bending. The results reveal that the model is suitable 

to evaluate the mechanical behaviors of ferrite-

martensite DP steels, e.g., the macro/micro effective 

stresses and strains, and the forming properties of DP 

steels both under the cup deep-drawing forming and 

unconstrained cylindrical bending. 
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