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The study of the size effect was one of the most important subjects in the field of micro-forming. To investigate the stress 

of the thin sheet in the bulging test with the second order size effect, a constitutive equation considering the strain gradient 

hardening was proposed. Based on the equation, the stress of the thin sheet during the bulging test was calculated by the 

finite element method. The bulging tests with various thicknesses of brass sheets and radiuses of punching balls were 

performed to verify the proposed equation. The results showed that the constitutive equation could capture the stress 

variations, while the simulation using the constitutive equation from the conventional theory of plasticity showed the 

results with large deviation from those of the experiment. It was found that the stress was sensitive to the thickness of the 

sheet and the radius of the punching ball in bulging test of thin brass sheet. The bulging of the thin brass sheet with a 

thickness below ten times of its material intrinsic length would cause the generation of the geometrically necessary 

dislocations, which induced the strain gradient hardening. Besides that, the decrement of the punching ball radius would 

also increase the inhomogeneous deformation and enhance the strain gradient hardening during the thin sheet bulging 

process. The strain gradient hardening during the thin sheet bulging test was related to the strain of the sheet. The hardening 

effect of the strain gradient was obvious when the strain was small. The strain gradient hardening should be considered in 

the thin sheet bulging test with the second order size effect.  
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1. INTRODUCTION 

Thin metal sheet micro-forming process, well-known 

for their process simplicity, high production rate, minimized 

material waste, near-net-shapes, excellent mechanical 

properties [1, 2], and close tolerances [3], are claimed to be 

the most suitable process to fabricate micro-parts in the 

fields of electronics [4], medical devices, Micro Electro 

Mechanical Systems (MEMS) [5], and Micro System 

Technology (MST) [6 – 10]. However, there are challenges 

in the thin metal sheet forming process when the sheet 

thickness is decreased to the level of micrometres, because 

of the unknown deformation mechanics and material 

behaviour which called the “second order size effect”  

[11 – 15].  

Many researchers have been carried out to investigate 

the “second order size effect” on the material strength. An 

increase in the flow stress was observed as N, which was the 

ratio of the sheet thickness to the material grain size, 

decreased, especially when N was in the range from 1 to 4. 

For instance, a micro hydraulic bulging testing of the thin 

CuZn36 sheet by [16] found that flow stress increased as N 

value decreased from 5 to 3.3. In the bending testing of 

CuZn15 by [17] and aluminium 99.0 % ~ 99. 5 % by [18], 

the phenomena of increase of the flow stress were also 

observed as N was reduced to near 1 (single crystal 

deformation). A series of hydraulic bulging testing of thin 

                                                 
 Corresponding author. Tel.: +86-15005966988; fax: +86-0591-

83753562. E-mail address: weirliang@foxmail.com (W. Liang) 

metal sheets with thicknesses in the range from 25 μm to 

500 μm were carried out by [19]. The results showed that 

the flow stress curves were absolutely different from those 

obtained from the single direction tensile testing when the 

thickness was less than 50 μm.  

U. Engle [9] reported that the mechanical behaviour 

was characterized by only a few grains located in the 

deformed area at micro-scale; thus, the material cannot be 

considered as a homogeneous continuum. The deformation 

behaviour of each grain plays a significant role in the entire 

deformation behaviour of the deformation body. So the 

“surface model” [20] and “modify Hall-Petch model” [21] 

cannot explain the special phenomenon of the second order 

size effect any more.  

The theory of Statistically Stored Dislocations (SSD) 

and Geometrically Necessary Dislocations (GND) was 

introduced by Ashby [22,23] and developed further by Fleck 

[24,25] and Hutchinson [26,27,28,29,30,31,32] which 

suggested that strengthening is associated with the first 

order gradient in plastic strain. The theory was a non-linear 

generalisation of Cosserat couple stress theory. Tension and 

torsion experiments on thin copper wires confirm the 

presence of strain gradient hardening (SGH).  

Based on the theory of the Fleck and Hutchinson, 

S.H. Chen, and T.C. Wang [33 – 38] proposed a new 

hardening law for strain gradient plasticity. The strain 

gradient plasticity was represented as an internal variable to 
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increase the tangent modulus. The new hardening law was 

demonstrated by two experimental tests i.e. thin wire torsion 

and ultra-thin beam bending tests. The present theoretical 

results agree well with the experiment results, even when 

the diameter of the wire decreased to 12 μm.  

So the theory of the strain gradient is a possible tool to 

capture the deformation mechanics and material behaviour 

influenced by the second order size effect. A constitutive 

model, taking into accounts both plastic strain and plastic 

strain gradient hardening (SGH), was developed by Li et al 

[39] and verified by the experiments of spring back 

behaviour of pure aluminium foils with thickness from 

25 μm to 500 μm very well.  

Lee et al [40] found the strain gradient, which was the 

second derivative of displacement, played a very important 

role in the thin metal forming when the thickness was only 

several micrometres. Based on the non-homogeneity 

characteristics of the polycrystalline metallic materials, a 

modified model was proposed. And it also could capture the 

experiments phenomena much well [41].  

In the present paper, a constitute equation, which 

considers the plastic strain and plastic SGH, is suggested 

and used to predict the stress of the thin sheet in the bulge 

processing. Series of the bulge experiments and finite 

element analysis were carried out to verify the proposed 

equation. 

2. CONSTITUTIVE EQUATION MODEL 

2.1. Constitutive equation 

In the study of Ashby and Fleck [24, 26, 28, 31, 32], it 

is supported that dislocation was generated, moved, and 

stored when a plastic crystal was deformed. The storage 

caused the material to work harden. Dislocations became 

stored for two reasons: they accumulated by trapping each 

other in a random way or they were required for compatible 

deformation of various parts of the crystal. The dislocations 

which trap each other randomly were referred to as SSD, s, 

which was estimated as a function of stain. The gradient of 

plastic shear resulted in the storage of GNS, s. Plastic strain 

gradients appeared either because of the geometry of 

loading or because the material itself was plastically 

inhomogeneous. The GNS was evaluated by the strain 

gradient.  

In conventional plasticity theory, there is no length 

scale considered in the constitutive law and no size effect is 

predicted. The index hardening model is expressed as the 

following equation,  

e e

nK  
, (1) 

where e is the flow stress; K is strength coefficient; e is 

effective strain; n is the hardening index.  

However, when the length scale associated with the 

deformation field is small compared to a material length 

scale, for most materials at the level of micrometres, it 

becomes necessary to include the strain gradient term in the 

constitutive equation [26]. The constitutive model is 

proposed as  

2 2
2
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K
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  
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 
   

  , (2) 

where l is the material intrinsic length;  is a geometrical 

parameter, which is relative to the size of specimen;  is the 

effective strain gradient. It is defined as [26] 
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where l1 is the internal material intrinsic length for stretch 

gradient, l1 = 1/10l [26]; lcs is the internal material intrinsic 

length for rotation gradient, lcs = l [42].  

In Ref. [26], Fleck and Hutchinson denotes ijk as the 

second gradient of displacement, ui,  

 , , , 1, , 2,3ijk k ij iu j k 
; (4) 

and  

   1
1 5s s s s

ijk ijk ij kpp kj ipp ik jpp           
 is the first 

deviatoric invariant of the second gradient of displacement, 

where 

 1 3s

ijk ijk kij jki       
, 

 1 4ijk ijk ik jpp jk ipp        
, y is Kronecker delta. The 

effective rotation strain gradient, e, is the deformation 

curvature.  

e 2 3 ij ij  
, in which ij  is the rotation strain gradient. 

It can be calculated by  

ij its jtse 
, (5) 

where eitc is the permutation tensor.  

2.2. Constitutive equation of bulge model 

Fig. 1 shows the model of hydraulic bulging testing. In 

[43], one element in the specimen is selected. The length 

and thickness of the element, before being bulged, are d  

and dr , respectively. u is the displacement of the element. 

In the coordinate system  ,  ,  r  , the longitudinal strain 

  and the hoop strain   are expressed as follows  

 

d
ln

d d cosu





 



; (6) 

ln
u










, (7) 

where d   and d r   are the length and thickness of the 

bulged element, respectively;  is the distance between the 

axis and the element.  

Φ

ρ dρ

r
θ

Rρ0 ρ dρ 

 

Fig. 1. Model of hydraulic Bulging test 
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To determine the stress vs. strain curve, two 

assumptions are made as: (a) Volume is constant; (b) A 

hemisphere is formed during bulging. Under these two 

assumptions, a bulged sheet experiences equivalent biaxial 

strain at the polar of the dome. The strains could be 

calculated by the following equations:  

   ; (8) 

2 2r        , (9) 

where 
r  is the strain in the r  direction.  

 

d
ln ln

d d cosu u

 

  


 
. (10) 

Substituting sinr   and d cos dr    into Eq. (10),  

 
d

cos 1
d sin

u u
r 

 
   . (11) 

The displacement u is obtained from Eq. 11:  

 
sin

cos
1 cos

u r c





 


, (12) 

where c  is a constant. 

The boundary condition on the clamped edge is 0u  , 

when 
0   and r R , so the constant 

0cosc R   , in 

which R is the radius of the specimen on the neutral 

surface.  
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
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Substituting Eq. 13 into Eq. 7:  
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The longitudinal strain and the hoop strain could be 

simplified as  
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0
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r
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Substituting Eq. 15 into Eq. 9:  
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Defining the coordinate system  ,  ,  r   as coordinate 

system (1, 2, 3), one can obtain  

0 0
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where    0ln 1 cos cosA r r R      .  

The effective strain is  

 
e

0
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r
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From Eq. 4, the calculation results of the strain gradient 

ijk  is  
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, (19) 

where  0 0cos cosB R r r R     ,  sin 1 cosC    . 

The first deviatoric invariant of the strain gradient 
 1

ijk  is: 
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. (20) 

The rotational strain gradient 
ij  is computed by 

Eq. 5, and one can get  

1
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The effective rotational strain gradient, 
e , is  

2 2

e
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The effective strain gradient, , is 
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. (23) 

In the Bulging test, the geometrical parameter 

02S t  , where 0S  is the area of the specimen before 

being bulged, 2

0 0S    ; t  is the thickness of the 

specimen before being bulged. Substituting Eq. 23 into 

Eq. 2, the constitutive relation used in the analytical model 

is obtained as 

2 2 2 2 2 2
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 
 
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. (24) 

3. BULGING TEST 

To verify the constitute equation proposed in the former 

section, a series of bulging testing were conducted to 

investigate the effects of the sheet thickness and bulging 

radius on the material flow stress.  

3.1. Experimental setup 

Fig. 2 shows the experimental setup of the bulging test. 

The circle sample of the thin brass (35 % Zn) sheet was 

located on the cavity mould and fixed by a blank holder. The 
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punching ball was assembled under a force transducer, and 

then assembled totally to the middle beam of a CMT4104 

type high precision material testing machine. The middle 

beam was driven by the screw rod of the machine and 

controlled by a computer. It pushed the punching ball to 

bulge the brass sheet sample until the crack happened on the 

surface of the sheet. During the bulging testing process, the 

displacement of the middle beam and the force measured by 

the force transducer were taken down ten times every 

second.  

 

a 

Specimen

Punch ball

ψ

t

Blank holder

Cavity mold

 

b 

Fig. 2. Bulging test setup: a – experiment setup; b – bulging model 

The accuracy of the force transducer was verified as 

0.5 %. And the resolution of the displacement measuring 

device was 0.3 m. The specifications of them were high 

enough to perform the test. 

To investigating the size effect in Bulging test, as shown 

in Table 1, thin brass sheets with four different thicknesses 

were bulged by the four punching balls of different radiuses.  

Table 1. The Bulging test parameters for the thin brass sheet 

 ψ=15 mm ψ=5 mm ψ=2.5 mm ψ=1.5 mm 

t=300 m √ - - - 

t=100 m √ √ - - 

t=50 m √ √ √ - 

t=30 m √ √ √ √ 

Note: t indicates the thickness of the brass sheet; ψ indicates the 

radius of the punching ball. 

3.2. Material preparation 

Before being cut into the circle specimen, the brass 

sheets of the four different thicknesses were annealed at the 

same 550 ℃ for 120 minutes in the Nitrogen atmosphere in 

order to eliminate the effects of rolling texture and residual 

stress. The heat-treated brass sheets were made into two 

types of metallographic specimens. One was prepared to 

observe the grain distributed on the section (see Fig. 3), 

while another one was for that on the plate (see Fig. 4). From 

the cross-section of the samples, as shown in Fig. 3, the 

average size of them was about were about (20 ~ 25) μm. 

There were only 1 to 2 grains on the cross of the 30 μm 

sheet, and 2 to 3 grains on that of the 50 μm sheet. The size 

of the grain from the view on the plate, as shown in Fig. 4, 

was about (25 ~ 30) μm.  

  

a b 

Fig. 3. The metallograph of the annealed brass sheet with various 

thicknesses, on the cross section: a – 30 m; b – 50m 

  

a b 

  

c d 

Fig. 4. Metallograph of the annealed brass sheet with various 

thicknesses, on the plate: a – . 30 m; b – 50 m; c – 100 

m; d – 300 m 

3.3. Data processing 

Fig. 5 shows the deformed sample being bulged by the 

punching ball. From the figure, the geometric relationship is 

obtained,  

    2 2 2 2h D D D D         , (25) 
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where h is the bulge depth;   is the radius of punching ball; 

D is the radius of the boundary ring of the contact area 

between the ball and sheet;   is the radius of the die.  

It is deduced from Eq. 25: 

  2 2 2h D D        . (26) 

F F

σασα

α

h
σα

ψ

t

D

2Θ

 

Fig. 5. Schematic diagram of metal sheet bulged 

Because of 2 2 0D   , 
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 . (27) 

Eq. 26 can be transferred into  

   
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 
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So D  could be obtained from the Eq. 28 as: 
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From Eq. 27, it can get that  
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. (30) 

As shown in Fig. 5, the equation of equilibrium for the 

spherical cap in the axial direction is  

2 sin 0D t F      . (31) 

From the geometric relationship, it could be obtained 

that  

sin
D




  . (32) 

Substituting Eq. 32 into Eq. 31  

22

F

tD








 . (33) 

The tensile stress in the tangential direction is obtained 

by substituting Eq. 30 into Eq. 33:  
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 (34) 

  
is calculated by substituting the punch force F and 

bulging depth h, which were recorded during the bulging 

experiment, into Eq. 34.  

4. FINITE ELEMENT ANALYSIS 

Using the constitute equation considering the SGH, 

finite element analysis of the bulging test was carried out.  

4.1. Finite element analysis model 

The FE simulation was performed by the commercial 

code ABAQUS. Fig. 6 shows the finite element analysis 

model of the bugle testing. The cavity model and the 

punching ball were set as analytically rigid body. Because it 

is an axisymmetric model, a quarter of the specimen was 

modelled and meshed by the 8-node linear brick element, 

C3D8. As shown in Fig. 6 b, the elements in the centre area 

of the specimen are fined.  

The boundary on the circle of the specimen was fixed 

totally. The friction between the ball and the sheet was 

computed by the penalty function method with the friction 

factor of 0.2. The load applied to the sheet was controlled 

by displacement of the punching ball.  

 

Fig. 6. Finite element analysis model 

4.2. Constitutive model 

The bulging testing process was simulated by 

ABAQUS/Standard using the constitutive equation, Eq. 24, 

which considering the strain and the SGH. A constitutive 

subroutine UMAT of the special constitute equation was 

developed. Fig. 7 shows the flow chart of the UMAT 

program. On each Gauss point, not only the strain but also 

the strain gradient was calculated. The strain gradient was 

computed by the Eq. (24). To compare with the simulation 

results considering the SGH, the same finite element model 

but using the classical plasticity theory was also computed.  
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In the former study [44], uniaxial tension of the same 

brass thin sheet had been carried out. K  and n  were 

chosen as 811 MPa and 0.34, respectively.  

 

Fig. 7. Flow chart of the UMAT program 

5. RESULTS AND DISCUSSION 

The bulged samples were shown in Fig. 8. The punch 

force F and bulging depth h recorded during the bulging 

testing were substituted into Eq. 34 to calculate the 

tangential-direction tensile stress  , as shown in Fig. 5.  

 

Fig. 8. Bulged samples of brass sheet with different 

thicknesses and bulge radiuses  

5.1. Effects of strain on the tangential-direction 

tensile stress 

Fig. 9 shows the experimental results of the tangential-

direction tensile stress,  , of the four specimens with the 

same ratio of the sheet thickness to punching ball radius. 

The ratio indicated the size characteristic of the bulging 

testing. Table 2 lists the detail data in Fig. 9 a. It was 

obviously that   decreased with the increment of the ratio 

of bulging depth to the punching ball radius, h  , which 

represented the bulging processing and was related to the 

deformation of the thin sheet. This argument could be 

reinforced by the observed phenomenon in the reported 

literature that the flow stress decreased with the increment 

of strain [19].  

However, according to the classical plasticity theory, 

the strain and stress would increase with the thin sheet was 

bulged more and more deeply, as the FEA results shown in 

Fig. 9.  
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Fig. 9. Comparison of the stresses from the experiment (Exp.) with 

the simulation based on the strain gradient hardening 

(SGH) and classical plasticity theory (Cla.), for various 

thicknesses and punching ball radius: a – t=300 m, 

Ψ = 15 mm; b – t = 100 m, Ψ = 5 mm; c – t=50 m, 

Ψ = 2.5 mm; d – t=30 m, Ψ=1.5 mm 



421 

 

It seems that the classical plasticity was invalid any 

more. The SGH played an important role in the Bulging test. 

Based on the proposed constitute equation, into which the 

SGH factor,     2 2 2 2

e2 D l t    , was introduced, the 

FEA results of   agreed with those from the experiment. 

The trend of stress could be captured.  

The deviation of the stresses, got from the classical 

plasticity theory and the developed SGH law, became 

smaller and smaller as the strain increased. It was indicated 

that the function of the SGH was dependent on the strain. 

However, the relationship would be weaker with the 

increment of the strain. It also could be inferred from the 

SGH factor that the effect would diminish with the strain the 

continuous increment of strain.  

Table 2. Comparison of the stresses from the experiment (Exp.) 

with the simulation based on the strain gradient 

hardening (SGH) and classical plasticity theory (Cla.), 

for various thicknesses and punching ball radius 

h/Ψ Stain 
Stress 

(Cla.) 

Stress 

(SGH) 

 
h/Ψ 

Stress 

(Exp.) 

0.1 0.002 156.0 1028.9 0.07 999.0 

0.2 0.018 206.0 999.0 0.13 980.0 

0.3 0.035 265.0 934.1 0.20 960.0 

0.4 0.060 358.0 833.0 0.27 935.8 

0.5 0.098 389.0 820.2 0.33 870.7 

0.6 0.144 429.0 726.7 0.40 813.1 

0.7 0.170 466.0 678.3 0.47 768.4 

0.8 0.250 492.0 675.7 0.53 733.3 

0.9 0.400 502.0 656.1 0.60 704.4 

1.0 0.560 513.0 619.8 0.67 681.5 

 

0.73 664.5 

0.80 650.8 

0.87 641.0 

0.93 632.9 

1.00 626.7 

5.2. Effects of the sheet thickness on the tangential-

direction tensile stress 

The experiment results of the thin sheets of different 

thicknesses bulged by the punching balls with radiuses of 

15 mm and 5 mm were shown in Fig. 10 and Fig. 11, 

respectively.  

It can be seen from Fig. 10 a and Fig. 10 b that the 

tangential stress decreased as the thickness of the thin plate 

reduced from 300 μm to 100 μm. In the study of [45], the 

size effect was classified into first order and second order 

based on the thickness of the thin plate. The transforming 

thickness was about 10 l, in which l is the material intrinsic 

length [28, 42]. The transforming thickness of the brass was 

about 60 μm because its material intrinsic length was 6 μm 

[32, 46]. When the thickness was larger than 60 μm, the 

flow stress decreased during the decrement of the thickness. 

This phenomenon of stress reduction was called the first 

order size effect [47].  
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Fig. 10. Comparison of the stresses from the experiment (Exp.) 

with the simulation based on the strain gradient hardening 

(SGH), for various sheet-thicknesses and Ψ = 15 mm: 

a – t = 300 m; b – t= 100 m; c – t = 50 m; 

d – t = 30 m 
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Fig. 11. Comparison of the stresses from the experiment (Exp.) 

with the simulation based on the strain gradient hardening 

(SGH), for various sheet-thicknesses and Ψ = 5 mm: 

a – t = 100 m; b – t = 50 m; c – t = 30 m 

The reduction in tangential stress was due to a decrease 

in statistical storage dislocation density within the sheet as 

the thickness of the sheet decreased. From the surface layer 

model [48 – 50], when the thickness of the thin plate was 

continuously reduced, the proportion of free grains on the 

surface of the cross section of the plate was increasing. 

Because the constraining force of the free grain on the 

surface was much smaller than that of the internal grain, the 

dislocation could not be deposited on the surface layer. In 

that case, the hardening effect of the dislocation was 

eliminated as the thin sheet thickness reduced. It could be 

proved that the first order size effect was directly related to 

the statistical storage dislocation density. 

The tangential stress in Fig. 10 c and Fig. 10 d show 

inverse phenomenon. It increased as the increment of the 

thickness, which was called the second order size effect 

[51]. The phenomenon was caused by the SGH effect. When 

the plate thickness was smaller than 60 μm, there were only 

a few numbers of grains on the cross-section. The 

inhomogeneous deformation of the grains would be induced 

during the bulging process, in which case, the geometrically 

necessary dislocations were generated. In the study of Ref. 

[28, 42], the flow stress hardening was related to the 

geometrically necessary dislocations. So, the SGH should 

be introduced in the study of the bulging of the thin brass 

sheet below 60 μm.  

According to Eq. 24, which was proposed in this paper, 

the stain gradient was considered in the constitutive 

equation. It is shown that the thickness t was an inverse 

proportion to the SGH factor,     2 2 2 2

e2 D l t    . The 

hardening effect of the strain gradient was related to the 

thickness of the thin sheet. When the thickness was not 

smaller enough, the hardening effect was not obvious. The 

finite element simulation, which was carried out based on 

the constitutive equation considering the SGH, could 

capture the stress variation tendency. While the simulation 

results of the stress calculated by the conventional theory of 

plasticity showed a larger deviation, comparing to the stress 

results got from the bulging experiment. The same results 

also could be observed from the thin sheets bulged by the 

ball with a radius of 5 mm, as shown in Fig. 11. 

5.3. Effects of the punching ball radius on the 

tangential-direction tensile stress 

As shown in Fig. 12 and Fig. 13, the tangential stress 

increased as the radius of punching ball reduced. From the 

analysis result, it was supposed that the SGH was caused by 

the inhomogeneous deformation of the grains. It could be 

inferred that the inhomogeneous deformation was not only 

related to the thickness but also the radius of the bulging 

ball. As the radius of the punching ball decreased, the 

curvature of the thin sheet of the same thickness increased 

during the bulging process. In that situation, more 

geometrically necessary dislocations were required to 

coordinate the increasing non-uniform deformation. 

Therefore, the SGH was enhanced, and the tangential stress 

increased as the radius of the ball decreased. Similar 

experiment results were also observed in the bulging test 

that the stress increased when bulging diameter was reduced 

[19].  

From the experiment results, it was found that the 

decrement of the radius of the punching ball would enhance 

the SGH during the thin sheet bulging process.  

6. CONCLUSIONS 

In the study, the stresses of the thin sheets with 

thicknesses from 300 m to 30 m in the bulging test were 

discussed. A constitutive equation considering the SGH was 

proposed to investigate the size effect of the thin sheet. 

Finite element simulation and experiment were performed 

to verify the proposed constitutive equation. Conclusions 

could be drawn as follow.  

In bulging test of thin brass sheet, the stress was 

sensitive to the thickness of the sheet and the radius of the 

punching ball.  
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Fig. 12. Comparison of the stresses from the experiment (Exp.) 

with the simulation based on the strain gradient hardening 

(SGH), for various radiuses of punching ball and 

t = 30 m: a – Ψ = 15 mm; b – Ψ = 5 mm; c – Ψ = 2.5 mm; 

d – Ψ = 1.5 mm 
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Fig. 13. Comparison of the stresses from the experiment (Exp.) 

with the simulation based on the strain gradient hardening 

(SGH), for various radiuses of punching ball and 

t = 50 m: a – Ψ = 15 mm; b – Ψ = 5 mm; c – Ψ = 2.5 mm 

When the thickness reduced to the level of 10 times of 

the material intrinsic length, the inhomogeneous 

deformation of the grains would cause the generation of the 

geometrically necessary dislocations, which induced the 

SGH during the bulging test. Besides that, the decrement of 

the punching ball radius would also increase the 

inhomogeneous deformation and enhance the SGH during 

the thin sheet bulging process.  

The SGH during the thin sheet bulging test was related 

to the strain of the sheet. The hardening effect of the strain 

gradient was obvious when the strain was small. The 

constitutive equation which was used in the calculation of 

the stress in the simulation could capture the stress 

variations. While the results of the simulation based on the 

conventional theory of plasticity showed a large deviation 

from the experiment results.  
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The SGH should be considered in the thin sheet bulging 

test with the second order size effect. 
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