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Magnesium has excellent hydrogen-storage properties except low hydriding and dehydriding rates. In the present work, 

titanium (Ti) was chosen as an additive to increase the hydriding rate of Mg and the dehydriding rate of MgH2. 15 wt.% 

Ti was added to MgH2 by milling in hydrogen (reactive mechanical grinding). The hydriding and dehydriding features of 

the Ti-added MgH2 composite (named 85 MgH2 + 15 Ti) were investigated. At the first cycle (n = 1), 85 MgH2 + 15 Ti 

absorbed 2.96 wt.% H for 2.5 min and 5.51 wt.% H for 60 min at 593 K in 12 bar H2, having an effective hydrogen-

storage capacity of 5.51 wt.%. β-MgH2, γ-MgH2, TiH1.924, MgO, and MgTi2O4 were formed during reactive mechanical 

grinding. Reactive mechanical grinding of MgH2 with Ti is believed to create imperfections, produce cracks and clean 

surfaces, and decrease particle sizes. The phases formed during reactive mechanical grinding and their pulverization 

during reactive mechanical grinding are believed to make these effects stronger.  

Keywords: hydrogen-storage materials, milling in hydrogen, hydriding and dehydriding rates, hydrogen-storage capacity 

titanium-added magnesium hydride. 

 

1. INTRODUCTION 

Magnesium (Mg) has excellent hydrogen-storage 

features, but it has low hydriding and dehydriding rates. To 

increase the reaction rates of Mg with hydrogen, many 

researches were carried out by adding added to Mg or 

MgH2 transition metals [1 – 4], rare-earth metals [5], 

graphite [6, 7], or intermetallic compounds [8 – 10] have 

been added to Mg or MgH2.  

Rizo-Acosta et al. [11] added different amounts of Ti 

to magnesium to form MgH2-TiH2 nanocomposites by 

reactive ball milling under hydrogen gas. On increasing Ti 

amount, hydriding and dehydriding kinetics were enhanced 

leading to a higher reversibility for hydrogen storage with 

the MgH2 phase. The highest reversible capacity (4.9 wt.% 

H) was obtained for the lowest TiH2 content (y = 0.025). 

Sohn et al. [12] reported that the MgH2 doped with TiH2 

by high-energy milling displayed substantially reduced 

apparent activation energy and significantly faster kinetics, 

compared with similarly milled MgH2 without TiH2 doping. 

Daryani et al. [13] investigated the co-effects of Ti-based 

catalysts (TiH2 and TiO2 particles) on hydrogen desorption 

kinetics of nanostructured magnesium hydride. The 

samples were prepared by high-energy ball milling. 

Evaluation of the absorption/desorption properties revealed 

that the addition of the Ti-based catalysts significantly 

improved the hydrogen storage performance of MgH2. A 

decrease in the decomposition temperature (as high as 

100 K) was attained after co-milling of MgH2 with the Ti-

based catalysts.  
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In the present work, titanium (Ti) was chosen as an 

additive to improve the hydriding and dehydriding features 

of MgH2. 15 wt.% Ti was added to MgH2 by milling in 

hydrogen (reactive mechanical grinding). The hydriding 

and dehydriding features of the Ti-added MgH2 composite 

(named MgH2-15Ti) were investigated. 

2. EXPERIMENTAL DETAILS 

We used MgH2 powder (magnesium hydride, 

hydrogen storage grade, Sigma Aldrich.) and titanium (-

3.25 mesh, 99.5 % metal basis, Alfa Aesar) as starting 

materials. 

Reactive mechanical grinding to prepare a 

85 MgH2 + 15 Ti sample, which has a composition of 

85 wt.% Mg + 15 wt.% Ti, was performed in a planetary 

ball mill (Planetary Mono Mill; Pulverisette 6, Fritsch). 

Mixtures with the desired compositions (8 g) were milled 

in a hermetically sealed stainless steel container with 105 

hardened steel balls (total weight 360 g). All sample 

handling was performed in a glove box under Ar in order 

to prevent oxidation. The disc revolution speed was 

250 rpm. The mill container with a volume of 250 mL was 

then filled with high purity hydrogen gas (~ 12 bar). 

Milling was performed for 6 h, refilling hydrogen up to 

~ 12 bar every two hours [14 – 17].  

The absorbed or released hydrogen quantity, as the 

reaction time elapses, was measured in nearly constant 

hydrogen pressures (in 12 bar H2 for hydriding and in 

1.0 bar H2 for dehydriding) with the Sieverts’ type 

hydriding and dehydrding apparatus described previously 

[18 – 22]. 0.5 g of the samples was used for these 

measurements.  
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Samples after reactive mechanical grinding and after 

hydriding-dehydrding cycling were analysed by X-ray 

diffraction (XRD) with Cu Kα radiation, using a Rigaku 

D/MAX 2500 powder diffractometer. The microstructures 

of the powders were observed using a JSM-5900 scanning 

electron microscope (SEM) operated at 20 kV.  

3. RESULTS AND DISCUSSION 

Fig. 1 shows the variation in Ha versus t curve with 

cycle number, n, at 573 K in 12 bar H2 for 85 M g

H2 + 15 Ti. At n = 1, the initial hydriding rate is quite high 

and the quantity of hydrogen absorbed for 60 min, Ha 

(60 min), is quite large. At n = 1, the hydriding rate 

decreases gradually as the reaction time elapses and is very 

low after 20 min. As n increases from one to four, the 

initial hydriding rate and Ha (60 min) decrease in general. 

The general decreases in the initial hydriding rate and Ha 

(60 min) with the increase in the cycle number are believed 

to be due to coalescence of particles since the sample was 

maintained at the relatively high temperature 573 K during 

hydriding-dehydriding cycling. At n = 1, 85 MgH2 + 15 Ti 

absorbs 1.58 wt.% H for 2.5 min, 2.67 wt.% H for 10 min, 

and 3.44 wt.% H for 60 min. At n = 4, 85 MgH2 + 15 Ti 

absorbs 1.40 wt.% H for 2.5 min, 2.44 wt.% H for 10 min, 

and 3.21 wt.% H for 60 min. Table 1 shows the variation of 

Ha with t at 573 K in 12 bar H2 at n = 1 ~ 4 for 

85 MgH2 + 15 Ti.  
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Fig. 1. Variation in Ha versus t curve with cycle number, n, at 

573 K in 12 bar H2 for 85 MgH2 + 15 Ti 

Table 1. Variation of Ha (wt.% H) with t (min) at 573 K in 12 bar 

H2 at n = 1 ~ 4 for 85 MgH2 + 15 Ti 

 2.5 min 5 min 10 min 30 min 60 min 

n=1 1.58 2.17 2.67 3.26 3.44 

n=2 1.49 20.08 2.58 3.21 3.35 

n=3 1.58 2.17 2.68 3.25 3.48 

n=4 1.40 1.99 2.44 3.02 3.21 

We define the quantity of hydrogen absorbed for 

60 min as the effective hydrogen storage capacity. 

85 MgH2 + 15 Ti has an effective hydrogen-storage 

capacity of 3.44 wt.% at 573 K in 12 bar H2 at n = 1. The 

variation in Hd versus t curve with cycle number, n, at 

573 K in 1.0 bar H2 for 85 MgH2 + 15 Ti is shown in Fig. 2. 

At n = 1, the initial dehydriding rate is slightly high and 

the quantity of hydrogen released for 60 min, Hd (60 min), 

is small. 
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Fig. 2. Variation in Hd versus t curve with cycle number, n, at 

573 K in 1.0 bar H2 for 85 MgH2 + 15 Ti 

The slightly high initial dehydriding rate is believed to 

be due to the slightly large quantities of hydrogen desorbed 

from the surfaces of the particles and released from the 

Mg-H solid solution. As n increases from one to four, the 

initial dehydriding rates are the same and Hd (60 min) 

decreases. The general decrease in the Hd (60 min) with the 

increase in the cycle number is believed to be due to 

coalescence of particles since the sample was maintained 

at the relatively high temperature 573 K during hydriding-

dehydriding cycling. At n = 1, 85 MgH2 + 15 Ti releases 

0.04 wt.% H for 2.5 min, 0.06 wt.% H for 10 min, and 

0.12 wt.% H for 60 min. At n = 4, 85 MgH2 + 15 Ti 

releases 0.0.04 wt.% H for 2.5 min, 0.06 wt.% H for 

10 min, and 0.11 wt.% H for 60 min. Table 2 shows the 

variation of Hd with t at 573 K in 1.0 bar H2 at n = 1 ~ 4 for 

85 MgH2 + 15 Ti. 

Table 2. Variation of Hd (wt.% H) with t (min) at 573 K in 1.0 bar 

H2 at n = 1 ~ 4 for 85 MgH2 + 15 Ti 

 2.5 min 5 min 10 min 30 min 60 min 

n=1 0.04 0.05 0.06 0.08 0.12 

n=2 0.04 0.05 0.06 0.08 0.12 

n=3 0.04 0.05 0.06 0.08 0.12 

n=4 0.04 0.05 0.06 0.08 0.11 
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Fig. 3. Variation in Ha versus t curve with cycle number at 593 K 

in 12 bar H2 for 85 MgH2 + 15 Ti 

Fig. 3 shows the variation in Ha versus t curve with 

cycle number, n, at 593 K in 12 bar H2 for 

85 MgH2 + 15 Ti. At n = 1, the initial hydriding rate is 

quite high and the Ha (60 min) is quite large. The hydriding 

rate decreases gradually as the reaction time elapses and is 
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very low after 20 min. As n increases from one to four, the 

initial hydriding rate decreases in general and the Ha 

(60 min) decreases. At n = 1, 85 MgH2 + 15 Ti absorbs 

2.96 wt.% H for 2.5 min, 4.70 wt.% H for 10 min, and 

5.51 wt.% H for 60 min. At n = 4, 85 MgH2 + 15 Ti 

absorbs 2.46 wt.% H for 2.5 min, 3.84 wt.% H for 10 min, 

and 4.62 wt.% H for 60 min. Table 3 shows the variation of 

Ha with t at 593 K in 12 bar H2 at n = 1 ~ 4 for 

85 MgH2 + 15 Ti. The initial hydriding rate is higher and 

the Ha (60 min) is larger at 593 K than those at 573 K. 

Table 3. Variation of Ha (wt.% H) with t (min) at 593 K in 12 bar 

H2 at n = 1 ~ 4 for 85 MgH2 + 15 Ti 

 2.5 min 5 min 10 min 30 min 60 min 

n=1 2.96 3.94 4.70 5.33 5.51 

n=2 3.09 4.03 4.75 5.33 5.42 

n=3 2.50 3.42 4.09 4.70 4.93 

n=4 2.46 3.26 3.84 4.38 4.62 
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Fig. 4. Variation in Hd versus t curve with cycle number at 593 K 

in 1 bar H2 for 85 MgH2 + 15 Ti 

The variation in Hd versus t curve with cycle number, n, 

at 593 K in 1.0 bar H2 for 85 MgH2 + 15 Ti is shown in 

Fig. 4. At n = 1, the initial dehydriding rate is slightly high 

and the Hd (60 min) is larger, compared with those at 

573 K. As n increases from one to four, the initial 

dehydriding rate decreases slightly and Hd (60 min) 

decrease. At 2.5 min, the dehydriding rates are low. The 

dehydriding rates increase gradually after 2.5 min and are 

quite high at 10 min at n = 1, 15 min at n = 2, and 45 min 

at n = 3 and n = 4. At n = 1, 85 MgH2 + 15 Ti releases 

0.11 wt.% H for 2.5 min, 0.34 wt.% H for 10 min, and 

1.56 wt.% H for 60 min. At n = 4, 85 MgH2 + 15 Ti 

releases 0.09 wt.% H for 2.5 min, 0.14 wt.% H for 10 min, 

and 0.83 wt.% H for 60 min. Table 4 shows the variation of 

Hd with t at 593 K in 1.0 bar H2 at n = 1 ~ 4 for 

85 MgH2 + 15 Ti.  

Table 4. Variation of Hd (wt.% H) with t (min) at 593 K in 1.0 bar 

H2 at n = 1 ~ 4 for 85 MgH2 + 15 Ti 

 2.5 min 5 min 10 min 30 min 60 min 

n=1 0.11 0.14 0.34 1.25 1.56 

n=2 0.11 0.13 0.18 0.97 1.37 

n=3 0.11 0.12 0.14 0.25 0.93 

n=4 0.09 0.11 0.14 0.22 0.83 

The initial dehydriding rate is higher and Hd (60 min) 

is larger at 593 K than those at 573 K, probably because 

the temperature is higher and the difference between the 

equilibrium plateau pressure of Mg-H system and the 

applied hydrogen pressure (1.0 bar H2) at 593 K is larger 

than that at 573 K. 

Fig. 1 – Fig. 4 show that the activation of 

85 MgH2 + 15 Ti is not necessary. However, the cycling 

performance of 85 MgH2 + 15 Ti is not good. Studies to 

improve the cycling performance of 85 MgH2 + 15 Ti are 

going to be performed in our future work. 

 

Fig. 5. A SEM micrograph of 85 MgH2 + 15 Ti after reactive 

mechanical grinding 

Fig. 5 shows a SEM micrograph of 85 MgH2 + 15 Ti 

after reactive mechanical grinding. Particle size is not 

homogeneous; some particles are fine and some particles 

are large. These particles form agglomerates. 

 

Fig. 6. A SEM micrograph of 85 MgH2 + 15 Ti dehydrided in 

1.0 bar H2 at n = 4 

A SEM micrograph of 85 MgH2 + 15 Ti dehydrided in 

1.0 bar H2 at n = 4 is shown in Fig. 6. Particle size is not 

homogeneous, either; some particles are fine and some 

particles are large. These particles form agglomerates. 

Particles and agglomerates are smaller than those of the 

sample after reactive mechanical grinding, probably due to 

pulverization of the particles owing to expansion (by 

hydriding reaction) and contraction (by dehydriding 

reaction) with hydriding-dehydriding cycling [23 – 28].  

Fig. 7 shows the XRD pattern of 85 MgH2 + 15 Ti 

after reactive mechanical grinding. The 85 MgH2 + 15 Ti 

after reactive mechanical grinding contains a large amount 
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of β-MgH2 and small amounts of Mg, γ-MgH2, TiH1.924, 

MgO, and MgTi2O4. This shows that TiH 1.924 is formed by 

the reaction of Ti with hydrogen during milling in 

hydrogen. Huot et al. [29] reported that the synthesis of 

magnesium hydride by reactive ball milling leads to the 

formation of a metastable orthorhombic γ-MgH2 phase 

along with tetragonal β-MgH2. 

The XRD pattern of 85 MgH2 + 15 Ti dehydrided in 

1.0 bar H2 at n = 4 is shown in Fig. 8. The 

85 MgH2 + 15 Ti dehydrided in 1.0 bar H2 at the 4th 

hydriding-dehydriding cycle contains large amounts of β-

MgH2 and Mg and very small amounts of MgO, MgTi2O4, 

TiH1.924, and Mg(OH)2. TiH1.924 remains undecomposed, 

but γ-MgH2 disappeared, after the sample was dehydrided 

in 1.0 bar H2 at n = 4. MgTi2O4 and MgO are believed to 

be formed by the reaction with oxygen adsorbed on the 

particle surfaces during treating the samples to obtain the 

XRD pattern. Mg(OH)2 is believed to be formed by the 

reaction with water vapor adsorbed on the particle surfaces 

during treating the samples to obtain the XRD pattern.  

 

Fig. 7. XRD pattern of 85 MgH2 + 15 Ti after reactive 

mechanical grinding  

 

Fig. 8. XRD pattern of 85 MgH2 + 15 Ti dehydrided in 1.0 bar H2 

at n = 4  

Reactive mechanical grinding of MgH2 with Ti is 

believed to create defects (leading to facilitation of 

nucleation), produce cracks and clean surfaces (leading to 

increase in reactivity), and decrease particle sizes (leading 

to diminution of diffusion distances or increasing the flux 

of the diffusing hydrogen atoms) [30 – 36]. Decrease in the 

particle sizes leads to the increase in the specific surface 

area of the sample. The β-MgH2, γ-MgH2, TiH1.924, MgO, 

and MgTi2O4 formed during reactive mechanical grinding 

and their pulverization during reactive mechanical grinding 

are believed to make these effects stronger. The hydriding-

dehydriding cycling is also believed to create defects, 

produce cracks and clean surfaces, and decrease particle 

sizes due to expansion (by hydriding reaction) and 

contraction (by dehydriding reaction) of Mg [37 – 42]. 

These effects of reactive mechanical grinding and 

hydriding-dehydriding cycling are believed to have 

improved the hydriding and dehydriding features of MgH2. 

4. CONCLUSIONS  

Titanium was chosen as an additive to improve the 

hydriding and dehydriding features of MgH2. 15 wt.% Ti 

was added to MgH2 by reactive mechanical grinding. At 

the first cycle, 85 MgH2 + 15 Ti absorbed 2.96 wt.% H for 

2.5 min and 5.51 wt.% H for 60 min at 593 K in 12 bar H2, 

having an effective hydrogen-storage capacity of 

5.51 wt.%. 85 MgH2 + 15 Ti released 0.11 wt.% H for 

2.5 min and 1.56 wt.% H for 60 min at 593 K in 1.0 bar H2 

at n = 1. Reactive mechanical grinding of MgH2 with Ti is 

believed to create defects, produce cracks and clean 

surfaces, and decrease particle sizes. The β-MgH2, γ-MgH2, 

TiH1.924, MgO, and MgTi2O4 formed during reactive 

mechanical grinding and their pulverization during reactive 

mechanical grinding are believed to make these effects 

stronger. The hydriding-dehydriding cycling is also 

believed to bring about the effects similar to those of 

reactive mechanical grinding.  
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