Effect of MnO_{2} Dopant on Properties of $\mathrm{Na}^{+}-\boldsymbol{\beta} / \boldsymbol{\beta}^{\mathbf{\prime}}-\mathrm{Al}_{2} \mathrm{O}_{3}$ Solid Electrolyte Prepared by a Synthesizing-cum-sintering Process

Dae-Han LEE, Jin-Sik KIM, Young-Hyuk KIM, Sung-Ki LIM*

Department of Materials Chemistry and Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, 143-701, Seoul, Republic of Korea

crossref http://dx.doi.org/10.5755/j02.ms. 22612
Received 25January 2019; accepted 17 December 2019

Abstract

In order to simplify the complexity of the conventional solid-state reaction process, $\mathrm{Na}^{+}-\beta / \beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ as a fast Na^{+}-ionic conductive solid electrolyte was fabricated using a synthesizing-cum-sintering process combined with the double-zeta method, which is able to distribute a small amount of $\mathrm{Li}_{2} \mathrm{O}$ more homogeneously in the $\mathrm{Na}_{2} \mathrm{O}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{Li}_{2} \mathrm{O}$ system. Additionally, in order to enhance the ionic conductivity, MnO_{2} was used as a dopant to increase the Na^{+}-ion concentration on the conduction plane in the $\mathrm{Na}^{+}-\beta / \beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ crystal structure. The relative sintered density increased with the synthesis temperature, ultimately reaching 99.7% after synthesis at $1400{ }^{\circ} \mathrm{C}$. The phase formation showed an overall $\beta^{\prime \prime}$-phase fraction over 90%. The addition of MnO_{2} had a positive effect on the phase formation, but a negative influence on the relative density resulting from the grain growth promotion effect. The highest ionic conductivity was observed at $1.74 \times 10^{-1} \mathrm{~S} / \mathrm{cm}\left(350{ }^{\circ} \mathrm{C}\right)$ for the sample sintered at $1600{ }^{\circ} \mathrm{C}$ with $0.5 \mathrm{wt} . \% \mathrm{MnO}_{2}$. Keywords: $\mathrm{Na}^{+}-\beta / \beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$, solid electrolyte of NBBs, synthesizing-cum-sintering, duble-zeta process, MnO_{2} dopant.

1. INTRODUCTION

As part of the drive towards reducing energy consumption, many studies have focused on the use of renewable energy, such as solar and wind sources. Due to the dependence of renewable energy on natural sources, energy storage methods that enable the efficient use of such energy sources, such as Na-beta batteries (NBBs), are particularly important. As the most widely-used solid electrolyte is based on $\mathrm{Na}^{+}-\beta / \beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$, this type of electrochemical device is often referred to as an NBBs. Due to their high round-trip efficiency, high energy density, and capability of providing energy for durations in the order of hours, NBBs technologies have been attracting increased attention for application to renewable energy storage [1-3]. Since the invention of NBBs in the late 1960 s, $\mathrm{Na}^{+}-\beta / \beta^{\prime \prime}-$ $\mathrm{Al}_{2} \mathrm{O}_{3}$ has been the most common choice of a battery electrolyte, primarily due to its high ionic conductivity (typically $0.2-0.4 \quad \mathrm{~S} / \mathrm{cm}$ at $300^{\circ} \mathrm{C}$), excellent compatibility/chemical stability with the electrode materials, satisfactory mechanical strength, and low material cost [4].
$\mathrm{Na}^{+}-\beta / \beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ exhibits excellent practical applicability because of its high ionic but low electronic conductivities. Na^{+}ions act as charge carriers in $\mathrm{Na}^{+}-\beta / \beta^{\prime \prime}-$ $\mathrm{Al}_{2} \mathrm{O}_{3}$. There are two parent phases: $\beta-\mathrm{Al}_{2} \mathrm{O}_{3}$ has the theoretical formula $\mathrm{Na}_{2} \mathrm{O} \cdot 11 \mathrm{Al}_{2} \mathrm{O}_{3}$ or $\mathrm{NaAl}_{11} \mathrm{O}_{17}$, while that for $\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ is either $\mathrm{Na}_{2} \mathrm{O} \cdot 5 \mathrm{Al}_{2} \mathrm{O}_{3}$ or $\mathrm{NaAl}_{5} \mathrm{O}_{8}$ [5-7]. According to the $\mathrm{Na}_{2} \mathrm{O}-\mathrm{Al}_{2} \mathrm{O}_{3}$ phase diagram proposed by Fally et al. [8], $\beta+\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ phases coexist in that region corresponding to the formula $\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{nAl}_{2} \mathrm{O}_{3}(5.33 \leq \mathrm{n} \leq 8.5)$. β " $-\mathrm{Al}_{2} \mathrm{O}_{3}$ has a rhombohedral structure with an R 3 m space group and lattice constants of $\mathrm{a}=5.614$ and $\mathrm{c}=33.85 \mathrm{~A}$. In
general, its a-axis is similar to that of $\beta-\mathrm{Al}_{2} \mathrm{O}_{3}$, while its c axis is 1.5 times longer and the concentration of alkaline ions on its conduction plane is higher. Therefore, the $\beta^{\prime \prime}$ $\mathrm{Al}_{2} \mathrm{O}_{3}$ exhibits substantially higher ionic conductivity [5, 9]. $\mathrm{Na}^{+}-\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ is not stable and decomposes at temperatures above $1400{ }^{\circ} \mathrm{C}$ in the binary system $\mathrm{Na}_{2} \mathrm{O}-\mathrm{Al}_{2} \mathrm{O}_{3}$ [10], so cations whose ionic radii are less than 0.097 nm are usually doped to stabilize $\mathrm{Na}^{+}-\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$, which has a conductivity five times higher than $\mathrm{Na}^{+}-\beta-\mathrm{Al}_{2} \mathrm{O}_{3}[11] . \mathrm{Mg}^{2+}$ and Li^{+}ions such as a stabilizer for $\mathrm{Na}^{+}-\beta / \beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ solid electrolyte have been the most widely used stabilizing cations. Li^{+}ions are known to be more effective for $\mathrm{Na}^{+}-\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ formation than Mg^{2+} ions [12]. However, the behavior of the different stabilizing cations during phase formation have not yet been elucidated, so it is difficult to determine the precise effects that each stabilizer has on the phase formation and transformation.

The degree of homogeneity for small amounts of $\mathrm{Li}_{2} \mathrm{O}$ and $\mathrm{Na}_{2} \mathrm{O}$ is a significant factor affecting the rates of transformations and $\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ formation. Homogeneous mixtures can be obtained through an atomic-scale reaction using wet chemical processes such as co-precipitation [13, 14] or the sol-gel method [15-19]. Nevertheless, these processes are not regarded as being useful due to certain drawbacks, namely, the difficulty of synthesizing and forming undesirable structures through these processes [13]. In a conventional solid-state reaction, the problem of achieving homogeneous and uniform mixing can be expected due to the inefficient mixing and dissimilarity of the particle sizes and shapes between the major and minor phases. In recent years, numerous studies have focused on understanding $\mathrm{Na}^{+}-\beta / \beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{YSZ}$ composite solid electrolyte via vapor-phase synthesis [20, 21] for NBBs.

[^0]

Fig. 1. Schematics of: a - double-zeta method; b - synthesizing-cum-sintering process combined with the double-zeta method
P. Parthasarathy et al [20] have reported that the mechanism of conversion involves a coupled transport of Na^{+}ion through the $\mathrm{Na}^{+}-\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ and of O^{2-} ion through the YSZ. The kinetics of conversion has been investigated by measuring conversion thickness as a function of time [21]. $\mathrm{Na}^{+}-\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{YSZ}$ composite samples prepared by vaporphase synthesis have no liquid phase. These synthesized $\mathrm{Na}^{+}-\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{YSZ}$ composites are also resistant to moisture-induced damage, unlike $\mathrm{Na}^{+}-\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ prepared by the conventional process. Sparks et al. [22] have studied dimensional geometrical changes and revealed the evolution of orientation degree of $\mathrm{Na}^{+}-\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ conduction plane. These $\mathrm{Na}^{+}-\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ phases have close-packed structures with three spinel blocks separated by 2 -dimensional conduction planes containing Na^{+}and O^{2-} ions. As a result, higher ionic conductivity is measured across sample thickness than that parallel to disc face. The ionic conductivity of $\mathrm{Na}^{+}-\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{YSZ}$ composite via vaporphase synthesis shows a close relationship with orientation degree of conduction plane such as [110] direction.

As mentioned above those problems of a conventional solid-state reaction can be improved by pre-diluting the minor constituents. In the so-called double-zeta process [23, 24], $\mathrm{Li}_{2} \mathrm{O}$ is contained in the $\mathrm{Li}_{2} \mathrm{CO}_{3}$ in tiny quantities, but if it were in the form of $\mathrm{Li}_{2} \mathrm{O} \cdot 5 \mathrm{Al}_{2} \mathrm{O}_{3}$, the amount could be five times greater. The use of lithium aluminate as a stabilizer instead of $\mathrm{Li}_{2} \mathrm{CO}_{3}$ will result in a much better distribution of Li^{+}in the mixture and also enhance the rate of conversion to the $\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ phase. As a result of the reaction, sodium aluminate is also expected to disperse Na^{+} ions uniformly in the mixture and lead to the thorough transformation of the β-phase to the β "-phase. $\mathrm{Li}_{2} \mathrm{CO}_{3}$, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ were used as raw materials for
synthesizing zeta lithium aluminate and sodium aluminate. They were mixed to a molar ratio of 1:5 by ball milling and synthesized at $1250{ }^{\circ} \mathrm{C}$.

In this study, in order to overcome the complexity of the conventional solid-state reaction, the double-zeta method was combined with the synthesizing-cum-sintering process, in which the synthesis and the sintering are performed in a single process.

The synthesizing-cum-sintering process is extremely advantageous in terms of cost in comparison to the conventional process. In the conventional process, the materials are calcined in advance to produce $\mathrm{Na}^{+}-\beta / \beta^{\prime \prime}-$ $\mathrm{Al}_{2} \mathrm{O}_{3}$. However, these steps are complex and very costly. The synthesizing-cum-sintering reduces the total number of production steps and produces a $\mathrm{Na}^{+}-\beta / \beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ solid electrolyte more efficiently by combining the synthesizing and firing steps. Fig. 1. presents schematic illustrations of the conventional solid-state reaction process and the synthesizing-cum-sintering process combined with the double-zeta method for sintered $\mathrm{Na}^{+}-\beta / \beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ specimens.
MnO_{2} is known to greatly promote $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ grain growth as well as the formation of spinel blocks [25-27]. MnO_{2} has been reported as being present in the tetrahedral sites of $\beta / \beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}[28,29]$. In $\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ stabilized by MnO_{2}, Mn^{2+} is substituted for Al^{3+} in the tetrahedral sites of the spinel blocks.

The resulting charge defects were compensated for by the additional Na^{+}ions in the conduction planes, which resulted in a higher Na^{+}concentration and $\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ phase fraction [30]. However, there have been no studies to date addressing how MnO_{2} affects the properties of sintered $\mathrm{Na}^{+}-$ $\beta / \beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ in the synthesizing-cum-sintering process when combined with the double-zeta method.

2. EXPERIMENTAL DETAILS

The starting chemicals were $\mathrm{Na}_{2} \mathrm{CO}_{3}(99.5 \%$ High Purity Chemicals, Japan), $\mathrm{Li}_{2} \mathrm{CO}_{3}$ ($99+\%$ Sigma-Aldrich, USA), and $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ (99.99%, High Purity Chemicals, Japan). In order to prepare the precursors such as sodium aluminate and lithium aluminate, the starting materials were mixed by ball milling for 8 h using methanol as a liquid medium at a molar ratio of $\left[\mathrm{Na}_{2} \mathrm{O}\right]:\left[\mathrm{Al}_{2} \mathrm{O}_{3}\right]=1: 5$ and $\left[\mathrm{Li}_{2} \mathrm{O}\right]:\left[\mathrm{Al}_{2} \mathrm{O}_{3}\right]=1: 5$. Then, each mixture was calcined at $1250^{\circ} \mathrm{C}$ for 2 h in MgO crucibles. To fabricate $\mathrm{Na}^{+}-\beta / \beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$, the two precursors were mixed and ballmilled for 5 h . The molar ratio of $\left[\mathrm{Na}_{2} \mathrm{O}\right]:\left[\mathrm{Al}_{2} \mathrm{O}_{3}\right]$ was $1: 5$, and the $\mathrm{Li}_{2} \mathrm{O}$ (stabilizer) content was fixed to $0.55 \mathrm{wt} . \%$, and any $\mathrm{Al}_{2} \mathrm{O}_{3}$ deficiency was compensated for by adding $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$. The slurries used in the granulation step contained 1.2 wt . \% polyvinyl alcohol as a binder for the composite powder and 0.8 wt . \% octyl alcohol as an anti-foaming agent in distilled water. The resulting slurry had a solid content of $50 \mathrm{wt} . \%$. Granules were formed from the prepared slurry using a spray-drying technique under the conditions of an inlet temperature of $110^{\circ} \mathrm{C}$, an outlet temperature of $200^{\circ} \mathrm{C}$, and an atomizer spinning at 8000 rpm .

Specimens were prepared as disk-shaped pellets (diameter: 14 mm , thickness: 1.2 mm) using a uniaxial press to apply a pressure of 200 MPa . These specimens were then embedded in the $\mathrm{Na}^{+}-\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ powder in the crucible so as to prevent the loss of $\mathrm{Na}_{2} \mathrm{O}$ in air. The firing schedule in the synthesizing-cum-sintering process consisted of two steps, namely, the synthesis of $\mathrm{Na}^{+}-\beta / \beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ and sintering for the densification. The synthesis step was conducted for 2 h at $1200-1400^{\circ} \mathrm{C}$ while the sintering step was conducted for 45 min at 1585 and $1600^{\circ} \mathrm{C}$.

Additionally, MnO_{2} was added during the slurry manufacturing process, and the amount of MnO_{2} added was varied from 0.3 to $1.0 \mathrm{wt} . \%$. Specimens were fabricated and sintered through the application of the above process. In order to determine the effect of MnO_{2}, the synthesis temperature was fixed to $1400^{\circ} \mathrm{C}$ and the sintering step was conducted at 1585 and $1600^{\circ} \mathrm{C}$, respectively. Table 1 lists the compositions and designations of the evaluated specimens.

The microstructure was determined using a scanning electron microscope (SEM; Model JSM-6380, JEOL, Japan), and the relative sintered density was calculated using the Archimedes method (ASTM 373-88). The phase compositions of the sintered specimens were measured using an X-ray diffractometer (D/max 2200, Rigaku, Japan). The XRD was operated at 40 kV and 30 mA using $\mathrm{Cu} \mathrm{K} \alpha$ radiation. The relative phase composition was determined by calculating the line intensities of the well-separated peaks of each phase [31,32].
$\%$ of $\alpha=f(\alpha) /\left\{f(\alpha)+f(\beta)+f\left(\beta^{\prime \prime}\right)\right\} \times 100$
$\%$ of $\beta=f(\beta) /\left\{f(\alpha)+f(\beta)+f\left(\beta^{\prime \prime}\right)\right\} \times 100$
$\%$ of $\beta^{\prime \prime}=f\left(\beta^{\prime \prime}\right) /\left\{f(\alpha)+f(\beta)+f\left(\beta^{\prime \prime}\right)\right\} \times 100$
$f(\alpha)=1 / 2\left\{I_{\alpha(104)} \times 10 / 9+I_{\alpha(I I 3)}\right\}$
$f(\beta)=1 / 3\left\{I_{\beta(102)} \times 10 / 3+I_{\beta(206)} \times 10 / 3.5+I_{\beta(007)} \times 10 / 5.5\right\}$
$f\left(\beta^{\prime \prime}\right)=1 / 2\left\{I_{\beta(011)} \times 10 / 4+I_{\beta^{\prime \prime}(2010)} \times 10 / 8\right\}$
where $I_{\alpha(104), ~} \alpha_{(113)}=\mathrm{X}$-ray intensities of the (104), (113)
 intensities of the (012), (026), (017) planes of the $\beta-\mathrm{Al}_{2} \mathrm{O}_{3}$ phase, and $I_{\beta^{\prime \prime}(0111), \beta^{\prime 2}(2010)}=\mathrm{X}$-ray intensities of the (0111), (2010) planes of the $\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ phase.

Table 1. Denotations of sintered specimens

Denotation	Synthesis temperature, ${ }^{\circ} \mathrm{C}$	Sintering temperature, ${ }^{\circ} \mathrm{C}$	MnO_{2} addition, wt. $\%$
$1200-1600$	1200	1600	None
$1250-1600$	1250	1600	None
$1300-1600$	1300	1600	None
$1350-1600$	1350	1600	None
$1400-1600$	1400	1600	None
$1200-1585$	1200	1585	None
$1250-1585$	1250	1585	None
$1300-1585$	1300	1585	None
$1350-1585$	1350	1585	None
$1400-1585$	1400	1585	None
$0.3-1600$	1400	1600	0.3
$0.5-1600$	1400	1600	0.5
$0.7-1600$	1400	1600	0.7
$1.0-1600$	1400	1600	1.0
$0.3-1585$	1400	1585	0.3
$0.5-1585$	1400	1585	0.5
$0.7-1585$	1400	1585	0.7
$1.0-1585$	1400	1585	1.0

The ionic conductivities of the sintered specimens were measured using blocking silver electrodes with an electrochemical complex impedance analyzer (Zahner, IM6), over a frequency range of 0.1 Hz to 3 MHz and a temperature range of 25 to $350^{\circ} \mathrm{C}$. In general, the electronic conductivity of the $\mathrm{Na}^{+}-\beta / \beta^{\prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ is known to be $\sim 10^{-9}$ S / cm, a negligible value. Therefore, the ionic conductivities were calculated using the following equation with the measured impedance value:
$\sigma=L /\left(R_{s} \times A\right)$
where $\sigma, L, R_{\mathrm{s}}$ and A denote the ionic conductivity, specimen thickness, impedance of the specimen, and electrode area, respectively

3. RESULTS AND DISCUSSION

Fig. 2 shows the XRD patterns of the synthesized sodium aluminate and lithium aluminate precursors. We can prove that the raw material was converted to aluminates by comparing the XRD patterns of the precursor with those of NaAlO_{2} (JCPDS 33-1200), $\mathrm{NaAl}_{5} \mathrm{O}_{8}$ (JCPDS 31-1262, $\mathrm{Na}^{+}-\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$), $\mathrm{NaAl}_{11} \mathrm{O}_{17}$ (JCPDS 31-1263, $\mathrm{Na}^{+}-\beta-\mathrm{Al}_{2} \mathrm{O}_{3}$), and $\mathrm{LiAl}_{5} \mathrm{O}_{8}$ (JCPDS 87-1278). The XRD pattern of the sodium aluminate precursor shows that a phase transformation of $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ to $\mathrm{Na}^{+}-\beta / \beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ occurred without any $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ remaining. The XRD patterns of the sintered specimens by a synthesizing-cum-sintering process exhibited growth of the (1011) and (2010) planes, which correspond to $\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$, respectively.

The effects of the synthesis and sintering temperatures on the phase formation and relative density are shown in Fig. 3 and Fig. 4, using XRD patterns and phase fraction analysis from the measured X-ray intensity data [31, 32]. Fig. 3 shows the XRD patterns according to various
synthesis temperatures and sintering temperatures at $1600{ }^{\circ} \mathrm{C}$ and $1585{ }^{\circ} \mathrm{C}$, respectively. All of the XRD patterns appeared to be similar in shape, with the growth of the $\beta^{\prime \prime}$ $\mathrm{Al}_{2} \mathrm{O}_{3}$ peak such as the (1011), (2010) planes. These results show that the phase transformations of sodium aluminate and lithium aluminate precursors to $\mathrm{Na}^{+}-\beta / \beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ occurred completely, and that the $\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ peaks had higher intensities than the $\beta-\mathrm{Al}_{2} \mathrm{O}_{3}$ peaks. In addition, the significant secondary phases, such as sodium aluminate, were not observed in all specimens. The phase transformations of $\beta-\mathrm{Al}_{2} \mathrm{O}_{3}$ to $\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ were slightly increased at higher synthesis temperatures. The stabilization of $\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ basically involves the substitution of the Al^{3+} ions by the stabilizing cations, and the substation of the compensating Li^{+}ions for the octahedral Al^{3+} ions in the spinel block [33-35]. Thus, it can be assumed that the $\beta^{\prime \prime}-$ $\mathrm{Al}_{2} \mathrm{O}_{3}$ phase formation is mainly controlled by the diffusion of the stabilizing ions. In addition, higher synthesis temperatures increase the ionic diffusion, thereby enhancing the transformation of $\beta-\mathrm{Al}_{2} \mathrm{O}_{3}$ to $\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$, whereas the $\beta^{\prime \prime}-$ $\mathrm{Al}_{2} \mathrm{O}_{3}$ phase fraction tends to decrease as the sintering temperature increases, because the volatilization of the $\mathrm{Na}_{2} \mathrm{O}$ was augmented as the sintering temperature increased, resulting in $\mathrm{Na}_{2} \mathrm{O}$-loss and leading to the conversion of $\beta^{\prime \prime}$ to β to adjust the molar ratio in the $\mathrm{Na}^{+}-\beta / \beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ structure (Fig. 4. and Table 2). In contrast, the relative density of the specimen was enhanced as the synthesis and sintering temperatures increased. In the conventional solid-state reaction process, it was confirmed that a high sintering temperature could enhance the relative density, but no effect was observed of the synthesis temperature on the relative density [36]. However, in this synthesizing-cum-sintering process, a high synthesis temperature led to an increase in the relative density. Therefore, SEM micrographs and the bulk density of the synthesized specimen prior to sintering were observed. Fig. 5 shows the microstructures of the specimens prior to sintering. The specimens synthesized at $1400^{\circ} \mathrm{C}$ (Fig. 5 b) exhibited greater grain growth than those synthesized at $1200{ }^{\circ} \mathrm{C}$ (Fig. 5 a). Furthermore, their bulk densities were 17% greater than the bulk densities of those synthesized at $1200{ }^{\circ} \mathrm{C}$. This suggests that a pre-sintering effect occurred at a high synthesis temperature during the synthesizing-cum-sintering process.

Fig. 2. X-ray diffraction patterns of calcined sodium and lithium aluminate precursors

Fig. 3. X-ray diffraction patterns according to different synthesis and sintering temperatures. Sintered at: $a-1600{ }^{\circ} \mathrm{C}$; b-1585 ${ }^{\circ} \mathrm{C}$

Fig. 4. The $\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ phase fractions and relative density depending on synthesis temperatures. Sintered at: a $-1600^{\circ} \mathrm{C} ; \mathrm{b}-1585^{\circ} \mathrm{C}$

Fig. 5. SEM images of specimens synthesized at: a $-1200{ }^{\circ} \mathrm{C}$ (bulk density: $\quad 1.99 \mathrm{~g} / \mathrm{cm}^{3}$); b-1400 ${ }^{\circ} \mathrm{C}$ (bulk density: $2.33 \mathrm{~g} / \mathrm{cm}^{3}$)

The ionic conductivities of the specimens sintered at $1600^{\circ} \mathrm{C}$ and $1585^{\circ} \mathrm{C}$ after synthesis at several different temperatures were measured at 25 to $350^{\circ} \mathrm{C}$; these are shown in Fig. 6. The relationship conformed to Arrhenius equation of $\sigma T=A \exp \left(-E_{\sigma} / k T\right)$, where A is the preexponential and k is the Boltzmann constant and T is the absolute temperature. As shown, the activation energy (slope of graph) declines when the temperature is above $250{ }^{\circ} \mathrm{C}$. It means that the resistance of Na^{+}ion conductivity can be improved as the temperature increasing [37]. Additionally, the specific resistance of each specimen at $350{ }^{\circ} \mathrm{C}$ is shown as a function of synthesis temperature in Fig. 7. The ionic conductivity was most affected by the $\beta^{\prime \prime}-$ $\mathrm{Al}_{2} \mathrm{O}_{3}$ phase fraction and relative density. Among the samples, the maximum ionic conductivity measured for the $1400-1600$ specimen was $1.25 \times 10^{-1} \mathrm{~S} / \mathrm{cm}$ at $350^{\circ} \mathrm{C}$, and the minimum ionic conductivity measured for the
$1200-1585$ specimen was $5.83 \times 10^{-2} \mathrm{~S} / \mathrm{cm}$ at $350^{\circ} \mathrm{C}$. This indicates that the synthesis and sintering temperatures in the synthesizing-cum-sintering process combined with the double-zeta method affected the ionic conductivity of $\mathrm{Na}^{+}-$ $\beta / \beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$.

Fig. 7. Specific resistances of sintered specimens at $350{ }^{\circ} \mathrm{C}$ according to synthesis temperature

Specifically, a high synthesis temperature during the synthesizing-cum-sintering process positively influenced both the density and $\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ phase. However, a high sintering temperature was effective for the densification while decreasing the $\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ phase fraction, and consequently the ionic conductivity decreased. Table 2. summarizes the relative density, $\mathrm{Na}^{+}-\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ phase fraction, and ionic conductivity of each specimen.

Table 2. Relative density, β " $-\mathrm{Al}_{2} \mathrm{O}_{3}$ phase fraction, and ion conductivity according to synthesis and sintering temperature

Sintering temp., ${ }^{\circ} \mathrm{C}$	Synthesis temp., ${ }^{\circ} \mathrm{C}$	Relative density, $\%$	$\beta "$-phase fraction, $\%$	Ionic conductivity S/cm at $350{ }^{\circ} \mathrm{C}$
1600	1200	98.3	91.0	5.84×10^{-2}
1600	1250	98.5	91.2	7.72×10^{-2}
1600	1300	99.0	91.4	1.00×10^{-1}
1600	1350	99.5	91.5	1.18×10^{-1}
1600	1400	99.7	91.9	1.25×10^{-1}
1585	1200	97.9	91.0	5.83×10^{-2}
1585	1250	98.2	91.5	7.43×10^{-2}
1585	1300	98.5	91.6	8.80×10^{-2}
1585	1350	98.7	91.8	1.05×10^{-1}
1585	1400	99.1	92.0	1.19×10^{-1}

Fig. 6. Ionic conductivity of specimens at $25-350^{\circ} \mathrm{C}$ depending on synthesis temperature, sintered at: a-1600 ${ }^{\circ} \mathrm{C} ; \mathrm{b}-1585^{\circ} \mathrm{C}$

The XRD patterns corresponding to the addition of MnO_{2} are shown in Fig. 8. The analysis was performed for the specimens sintered at $1600^{\circ} \mathrm{C}$ and $1585^{\circ} \mathrm{C}$ at a fixed synthesis temperature of $1400^{\circ} \mathrm{C}$, respectively. In addition, Fig. 9. shows the relative density and the $\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ phase fraction, obtained through calculation from the measured Xray intensity data.

In respect to the phase formation, the $\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ phase fraction increased with the amount of MnO_{2}. The divalent cation Mn^{2+} in the MnO_{2} strongly prefers a tetrahedral coordination environment in the $\beta / \beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ structure and accomplishes this by substituting Al^{3+} into Mn^{2+} in a tetrahedral site. The resulting charge defects lead to Al^{3+} ion vacancies, which favorably affects the formation of $\beta^{\prime \prime}$ -

a
$\mathrm{Al}_{2} \mathrm{O}_{3}$ phase due to the rapid diffusion of Na^{+}and Al^{3+} ions [30, 36, 38]. In respect of the density, however, the addition of the MnO_{2} formed an intergranular liquid phase which promoted grain growth. Consequently, rapid grain growth in the intergranular liquid phase led to pores between irregularly shaped grains $[25,26]$. As a result, the addition of MnO_{2} decreased the relative sintered density, as shown in Fig. 10. Fig. 10 a and c show SEM images of the specimens to which $0.3 \% \mathrm{MnO}_{2}$ had been added at the sintering temperature of $1585{ }^{\circ} \mathrm{C}$, while Fig. 10 b and d show the specimens to which $1.0 \% \mathrm{MnO}_{2}$ had been added at $1600{ }^{\circ} \mathrm{C}$. Comparing Fig. 10 a, c and Fig. 10 b, d to identify the effect of MnO_{2}, the addition of MnO_{2} appears to cause grain growth with intergranular liquid phase.

b

Fig. 8. X-ray diffraction patterns according to MnO_{2} content. Synthesized at $1400{ }^{\circ} \mathrm{C}$ and sintered at: $\mathrm{a}-1600{ }^{\circ} \mathrm{C} ; \mathrm{b}-1585{ }^{\circ} \mathrm{C}$

Fig. 9. $\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ phase fractions and relative density according to MnO_{2} content. Synthesized at $1400{ }^{\circ} \mathrm{C}$ and sintered at: $\mathrm{a}-1600{ }^{\circ} \mathrm{C}$; b-1585 ${ }^{\circ} \mathrm{C}$

Fig. 10. SEM images of specimens: $a-0.3-1585$ (R.D: 98.2%); b-1.0-1600 (R.D: 96.6%); surface polished specimens: c-0.3-1585; d $-1.0-1600$ specimens

Fig. 11 shows the ionic conductivity of the $\mathrm{MnO}_{2}-$ doped $\mathrm{Na}^{+}-\beta / \beta$ " $-\mathrm{Al}_{2} \mathrm{O}_{3}$ specimens sintered at $1600^{\circ} \mathrm{C}$ and $1585{ }^{\circ} \mathrm{C}$, respectively, at $25-350^{\circ} \mathrm{C}$. Additionally, the specific resistance at $350^{\circ} \mathrm{C}$ for each specimen is shown in Fig. 12 a. For example, Fig. 12 b shows the Nyquist plot of the $0.5-1600$ and $1.0-1585$ sintered specimens at $350{ }^{\circ} \mathrm{C}$. The calculated specific resistance of the $1.0-1585$ specimen appeared to be higher than that of the $0.5-1600$ sintered specimen. In the case of $\mathrm{Na}^{+}-\beta / \beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$, the grain boundary contribution to the total resistance was negligible above $250^{\circ} \mathrm{C}$, and no semicircle corresponding to the grain
boundary was observed at $350^{\circ} \mathrm{C}$. Table 3 conclusively summarizes the relative density, $\mathrm{Na}^{+}-\beta "-\mathrm{Al}_{2} \mathrm{O}_{3}$ phase fraction, and ionic conductivity of each specimen. The ionic conductivity increased to a maximum of $1.74 \times 10^{-1} \mathrm{~S} / \mathrm{cm}$ until the MnO_{2} concentration reached $0.5 \mathrm{wt} . \%$. Thereafter, the ionic activity tended to decrease, because MnO_{2} has an ambivalent effect on the ionic conductivity. The grain growth and high $\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ phase fraction caused by the addition of MnO_{2} improved the ionic conductivity, but due to the declining density, the ionic conductivities of the specimens with more than $0.5 \mathrm{wt} . \% \mathrm{MnO}_{2}$ decreased.

Table 3. Relative density, $\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ phase fraction, and ion conductivity according to MnO_{2} content and sintering temperature

Sintering temp., ${ }^{\circ} \mathrm{C}$	MnO_{2} contents, wt. $\%$	Relative density, $\%$	$\beta^{\prime}-$ phase fraction, $\%$	Ionic conductivity S/cm at $350{ }^{\circ} \mathrm{C}$
1600	0.0	99.7	91.9	1.25×10^{-2}
1600	0.3	98.3	93.9	1.31×10^{-1}
1600	0.5	98.3	95.0	1.74×10^{-1}
1600	0.7	97.2	95.1	1.34×10^{-1}
1600	1.0	96.6	95.3	9.37×10^{-2}
1585	0.0	99.1	92.0	1.19×10^{-1}
1585	0.3	98.2	94.2	1.23×10^{-1}
1585	0.5	98.1	95.8	1.56×10^{-1}
1585	0.7	96.6	95.9	1.02×10^{-1}
1585	1.0	96.3	95.9	7.99×10^{-2}

a

b

Fig. 11. Ionic conductivities of specimens sintered at: $\mathrm{a}-1600^{\circ} \mathrm{C} ; \mathrm{b}-1585^{\circ} \mathrm{C}$ as a function of the MnO_{2} content at $25-350{ }^{\circ} \mathrm{C}$

Fig. 12. Specific resistances of sintered specimens: a-as a function of MnO_{2} content; b-Nyquist plot of $0.5-1600$ and $1.0-1585$ sintered specimen at $350^{\circ} \mathrm{C}$

4. CONCLUSIONS

In the present study, $\mathrm{Na}^{+}-\beta / \beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ was successfully fabricated through a simplified synthesizing-cum-sintering process combined with the double-zeta method in order to reduce the sintering temperature to less than $1600^{\circ} \mathrm{C}$ in a $\mathrm{Na}_{2} \mathrm{O}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{Li}_{2} \mathrm{O}$ system. The higher synthesis temperature of $1200-1400{ }^{\circ} \mathrm{C}$ resulted in the higher relative density of $\mathrm{Na}^{+}-\beta / \beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ after sintering, which was caused by a preconsolidation effect during the synthesis process at these temperatures, showing the bulk density at $1.99-2.33 \mathrm{~g} / \mathrm{cm}^{3}$. In addition, the $\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ phase fraction increased slightly with the synthesis temperature, but this increase was not significant. The highest relative density of $\mathrm{Na}^{+}-\beta / \beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ was 99.7% for the sample synthesized at $1400^{\circ} \mathrm{C}$ and sintered at $1600^{\circ} \mathrm{C}$, for which the ionic conductivity was $1.25 \times 10^{-1} \mathrm{~S} / \mathrm{cm}$ at $350^{\circ} \mathrm{C}$. The addition of MnO_{2} as a dopant promoted the $\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ phase formation, and the $\beta^{\prime \prime}$ $\mathrm{Al}_{2} \mathrm{O}_{3}$ phase fraction could be extended to 95.9% with $1.0 \mathrm{wt} . \% \mathrm{MnO}_{2}$. However, the addition of an excessive amount of MnO_{2} (more than $0.5 \mathrm{wt} . \%$) led to a decrease in the ionic conductivity, owing to the formation of the secondary phase as well as a decrease in the relative density. Consequently, the highest ionic conductivity was $1.74 \times 10^{-1} \mathrm{~S} / \mathrm{cm}$ at $350^{\circ} \mathrm{C}$, which was attained after synthesis at $1400{ }^{\circ} \mathrm{C}$ and sintering at $1600{ }^{\circ} \mathrm{C}$ with $0.5 \mathrm{wt} . \%$ MnO_{2}.

Acknowledgments

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (No.20172420108430, Development of high-capacity technology of high-safety sodium-ferronickel chloride battery)

REFERENCES

1. Barison, S., Fasolin, S., Mortalò, C., Boldrini, S., Fabrizio, M. Effect of Precursors on β-Alumina Electrolyte Preparation Journal of the European Ceramic Society 35 (7) 2015: pp. 2099-2107. https://doi.org/10.1016/j.jeurceramsoc.2015.01.006
2. Yang, L.P., Shan, S.J., Wei, X.L., Liu, X.M., Yang, H., Shen, X.D. The Mechanical and Electrical Properties of $\mathrm{ZrO}_{2}-\mathrm{TiO}_{2}-\mathrm{Na}-\beta / \beta^{\prime \prime}$-Alumina Composite Electrolyte Synthesized via a Citrate Sol-Gel Method Ceramics International 40 (7) 2014: pp. 9055-9060. https://doi.org/10.1016/j.ceramint.2014.01.118
3. Oshima, T., Kajita, M., Okuno, A. Development of Sodium-Sulfur Batteries International Journal of Applied Ceramic Technology 1 (3) 2004: pp. 269-276. https://doi.org/10.1111/j.1744-7402.2004.tb00179.x
4. Lu, X., Xia, G., Lemmon, J.P., Yang, Z. Advanced Materials for Sodium-Beta Alumina Batteries: Status, Challenges and Perspectives Journal of Power Sources 195 (9) 2010: pp. 2431-2442. https://doi.org/10.1016/j.jpowsour.2009.11.120
5. Goro, Y., Kazutaka, S. On the Structures of Alkali Polyaluminates Bulletin of Chemical Society of Japan 41 (1) 1968: pp. 93-99.
https://doi.org/10.1246/bcsj. 41.93
6. Beevers, C.A., Ross, M.A.S. The Crystal Structure of "Beta Alumina" $\mathrm{Na}_{2} \mathrm{O} \cdot 11 \mathrm{Al}_{2} \mathrm{O}_{3} \quad$ Zeitschrift für Kristallographie Crystalline Materials 97 (1-6) 1937: pp. 59-66. https://doi.org/10.1524/zkri.1937.97.1.59
7. Yao, Y.Y., Kummer, J.T. Ion Exchange Properties of and Rates of Ionic Diffusion in Beta-Alumina Journal of Inorganic and Nuclear Chemistry 29 (9) 1967: pp. 2453-2466.
https://doi.org/10.1016/0022-1902(67)80301-4
8. Fally, J., Lasne, C., Lazennec, Y., Margotin, P. Some Aspects of Sodium-Sulfur Cell Operation Journal of the Electrochemical Society 120 (10) 1973: pp. 1292-1295. https://doi.org/10.1149/1.2403249
9. Kroon, A.P., Schaefer, G.W., Aldinger, F. Direct Synthesis of Binary K- β - and K- β "-Alumina. 1. Phase Relations and Influence of Precursor Chemistry Chemistry of Materials 7 (5) 1995: pp. 878-887.
https://doi.org/10.1021/cm00053a011
10. Hodge, J.D. Phase Relations in the System $\mathrm{Na}_{2} \mathrm{O}-\mathrm{Li}_{2} \mathrm{O}-\mathrm{Al}_{2} \mathrm{O}_{3}$ Journal of American Ceramic Society 67 1984: pp. 183-185. https://doi.org/10.1111/j.1151-2916.1984.tb19738.x|
11. Imai, A., Harata, M. Ionic Conduction of Impurity-Doped β-Alumina Ceramics Japanese Journal of Applied Physics 11 1972: pp. 180-185. https://doi.org/10.1143/JJAP.11.180
12. Bera, J. On the Transformation Kinetics of β - to β "-Alumina in the System $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{Na}_{2} \mathrm{O}-\mathrm{Li}_{2} \mathrm{O}$ Journal of Materials Science Letters 12 1993: pp. 27-29.
13. Hodge, J.D. Kinetics of the $\beta^{\prime \prime}$-to- β Transformation in the System Na2O-A12 O_{3} Journal of American Ceramic Society 66 (3) 1983: pp. 166-169.
https://doi.org/10.1111/j.1151-2916.1983.tb10009.x
14. Takahashi, T., Kuwabara, K. $\beta-\mathrm{Al}_{2} \mathrm{O}_{3}$ Synthesis from m$\mathrm{Al}_{2} \mathrm{O}_{3} \quad$ Journal of Applied Electrochemistry 10 (3) 1980: pp. 291-297. https://doi.org/10.1007/BF00617203
15. Morgan, P.E.D. Low Temperature Synthetic Studies of Beta-Aluminas Materials Research Bulletin 11 (2) 1976: pp. 233-241.
https://doi.org/10.1016/0025-5408(76)90080-5
16. Yoldas, B.E., Partlow, D.P. Formation of Continuous Beta Alumina Films and Coatings at Low Temperatures American Ceramic Society Bulletin 59 (6) 1980: pp. 640-642.
17. Zaharescu, M., Parlog, C., Stancovschi, V., Crisan, D., Braileanu, A. The Influence of the Powders Synthesis Method on the Microstructure of Lanthanum-Stabilized β Alumina Ceramics Solid State Ionics 15 1985: pp. 55-60. https://doi.org/10.1016/0167-2738(85)90107-9
18. Yamaguchi, S., Terabe, K., Iguchi, Y., Imai, A. Formation and Crystallization of Beta-Alumina from Precursor Prepared by Sol-Gel Method Using Metal Alkoxides Solid State Ionics 24 (2-3) 1987: pp. 171-176. https://doi.org/10.1016/0167-2738(87)90117-2
19. Jayaraman, V., Gnanasekaran, T., Periaswami, G. LowTemperature Synthesis of β-Aluminas by a Sol-Gel Technique Materials Letters $30(2-3)$ 1997: pp. 157-162. https://doi.org/10.1016/S0167-577X(96)00193-0
20. Parthasarathy, P., Virkar, A.V. Vapor Phase Conversion of α-Alumina + Zirconia Composites into Sodium Ion Conducting Na- $\beta^{\prime \prime}$-Alumina + Zirconia Solid Electrolytes Journal of Electrochemistry Society 160 (11) 2013: pp. A2268 - A2280.
http://dx.doi.org/10.1149/2.095311jes
21. Ghadbeigi, L., Szendrei, A., Moreno, P., Sparks, T.D., Virkar, A.V. Synthesis of Iron-Doped Na- $\beta^{\prime \prime}$-alumina + Yttria-Stabilized Zirconia Composite Electrolytes by a Vapor $\begin{array}{lll}\text { Phase Process } & \text { Solid State Ionics } 290 & \text { 2016: pp. 77-82. }\end{array}$ http://dx.doi.org/10.1016/j. ssi.2016.04.006.
22. Sparks, T.D., Ghadbeigi, L. Anisotropic Properties of Naβ "-Alumina + YSZ Composite Synthesized by Vapor Phase Method Journal of Materials Research 33 (1) 2018: pp. $81-89$ http://dx. doi.org/10.1557/jmr.2017.436.
23. Youngblood, G.E., Virkar, A.V., Cannon, W.R., Gordon, R.S. Sintering Process and Heat Treatment Schedules for Conductive, Lithia-Stabilized Beta Double Prime- $\mathrm{Al}_{2} \mathrm{O}_{3}$ American Ceramic Society Bulletin 56 (2) 1977: pp. 206-210.
24. Wen, Z., Cao, J., Gu, Z., Xu, X., Zhang, F., Lin, Z. Research on Sodium Sulfur Battery for Energy Storage Solid State Ionics 179 (27-32) 2008: pp. 1697-1701. https://doi.org/10.1016/j.ssi.2008.01.070
25. Erkalfa, H., Misirli, Z., Demirci, M., Toy, C., Baykara, T. The Densification and Microstructural Development of $\mathrm{Al}_{2} \mathrm{O}_{3}$ with Manganese Oxide Addition Journal of European Ceramic Society 15 (2) 1995: pp. 165-171. https://doi.org/10.1016/0955-2219(95)93062-8
26. Erkalfa, H., Misirli, Z., Baykara, T. The Effect of TiO_{2} and MnO_{2} on Densification and Microstructural Development of Alumina Ceramics International 24 (2) 1998: pp. 81-90. https://doi.org/10.1016/S0272-8842(97)00082-5
27. German, R.M. Liquid Phase Sintering, $1^{\text {st }}$ ed., Springer US. New York, 1985: pp. 127-155. https://doi.org/10.1007/978-1-4899-3599-1
28. Boilot, J.P., Kahn, A., Thery, J., Collongues, R., Antoine, J., Vivien, D., Chevrette, C., Gourier, D. Influence of Foreign Ions Addition on Relative Stability and Electrical Conductivity of β and $\beta^{\prime \prime}$ Alumina Type Phases Localization of Impurities International Symposium on Solid Ionic and Ionic-Electronic Conductors 1977: pp. 741-745. https://doi.org/10.1016/0013-4686(77)80029-7
29. Geller, S. Solid Electrolytes, $1^{\text {st }}$ ed. Springer-Verlag Berlin Heidelberg Berlin, 1977: pp. 105-141. https://doi.org/10.1007/3-540-08338-3
30. Wasiucionek, M., Garbarczyk, J., Jakubowski, W. Electrical Properties of $\mathrm{CoO}, \mathrm{NiO}, \mathrm{CuO}$ and ZnO Doped Beta"-Alumina Solid State Ionics 7 (4) 1982: pp. 283-286. https://doi.org/10.1016/0167-2738(82)90024-8
31. Li, J., Ye, Y. Densification and Grain Growth of $\mathrm{Al}_{2} \mathrm{O}_{3}$ Nanoceramics during Pressureless Sintering Journal of American Ceramic Society 89 (1) 2006: pp. 139-143. https://doi.org/10.1111/j.1551-2916.2005.00654.x
32. Xie, L., Cormack, A.N. Cation Distribution in Magnetoplumbite and $\beta^{\prime \prime}$-Alumina Structures Materials Letters 9 (11) 1990: pp. 474-479. https://doi.org/10.1016/0167-577X(90)90121-2
33. Collin, G., Boilot, J.P., Colomban, P., Comes, R. Host Lattices and Superionic Properties in β - and β "-Alumina. I. Structures and Local Correlations Physical Review B 34 (8) 1986: pp. 5838-5849. https://doi.org/10.1103/PhysRevB.34.5838
34. Bera, J. Structure Analysis of $\beta^{\prime \prime}$-Alumina in Syntaxy with β Alumina by Two-Stage X-Ray Powder Diffractometry Solid State Communications 82 (3) 1992: pp. 205-210. https://doi.org/10.1016/0038-1098(92)90265-B
35. Reser, M.K. Phase Diagrams for Ceramics, $2^{\text {nd }}$ ed., The American Ceramic Society Inc. 1979: pp. 114(4 ${ }^{\text {th }}$ printing).
36. Mak, T.C.W., Zou, G.D. Crystallography in Modern Chemistry $1^{\text {st }}$ ed. Wiley-Interscience, New York, 1992.
37. Xu, D., Jiang, H., Li, M., Hai, O., Zhang, Y. Synthesis and Characterization of $\mathrm{Y}_{2} \mathrm{O}_{3}$ Doped $\mathrm{Na}-\beta^{\prime \prime}-\mathrm{Al}_{2} \mathrm{O}_{3}$ Solid Electrolyte by Double Zeta Process Ceramics International 41 2015: pp. 5355-5361. https://doi.org/10.1016/j.ceramint.2014.12.094
38. Akridge, J.R., Kennedy, J.H. Absorption and Emission Spectroscopy and Magnetic Susceptibility of Sodium β Alumina Doped with Mn, Co, and Ni Journal of Solid State Chemistry 29 (1) 1979: pp. 63-72.
https://doi.org/10.1016/0022-4596(79)90209-3

[^0]: * Corresponding author. Tel.: +82-2-450-3500; fax: +82-2-444-3490. E-mail address: sklim@konkuk.ac.kr (S.K. Lim)

