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The regenerated Antheraea pernyi silk fibroin (RASF) was harvested by dissolving the silk fibers in a calcium nitrate 

solution. XRD result demonstrated that both native and regenerated Antheraea pernyi silk fibroin involved the α-helix 

conformation, and DTG curves showed that their thermal decompositions were quite similar and proceeded three steps. 

However, rheological measurements figured out that the molecule weight of RASF decreased from 246 kDa to 199 kDa, 

comparing with native Antheraea pernyi silk fibroin. Also, the tensile properties of the RASF film, which were the same 

to those of regenerated Bombyx mori silk fibroin film, were observed. 
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1. INTRODUCTION  

Silk fibroin (SF) is a kind of natural protein derived 

from different silkworms, either domestic (Bombyx mori) 

or wild (Antheraea pernyi, Antheraea assama, Samia 

cynthia ricini, etc) ones [1 – 3]. Because of its tunable 

morphology and wonderful biocompatibility, SF has 

attracted scientists’ attention for many decades [4 – 6]. The 

regenerated Bombyx mori silk fibroin (RBSF) has been 

widely investigated and produced to bio-related materials 

with various shape and properties, including microspheres, 

electrospun fibers, films, hydrogels, scaffolds, etc [7 – 10]. 

Otherwise the materials based on regenerated Antheraea 

pernyi silk fibroin (RASF) were limited by lack of 

regenerated solution. 

Unlike the Bombyx mori (B. mori) silk, the Antheraea 

pernyi (A. pernyi) silk is very difficult to be dissolved 

because of the differences not only on the amino acid 

compositions and sequences of these two silk proteins 

(fibroins) but also on the organization of the silk fibers. 

Generally, the A. pernyi silk fibroin (ASF) contains 

poly(Ala) segments while the B. mori silk fibroin （BSF）
is dominated by the sequence of GAGAGAGS [11 – 13]. 

Additionally, ASF has the characteristic tripeptide 

sequence Arg-Gly-Asp (RGD), which is recognized to 

have special interaction with extracellular matrix of 

mammalian cells [14]. The presence of RGD sequences in 

ASF is advantageous over domestic silk fibroin, which 

provides us an opportunity to prepare biomedical materials 

with better bio-properties than those derived from B. mori 

silk fibroin [15, 16]. Based on this feature, the interests rise 

in the use of ASF as raw material for advanced biomedical 

applications. However, the early researchers usually 

collected ASF solution from the full-grown silkworms’ silk 

gland [17 – 19]. Such extraction process is complicated 

and the amount of the material may be not enough to meet 

the requirement of research and application.  
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Therefore, it is necessary to dissolve A. pernyi silk 

fibers to regenerate A. pernyi silk fibroin. Recently, 

researchers used lithium thiocyanate solution or Ca(NO3)2 

to produce RASF aqueous solution [16, 20, 21]. There is a 

direct correlation between properties of solution and 

characteristics of material [22, 23]. Comprehensive studies 

of solution will lead to better understanding of the 

properties of materials. However, few studies on 

regenerated ASF solution have been reported. In this work, 

we investigated the conformational changes of ASF before 

and after regenerated process through x-ray diffraction 

(XRD) analysis. The influence of dissolution on molecule 

weight was studied with rheological method as well. 

Furthermore, we prepared regenerated A. pernyi silk 

fibroin film with good mechanical property which has 

potential applications in biomedical fields. 

2. EXPERIMENTAL DETAILS 

Native silk fibroin was collected from the silk gland of 

A. pernyi silkworm. The gel-like silk fibroin was immersed 

in deionized water for several times in order to remove silk 

sericin as much as possible after peeling the epithelial skin 

of the gland by forceps. A. pernyi silk cocoon was 

degummed with 0.5 wt.% Na2CO3 aqueous solution for 

30 min at 100 °C twice and then dried in vacuum drier at 

50 °C. 340 g Ca(NO3)2·4H2O was melted at 100 °C to turn 

to the aqueous solution of Ca(NO3)2 and then 10 g 

degummed silk fibers were dissolved in. After being 

filtered, the fibroin solution was dialyzed against deionized 

water for 3 days at 4 °C with a 12 – 14 kDa cutoff 

semipermeable membrane to remove the salt.  

Both native gel-like silk fibroin and RASF solution 

were frozen at  – 20 °C for 24 h and then lyophilized in 

freeze dryer. The samples were kept in vacuum drier for 

further experiments. 

To concentrate the aqueous solution of RASF till 

10 wt.%, the original one (around 4 wt.%) was filled into a 

12 – 14 kDa cutoff semipermeable membrane and then 

immersed in PEG 20000 solution at 4 °C. RASF films 

were obtained by casting such a solution on polystyrene 
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substrate at 20 °C and dried for 1 day. B. mori cocoons 

were degummed with NaHCO3 aqueous solution and then 

dissolved in LiBr aqueous solution. RBSF films were 

obtained as the same method mentioned above, according 

to the established procedures [24]. 

X-ray diffraction curves were recorded with a Bruker 

D8 ADVANCE and DAVINCI.DESIGN X-ray powder 

diffractometer, with 40 kV voltage and 40 mA current of 

the X-ray source, respectively [25]. 

The thermal stability of sample was examined up to 

500 °C through Perkin Elmer Pyris-1 thermogravimetric 

analyzer (TGA) at a heating rate of 10 °C/min. A purging 

nitrogen gas stream of 40 mL/ min was used. 

The lyophilized native and regenerated ASF were 

dissolved in ion liquid of AmimCl (1-allyl-3-

methylimidazolium chloride) for rheological 

measurements, which were carried on a stress-controlled 

rheometer, Physical MCR-301 (Anton Paar Co. Inc.), 

protected with N2 through a H-PTD200 hood with peltier 

heating/cooling system, according to the established 

procedures [26].The storage and loss modulus, G’(ω) and 

G”(ω), were measured as functions of frequency ω for the 

native and regenerated ASF/AmimCl solutions. 

Tensile tests were carried out on Instron 5565 

universal test machine at room temperature and 

50  5 % RH. 

3. RESULTS AND DISCUSSION 

3.1. X-Ray diffraction curves 

Fig. 1 showed the XRD curves of native ASF, RASF 

film and RASF film after methanol treatment. In native 

and regenerated ASF samples, the 2θ pattern was 

characterized by the presence of 11.5° and 22.5°, which 

was characteristic of α-helix crystalline structure [27]. It 

could be concluded that these two samples contained a 

variable proportion of α-helix due to the presence of -

(Ala)n- repeats in the primary structure of the protein, as 

well as random coil conformation. After treatment by 

immersing in 80 % (v/v) methanol-water solution for 24 h, 

the re-dried RASF film exhibited rather different 

diffraction curve, with a major peak at about 20.5°, and 

two minor peaks, in shoulder form, at 16.5° and 24.5°. The 

crystalline spacings were features of A. pernyi film with β-

sheet structure. The reason for conformation transition of 

silk fibroin from α-helix to β-sheet should lie on methanol 

could destroy inter- or intra molecular hydrogen bonds to 

induce the movement of protein chain and the dehydration 

of methanol-water solution also contributed to the 

formation of insoluble β-sheet structure [27]. 

Besides, both lyophilized ASF sample and RASF film 

could be dissolved in water easily. Combining the result 

from XRD, we concluded that the dissolution with 

Ca(NO3)2 did not affect the conformation of ASFs, as they 

were primarily composed of α-helix and random coli 

conformation.  

3.2. Thermal properties 

Fig. 2 displayed the differential thermogravimetric 

curves of native ASF, RASF and RBSF samples. At the 

first peak between 60 and 120 °C in DTG curves, the 

weight loss was obviously due to water vaporization. As 

temperature increased to 500 °C, the thermal effect of both 

ASF samples presented three main steps: (i) small peak at 

225 °C, slight thermal decomposition of silk fibroin 

molecules (ii) shoulder at 250 – 370 °C, a sharp drop of 

weight loss and (iii) peak at 370 – 420 °C, a main 

degradation. 
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Fig. 1. X-ray diffraction patterns of native ASF (A), RASF film 

(B) and RASF film-methanol treatment (C) 

On the other side, thermal decomposition of RBSF 

film which took place in a single step and the maximum 

thermal degradation rate occurred at around 295 °C was 

totally different. Reasonably, it was due to different amino 

acid compositions as well as conformations involved in 

ASF and BSF. Moreover, there was essentially no 

difference in thermal behaviors between native and 

regenerated ASF sample, which was in agreement with the 

XRD observation. 
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Fig. 2. DTG spectra of native ASF (A), RASF film (B) and RBSF 

film (C) 

3.3. Molecule weight of A. pernyi silk fibroin 

It is well known that the molecule weight of polymer 

has a great effect on properties of materials. In regenerated 

process, multiple factors including the solvent and 

temperature, etc. would contribute to the degradation of 

silk fibroin. Therefore, we estimated the molecule weight 

of native and regenerated ASF samples to find out whether 

the Ca(NO3)2 solution was suitable for preparing RASF. 

Silk fibroin, which has the amphiphilic structure of 

molecular chain, tends to aggregate in aqueous solution, 

and the degradation of SF is thought to be random. 

Therefore many traditional measurements of molecule 

weight are not suitable for the regenerated silk fibroin  
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[28 – 30]. Wang [26] et al. invented a rheological method 

based on ionic liquid solution to calculate molecule weight 

of RBSF. In general, the linear viscoelastic moduli of 

RBSF/AmimCl solution exhibited Rouse-like behavior, 

which described the relationship between modulus, 

concentration and molecule weight. By fitting the 

experimental modulus data with the Rouse model  

(Eq. 1 – Eq. 3), molecule weight could be calculated. 
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where  is the density, R is the gas constant and T is the 

absolute temperature, 0 is the zero-shear viscosity, Mi and 

f(i) are the molecular weight and weight fraction of the i-th 

component, ip is the relaxation time of the i-th component, 

respectively. 

The chemical structure and composition of ASF was 

obviously different from those of BSF, which was 

demonstrated by DTG observation mentioned above. 

Firstly, we checked if the method was suitable for ASF.  

According to the result of gene sequencing, the amino 

acid sequence of ASF contains 2,639 amino acid residues, 

producing a molecule weight of 216 kDa [12, 31]. We 

carried the experiments at 30 °C, 20 °C and 10 °C (Fig. 3 

and Fig. 4).  

 

Fig. 3. Viscosity, G’(ω) and G”(ω) for the native A.pernyi silk 

fibroin solution at different temperature 

 

Fig. 4. Viscosity, G’(ω) and G”(ω) for the regenerated A.pernyi 

silk fibroin solution at different temperature 

After fitting, we compared the storage and loss 

modulus (scatter) for the native ASF/AmimCl solution and 

theoretical curves (line) based on Rouse-model with the 

Gaussian distribution, as shown in Fig. 5 a. The result 

showed that the weight-average molecular weight (Mw) for 

the native ASF was 246 kDa, which was only a little 

higher than 216 kDa, suggesting this method for 

determining molecular weight of ASF was reliable. 

Besides, as the number-average molecular weight (Mn) 

was 242 kDa, the polydispersity index (Mw/Mn) of the 

molecular weight of the native ASF was calculated to 1.01, 

which was consistent with the fact of biosynthesized 

protein. In such a situation, Mw and Mn for RASF were 

estimated to 199 kDa and 96 kDa, respectively, according 

to the fitting in Fig. 5 b. These results suggested that the 

Ca(NO3)2 dissolution process damaged molecule chain of 

ASF to an acceptable degree, and the degradation of the 

ASF was truly random (Fig. 6). 
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Fig. 5. a – native ASF; b – regenerated ASF samples: Linear 

storage and loss modulus, G” (dashed) and G’ (solid). The 

lines are the theoretical curves based on the Rouse model 

incorporating with Gaussian distribution of molecular 

weight 

3.4. Mechanical properties 

With good transmission and biocompatibility, RASF 

film has attracted researchers’ attention. For examples, Li 

et al studied structure change in RASF film induced by 

ethanol [32], and Kweon et al worked out the 

conformational change in RASF film with heat 

treatment[33]. However, the RASF trended to aggregate in 

aqueous solution during the concentrated process, these 

investigation were based on low concentration solution 

( 3 wt.%) and thin film, which could only be used for 

structure study rather than the mechanical test. 

In our work, we harvested the RASF aqueous solution 

with high concentration (about 10 wt.%) via the low 

temperature reversing dialysis in PEG solution. Then the 
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round-shape RASF film with a size of 70 mm in diameter 

and 100 μm in thickness was cast. The stress-strain curve 

of the RASF film was shown in Fig. 7, displaying a typical 

brittle fracture. The average breaking stress and breaking 

strain of RASF film were 60.4 MPa and 2.5 %, 

respectively, which was higher than existing reports [34]. 
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Fig. 6. a – native ASF; b – regenerated ASF: Molecular weight 

distribution obtained from fitting viscoelastic moduli with 

the Rouse model 

The stress-strain curves of A. pernyi and B. mori silk 

fibers were shown in Fig. 7 insert.  
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Fig. 7. Stress-strain curves of RASF film and RBSF film (Insert: 

stress-strain curves of RASF film, RBSF film, A. pernyi 

silk fiber and B. mori silk fiber) 

 

Remarkably, the mechanical properties of natural 

fibers were infinitely superior to those of regenerated 

films. This could be attributed to the fact that the final 

properties were greatly affected by the structure. The 

natural silk fiber could be regarded as a semi-crystalline 

material, within which macromolecular chains as well as 

the nano-fibrils were oriented parallel to the fiber axis, 

producing during the spinning process of silkworm. It was 

widely accepted that highly ordered/oriented regions 

mainly define the strength and stiffness, while amorphous 

regions contribute to the elasticity of silks [35, 36]. On the 

other sides, the molecule chains were poorly aligned in the 

regenerated silk fibroin film, combining with some of 

entanglements [37]. Such a structure caused insufficient 

intermolecular interaction to induce the sliding between 

silk fibroin chain at low tensile stress/strain [38]. In all, it 

suggested that the varied structures among natural silk 

fibers and regenerated silk fibroin based materials rather 

than other factors such as molecular weight etc. determined 

the differences of their mechanical properties. 

Furthermore, the stress-strain curves of A. pernyi silk 

fiber might had a distinct yield point followed by obvious 

strain hardening. In contrast, B. mori silk fiber displayed 

an unapparent distinct yield point and mild strain 

hardening. In B. mori silk, the main repeating motif 

GAGAGS formed the β-sheets, with Gly facing one side 

and Ala the other side [39]. However, the crystal structure 

of A. pernyi silk was found to be the combination of β-

sheet and α-helix composed of short and long polyalanine 

[40]. Although they shared the similar condensed structure, 

i.e. oriented chains/nano-fibrils, the variation on the 

mechanical behaviors of two natural silk fibers were 

mainly due to their different primary and secondary 

structures of silk fibroin. However, the fracture behaviors 

of RASF and RBSF film were nearly identical, despite the 

differences in their own fibers. The regenerated process, 

followed with harsh solvents and often high temperatures, 

totally destroyed original structure of fibers. Therefore, the 

similar film formation process resulted in the same 

mechanical properties of silk fibroin. 

4. CONCLUSIONS 

In summary, in regenerated A. pernyi silk fibroin 

solution obtained by dissolving degummed fibers with 

melted Ca(NO3)2·4H2O, the conformations of RASF were 

similar to those of native ASF, mainly contained α-helix 

and random coil structure. Mw for RASF was 199 kDa, 

which was about 80 % of that of native ASF. Although 

other research evidenced that the mechanical characters of 

RASF scaffold which were obtained with such RASF/1-

butanol solution under freezing process were quite 

different from the counterparts of RBSF [16], the 

mechanical properties of our as-prepared RASF film were 

the same as the one of RBSF film. The RASF film was 

characterized by a breaking stress reaching 60.4 MPa, 

which had potential in tendon and ligament regeneration 

[41]. In all, our research may help in improvement and 

modification to produce wild silk-based materials for 

specific applications. 
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