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A series of pure and copper-doped cobalt oxide films was prepared by plasma-enhanced metalorganic chemical vapor 
deposition (PEMOCVD). The effect of Cu-doping on the chemical structure and morphology of the deposited films was 
investigated. Raman and FTIR spectroscopies were used to characterize the chemical structure and morphology of the 
produced films. The bulk composition and homogeneity of the samples were investigated by energy dispersive X-ray 
microanalysis (EDX), and X-ray photoelectron spectroscopy (XPS) was employed to assess the surface chemical 
composition of pure and doped materials. The obtained results permit to affirm that the PEMOCVD technique is a 
simple, versatile and efficient method for providing homogeneous layers of cobalt oxides with a different content of 
copper. It has been found that pure cobalt oxide films mainly contain Co3O4 in the form of nanoclusters whereas the 
films doped with Cu are much more complex, and CoOx (also Co3O4), mixed Co-Cu oxides and CuOx nanoclusters are 
detected in them. Preliminary catalytical tests show that Cu-doped cobalt oxide films allow to initiate catalytic 
combustion of n-hexane at a lower temperature compared to the pure cobalt oxide (Co3O4) films. From what has been 
stated above, the plasma-deposited thin films of Cu-doped cobalt oxides pave the way towards a new class of 
nanomaterials with interesting catalytic properties.  
Keywords: plasma deposition; copper-doped cobalt oxide catalysts; Raman spectroscopy; X-ray photoelectron 

spectroscopy; energy dispersive X-ray microanalysis. 
 
1. INTRODUCTION∗ 

Transition metal oxides represent a group of very 
promising materials, which due to their properties can be 
used in extensive applications as gas sensors, coatings, 
solar absorbers, electrodes in supercapacitors, 
electrochromic devices and magnetic materials [1 – 6]. In 
recent years, much effort has been devoted to the use of 
these materials in catalysis [7 – 12]. Such extensive studies 
are related to the search for active, low cost replacements 
for noble metals (Pt, Pd, Rh), which show specific high 
activity but are costly, sensitive to poisoning and sintering 
[13 – 15]. Especially, various mixed transition metal oxides 
with the spinel structure, such as NiFe2O4 [16], CuMn2O4 
[17], CuCr2O4 [18], CrxCo3–xO4 [19], LixCo3–xO4 [20], have 
been found very attractive in this field. Catalytic activity 
and performance of these materials have been remarkably 
improved, compared to non-doped materials, due to the 
interaction (synergetic effects) between different metal 
oxides dispersed on the surface [21 – 23].  

Recently, much attention has been paid to copper-doped 
cobalt oxide nanocatalysts due to their ability to catalyze 
many important reactions including oxidation of CO [24], 
higher alcohol synthesis [25], NO reduction by CO [26], 
VOC combustion [27], methanol decomposition [28]. 
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Several authors have described different methods of 
preparation of this type of catalytic materials including 
thermal decomposition, spray pyrolysis, sol-gel technique, 
chemical coprecipitation [29 – 32]. However, there are only 
a few reports concerning the plasma-enhanced chemical 
vapor deposition (PECVD), a method used to manufacture 
doped or mixed functional materials [33 – 37]. Itoh et al. 
[33] reported that the microwave plasma assisting CVD is a 
very convenient tool to obtain mixed oxide thin films from 
volatile β-diketonates as precursors. Arockiasamy et al. [35] 
described the synthesis of composite coatings Ni/TiO2 by 
plasma-assisted metal-organic (PAMO) CVD using argon 
and nitrogen as discharge gases. Another example of the use 
of plasma enhanced CVD to produce glucose sensor are 
given by Seo et al. [37]. In this case, oxygen RF plasma, 
150 W of power, was used to prepare Pd-doped tin oxide 
thin films from stannic chloride (SnCl4) and palladium 
hexafluroacetylacetonate (Pd(C5HF6O2)2) as precursors. 

As it was shown earlier, also by us [7, 38], the so-called 
“plasma catalysts” represent a group of materials exhibiting 
a high activity and catalytic efficiency comparable to or 
even better than “classical catalysts”. Moreover, they allow 
for the reduction of production costs as well as 
environmental pollution. A utilized method (PEMOCVD) 
enables the control of grain size of nanocrystals [39], which 
attracted remarkable attention in different reactions sensitive 
to shape and crystal plane effects. 
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Therefore, we make an attempt to manufacture copper-
doped cobalt oxide nanocatalysts which may play a 
significant role in the chemical industry. Preliminary 
catalytical tests, carried out on the first batch of these 
catalysts, show that the initiation temperature of catalytic 
combustion of n-hexane is lower (220 ºC) and activation 
energy (111kJ/mol) is comparable to the pure cobalt oxide 
(Co3O4) nanocatalysts [27]. This encouraged us to continue 
the work on the optimization of plasma processes in order 
to achieve an uniform layer of copper-doped cobalt oxide 
nanocatalysts with different contents of copper in the 
composition. 

The present work aimed to investigate the effect of 
Cu-doping on the chemical structure and morphology by 
Raman and FTIR spectroscopies. Energy dispersive X-ray 
microanalysis (EDX) and X-ray photoelectron 
spectroscopy (XPS) were employed to determine the bulk 
composition and homogeneity of the samples and the 
surface chemical composition of pure and doped materials, 
respectively. 

2. EXPERIMENTAL PART 

2.1. Deposition technology 
The plasma-enhanced metalorganic chemical vapor 

deposition (PEMOCVD) was applied to produce copper-
doped cobalt oxide films. A RF plasma reactor (13.56 MHz), 
which was used for deposition, is schematically shown in 
Fig. 1. A detailed description of the reactor was given 
elsewhere [40]. However, some changes have been made in 
the form of additional reservoir for liquid monomer with a 
separate system of temperature stabilization. To produce the 
films, bis(acetylacetonate) copper(II) (Cu(acac)2 (Sigma-
Aldrich 98 %), blue powder under standard condition with 
vapor pressure 6.65 Pa at 78 ºC, and cyclopentadienyl 
(dicarbonyl)-cobalt(I) (CpCo(CO)2 (Stream Chemicals, Inc. 
min. 95 %), liquid under standard conditions, were used as 
precursors. Argon (99.999 % purity) and oxygen (99.95 % 
purity) were applied as the carrier gases with the flow 
0.71 sccm and 0.1 sccm, respectively, regulated by Brook’s 
mass flow controllers. The total pressure in the reactor 
chamber was approx. 4 Pa depending on the deposition 
parameters. The flow rate of Cu(acac)2 was regulated by the 
change of the sublimation temperature with a fixed flow of 
CpCo(CO)2 amounting to ca. 0.02 sccm. The glow discharge 
power was 40 W. The details of the preparation conditions 
are included in Table 1. 

As substrates, glass plates with an evaporated thick Au 
layer (for Raman spectroscopy and ellipsometric 
measurements) and a thin gold foil (for EDX and XPS 
analysis) were used.  For  FTIR spectroscopy  the films were 

deposited on thin (1 mm thick) pellets with a diameter of 
13 mm obtained from cesium iodide (CsI Alfa Aesar, 
99.9 %) using a hand forming press with the load of 
1.7 GPa. 

One of the type of samples (CoCu130Ar) was also 
modified by thermal treatment. In this case CoCu130ArW 
samples were produced. The treatment process was performed 
in a stream of air at the temperature of 350 ºC for 15 min. 

2.2. Characterization techniques 
To characterize the composition and homogeneity of 

the pure and doped materials, scanning electron 
microscopy with energy dispersive X-ray microanalysis 
(SEM-EDX FEI Quanta 200F with Oxford Instruments 
detector X-Max50) were used.  

 

 - heating elements 

O2 

Ar 

ultra-thermostat 

ultra-thermostat 

matching 

RF power 

temp. 
controller  

pumping 
system 

mass flow 
controllers 

regulating valve 

solid 
precursors 

liquid 
precursors 

el
ec

tro
de

s 
su

bs
tra

te
 

carrier gas 

 
Fig. 1. A schematic diagram of RF plasma reactor. 

The thickness of the pure copper oxide and pure cobalt 
oxide films was measured by a null ellipsometer Rudolf 
431A working at an incident light wave of 632.8 nm. 

The chemical structure and morphology of the films 
was investigated by FTIR and Raman spectroscopy. 
Fourier transform infrared transmission spectra (FTIR) 
were taken with Jasco FT/IR-6200 spectrometer with a 
spectral resolution of 0.5 cm–1 for MIR region 4000 cm–1 
to 600 cm–1. Raman spectra were obtained by a Jobin Yvon 
Raman spectrometer T64000, equipped with a microscope. 
As a source of light, an argon laser (λ = 514.5 nm) was 
used. All measurements were taken at the room 
temperature with integration time for every single 
spectrum equal to 15 min.  

To assess the surface chemical composition of pure 
and doped materials, X-ray photoelectron spectroscopy 
(XPS) was employed. Photoelectron spectra were recorded 
on a Thermo VG ESCALAB 250 spectrometer equipped 
with a monochromatic Al Kα X-ray source (150 W, 15 kV, 

Table 1. Preparation conditions of the samples 

Sample name Precursors Carrier gas Pressure [Pa] Deposition time [min] Thermal treatment 

CoArO2 CpCo(CO)2 – 24 ºC Ar + O2 4.4 90 No 
Cu150ArO2 Cu(acac)2 – 150oC Ar + O2 4.4 90 No 
CoCu130Ar CpCo(CO)2 – 24 ºC; Cu(acac)2 – 130 ºC Ar 4.0 60 No 
CoCu130ArW CpCo(CO)2 – 24 ºC; Cu(acac)2 – 130 ºC Ar 4.0 60 Yes 
CoCu130ArO2 CpCo(CO)2 – 24 ºC; Cu(acac)2 – 130 ºC Ar + O2 4.6 90 No 

 



 272 

1486.6 eV) at a spot size 500 µm, and a magnetic lens that 
makes it possible to obtain higher sensitivity. Base 
pressure in the analysis chamber was ca. 5×10–9 mbar; pass 
energy was set at 100 eV and 40 eV, with step size 1.1 eV 
and 0.11 eV for the survey and the narrow regions, 
respectively. Binding energies were determined by 
attributing to the main C1s peak a value of 284.9 eV. 
Sample charge compensation wasn’t applied due to high 
content of carbon in the films and thus good conductivity. 
The obtained spectra have been processed involving 
background subtraction (Shirley-type), and a curve fittings 
procedure (mixed Gaussian 70 % – Lorentzian 30 % lines 
shape). The surface composition (at.%) was determined by 
considering the integrated peak areas and the 
corresponding atomic sensitivity factors. 

3. RESULTS AND DISCUSSION 
Ellipsometric studies provide us with information 

about the thickness of the investigated layers and their 
growth rate. However, only for pure materials it was 
possible to carry out measurements and determination of 
mentioned parameters. Unfortunately, for doped materials, 
this technique was insufficient to obtain accurate values of 
the thickness. For the mixture of Ar and O2 as carrier 
gases, for pure materials we deposited films (CoArO2; 
Cu150ArO2) with thickness ~60 nm and growth rate ca. 
0.67 nm/min. In all cases, the thickness of the films as a 
function of deposition time was linear. 

To find in which way Cu-doping affected the chemical 
structure and morphology of the deposited films, Raman 
spectroscopy has been applied. Two evident regions of 
bands can be distinguished: the region I between 150 cm–1 
and 800 cm–1 attributed to Co and Cu oxide structures, and 
the region II at (1000 – 3500) cm–1 assigned to carbon 
structures (Fig. 2). As it can be seen in Fig. 2, A, some 
apparent Raman bands are observed in the region I for 
samples deposited with the mixture of Ar and O2. For 
sample CoArO2, the peaks are at 682, 610, 513, 471 cm–1 
and 191 cm–1, which originate from Co3O4 and had been 
reported previously [38]. Two characteristic bands exist for 
sample Cu150ArO2, at 625 cm–1 and 445 cm–1, which can 
be assigned to CuOx. After comparing these bands with the 
database [41], we specified that we can have mixed CuO 
and Cu2O oxides. This conclusion comes from the fact that 
the band at 625 cm–1 may originate from CuO or Cu2O and 
the band at 440 cm–1 is observed only for Cu2O. The 
sample prepared from the mixture of copper and cobalt 
precursors showed four peaks. The Raman peak observed 
at 682 cm–1 was assigned to A1g modes of crystalline 
Co3O4, the band located at 445 cm–1 was recognized as 
belonging to Cu2O. The two broad bands at 510 cm–1 and 
615 cm–1 are not assigned and probably emerged as a result 
of mixed cobalt and copper oxides. As it can be seen in 
Fig. 2, B, for the sample prepared with Ar as a carrier gas, 
no apparent Raman bands are observed in the region 
200 cm–1 to 800 cm–1. It suggests that we have an 
amorphous structure with a very high dispersion of copper 
and cobalt oxides [38]. In the carbon region, three distinct 
bands were observed corresponding to the typical graphite 
G line centered at around 1560 cm–1 and the so-called 
disordered graphite D line centered around 1370 cm–1, the 

third peak located at ca. 2950 cm–1 is associated with C–H 
bonds. Moreover, after thermal treatment, the situation was 
reversed because in the region II no bands were 
recognized, but in the region I several peaks appeared 
which correspond to the cobalt and copper oxides 
described above. Sample CoCu130ArO2 shows bands in 
both regions of Raman spectra. However, the peaks in the 
carbon region are two times less intensive with comparison 
to those for sample CoCu130Ar. The difference stems 
from the addition of oxygen to the reaction mixture, which 
degrades the carbon structure. It is worth noting that such 
an addition of oxygen in the case of non-doped layers 
deposition is sufficient to completely remove the carbon 
structure. 
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Fig. 2. Raman spectra of the investigated films: A – deposited 

with the mixture of Ar and O2; B – copper-doped cobalt 
oxide films 

For more information on the chemical structure of 
deposited films, FTIR spectroscopy was used. Typical 
spectra collected for pure and doped materials deposited in 
the mixture of Ar and O2 are displayed in Fig. 3. The spectra 
suggest that these films, regardless of the type of deposited 
film, have in their structure an organic matrix rich in carbon 
bonded to hydrogen and oxygen. Being more precise, it 
should be stressed that the presented spectra show some very 
characteristic absorption bands: the strong bands centered at 
about 3450 cm–1 are assigned to the stretching vibration of 
O–H groups. Bands appearing at 2920 cm–1 and 2860 cm–1 
are referred to asymmetric and symmetric stretching 
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vibration of CH2, respectively. At 2950 cm–1, there is a band 
originating from methyl groups. The band situated at 
1100 cm–1 can be identified with C–O stretching vibrations. 
Bands from the range 1300 cm–1

 – 1900 cm–1 are connected 
also with the organic matrix and suggest that its structure is 
quite complicated. 

Based on the FTIR spectra we are not able to state 
clearly the presence of cobalt and copper oxides bands 
[30, 42, 43]. This problem will be further investigated, but 
already now we should emphasize the usefulness of Raman 
spectroscopy for the study of such oxide structures. 

EDX analysis was used to find bulk composition of 
deposited films. The measurements were performed at ten 
different points to confirm the homogeneity of the layers. 
The results are shown in Table 2 together with the results 
obtained from XPS measurements for the surface chemical 
composition. 
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Fig. 3. FTIR spectra of the pure and doped materials deposited 

with mixed Ar and O2 as carrier gas 

As one can see, the presented results confirm the 
results from Raman and FTIR spectroscopy, proving the 
presence of carbon, oxygen, cobalt and copper in all 
samples. The observed significant differences between the 
bulk and surface composition could not be explained 
without an additional extensive study, and will be reported 
elsewhere. Such differences were already shown for films 
formed from mixtures of pure metal oxides [44, 45]. This 
was explained by surface segregation effects. In our case, 
however, the problem is much more complex due to the 
presence of the organic matrix which is in permanent 
interaction with the oxide fractions. 

The XPS spectroscopy was used, apart from the 
determination  of  the  surface  composition, to identify  the 

chemical structure of the pure and doped materials. 
Fig. presents the Core Level spectra of Cu2p3/2, Co2p3/2, 
O1s and C1s, while the binding energies values for cobalt 
and copper are compiled in Table 3. The fitted spectra of 
CoCu130Ar sample are displayed in Fig. 4 (C-I and D-I). 
In this case, cobalt exists in two chemical states on the 
surface, as Co0 and Co2+, with a satellite at higher binding 
energy, while copper appears only in one chemical state 
Cu+ (or Cu0) without any satellite. After thermal treatment, 
significant changes are observed on the surface (Fig. 4  
(C-II and D-II)). Cobalt is no longer in a metallic form but 
it appears in the Co3+ state with a significant reduction in 
the content of Co2+ and simultaneous decreasing the 
intensity of the satellite peak. Copper is also changed and it 
occurs in two chemical states, as Cu+ and Cu2+, with an 
associated satellite peak. Similar results are obtained for 
CoCu130ArO2 (Fig. 4 (C-III and D-III)), with slight 
differences in the intensities of individual peaks. 

To proceed the comparative analysis, the Cu2p3/2 and 
Co2p3/2 spectra are shown in Fig. 4. A for pure materials 
deposited in the mixture of Ar and O2. It should be stressed 
that the presence of a strong satellite peak for Co2p3/2 
indicates the presence of Co2+ on the surface with very 
little participation of Co3+. Copper presents a very weak 
satellite peak, which points to a significantly higher 
concentration of Cu+ on the surface with a small amount of 
Cu2+. The representative spectra of C1s and O1s for a 
sample CoCu130ArO2 are presented in Fig. 4, B. The O1s 
peak can be fitted by two components at 530.1 eV and 
531.6 eV assigned to the O2– anions of the crystalline 
network [46] and hydroxides, respectively. The C1s 
spectra were decomposed on three peaks at 284.9, 285.6 
and 288.6 eV assigned to carbon chemical bonds occurring 
in the organic matrix existing in the samples.  

Based on the above results, it can be concluded that for 
samples CoCu130Ar, CoCu130ArW, and CoCu130ArO2 
observed binding energies for Co2p3/2 and Cu2p3/2 agreed 
closely with literature [47, 48]. However, for pure 
materials (samples CoArO2 and Cu150ArO2)  these bands 
are shifted by approx. 1 eV to higher and lower binding 
energies, respectively. The observed shifts can be 
connected with a strong interaction between two different 
oxide states occurring on the surface or may stem from 
particle size effects. In the case of cobalt, there is Co2+ and 
a small amount of Co3+ [49] whereas for copper, Cu+ and a 
small concentration of Cu2+ occur [48, 50]. The O1s and 
C1s spectra are in close agreement with the results 
obtained from Raman and FTIR spectroscopy, and provide 
information about a chemical state of carbon and oxygen in 
deposited films. 

 
Table 2. Composition of deposited films obtained by EDX analysis and XPS spectroscopy 

Sample name 
EDX XPS 

Co (at.%) Cu (at.%) C (at.%) O (at.%) Co (at.%) Cu (at.%) C (at.%) O (at.%) 

CoArO2 26.69 – 25.88 47.43 15.69 – 41.83 42.48 
Cu150ArO2 – 16.39 29.99 53.62 – 15.41 53.93 30.67 
CoCu130Ar 16.80 0.82 75.82 6.56 4.89 1.24 84.22 9.65 
CoCu130ArW 30.93 1.41 26.74 40.92 22.57 1.54 25.31 50.58 
CoCu130ArO2 10.60 2.14 43.95 43.30 12.20 2.28 61.46 24.06 
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Fig. 4. Curve fittings of XPS spectra: A – Co2p3/2 and Cu2p3/2 spectra of a samples CoArO2 and Cu150ArO2 (non-doped samples);  
B – representative spectra of C1s and O1s of a sample CoCu130ArO2 (doped samples); C – Co2p3/2 for doped samples I – CoCu130Ar; 
II – CoCu130ArW; III – CoCu130ArO2; D – Cu2p3/2 for doped samples I – CoCu130Ar; II – CoCu130ArW; III – CoCu130ArO2 
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Table 3. Binding energies for the Core Levels Co2p3/2 and Cu2p3/2 peaks of investigated samples 

Sample name 

Co2p3/2 Cu2p3/2 

Binding energy [eV] Binding energy [eV] 

Co0 Co2+ Co3+ Satellite Cu+(or Cu0) Cu2+ Satellite Satellite 

CoArO2 – 782.3 781.1 786.7 – 
Cu150ArO2 – 932.3 933.7 942.8 
CoCu130Ar 778.7 781.3 – 785.6 933.2 – – – 
CoCu130ArW – 781.1 779.5 785.3 933.0 934.0 940.3 942.8 
CoCu130ArO2 – 781.6 780.1 785.5 933.1 934.7 941.0 943.5 

 
4. CONCLUSIONS 

The PEMOCVD method has proved to be a very 
useful technique for the preparation of copper-doped cobalt 
oxides thin films during the same plasma process. 
Depending on deposition parameters, films with different 
composition and chemical states of Co and Cu were 
obtained. It was found that typical spinel structure (Co3O4), 
especially interesting from the catalysis point of view, can 
be created in the films. Two forms of Cu atoms, namely 
Cu+ and Cu2+, were also distinguished. Unfortunately, it 
has failed to clearly demonstrate the presence of spinel 
structure type CuxCo3-xO4. Further research will be 
conducted in the direction of obtaining such a spinel 
structure in the plasma deposition process. Optimization of 
the catalytic properties of the copper-doped cobalt oxide 
films will also be carried out. 
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