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Lightweight composites consisting of 6063 aluminum alloy matrix reinforced with AlCoCrFeNi high-entropy alloy 
(HEA) particles were fabricated by the powder metallurgy through hot pressing and hot extrusion under vacuum. A 
detailed microstructural characterization was carried out along with the analysis of mechanical properties. The results 
revealed that the observed uniform distribution of HEA powders and a good bonding strength resulted in an effective 
strengthening and increased plastic strain of the reinforced composite. The tensile properties of composites were 
effectively improved by the addition of 10 and 30 vol % of reinforcing HEA particles. 
Keywords: metal matrix composites, high entropy alloy, interface bonding, mechanical properties. 

 
1. INTRODUCTION∗ 

Aluminum matrix composites (AMCs) find a wide 
application as promising lightweight materials [1 – 3]. The 
mechanical properties of such composites, which have a 
ductile metal matrix, are improved by adding reinforcing 
nanoparticles, such as SiC or Al2O3, as well as carbon 
nanotubes. However, the advantages of ceramics, such as 
high stiffness and acceptable density, are counteracted by 
their poor wettability/bonding with the alloy matrix, which 
produces a series of problems such as weak interfacial 
bonding strength, porosity, as well as detrimental 
interfacial reactions [4]. This poor interfacial bonding 
mechanism may deteriorate the stress resistance and 
mechanical properties of composites. Despite significant 
efforts on the improvement of interfacial bonding between 
the ceramics and metal matrix, no breakthrough solution to 
this problem has been reported yet. 

Multi-principal-element alloys, also referred to as 
high-entropy alloys (HEAs) because of the high entropy of 
mixing of alloying elements, have received a considerable 
attention from the scientific community in the last decade 
[5 – 7]. HEAs display lucrative properties, such as 
excellent corrosion resistance, high hardness, superior 
compressive strength, excellent wear resistance, high-
temperature softening resistance, etc. However, like other 
metallic glasses and intermetallic compounds, these brittle 
materials have extremely limited plasticity under stress 
conditions, especially HEAs with the body-centered cubic 
(bcc) lattice that possess higher strength and hardness. 
Wang et al. [8] successfully produced Al-based metal 
matrix composites reinforced with Mg65Cu20Zn5Y10 
metallic glass particles that were uniformly distributed 
along the composite volume and exhibited a good 
interfacial bonding with matrix. Recent studies on HEAs 
have shown that the content of Al element was the key 
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factor for the formation of bcc solid-solution high-entropy 
alloy and directly influenced the alloy strength and 
hardness. Therefore, the brittleness of Al-containing HEA 
may have a good compatibility with a soft Al-based metal 
matrix. Given this, HEAs with bcc lattice may be good 
candidates for the replacement of ceramic particles as 
reinforcements of AMCs. 

In this paper, the AlCoCrFeNi HEA particles were 
used as reinforcement in AMCs by Hot extrusion molding 
technology. The microstructure and mechanical properties 
were investigated by universal testing machine. A 
significant improvement of mechanical properties of the 
obtained composites was observed. 

2. EXPERIMENTAL 
The master alloy of the eutectic AlCoCrFeNi 

(elements in atomic ratios) was prepared from 
commercially pure elements (99.99 wt.% for Al, Co, and 
Ni; 99.96 wt.% for Cr and Fe). Pre-alloyed AlCrFeCoNi 
spherical powder with a size distribution ranging from 20 
to 60 μm was provided by the vacuum induction melting 
and inert gas atomizer (VIGA). And 6063Al powders with 
40 μm mixed with pre-alloyed AlCrFeCoNi spherical 
powder. The consolidation of bulk samples was prepared 
by a uniaxial hot pressing at 453 K with the pressure of 
600 MPa, with the following hot extrusion in the argon gas 
environment. During the molding process, powders were 
heated up to 723 K at a heating rate of 30 K/min, and then 
a pressure of 600 MPa was applied for 10 min. And then, 
the samples were extruded (with the extrusion ratio of 
11:1) at 723 K with a pressure of 600 MPa. 

The microstructural characterization of the crystal 
structure was carried out by a scanning electron 
microscopy (SEM, FEI Quanta 200, EDS, IE350MT) and 
Bruker D8 ADVANCE X-ray diffractometer (XRD) with a 
Cu K-α radiation target. Tensile tests were conducted using 
an Instron 5500 testing system. The Vickers hardness 
measurements were carried out on the consolidated sample 
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with the load of 300 gf with the dwell time 10s using a 
Digital MicroHardness Tester HVS-1000. 

3. RESULTS AND DISCUSSION 

3.1. XRD and microstructure analysis 
The SEM morphologies of the pre-alloyed 

AlCrFeCoNi spherical powders are shown in Fig. 1 a. It 
can be obviously seen that there are uniform spherical 
powders, which can improve the fluidity of powder in the 
printing process, and the surface of the particle is 
obviously equiaxial crystals after solidification (as shown 
in inset). The XRD pattern of the AlCrFeCoNi HEA is 
shown in Fig. 1 b. 

 
a 

 
b 

Fig. 1. a – SEM morphologies of AlCrFeCoNi HEA powders;  
b – XRD patterns of the AlCrFeCoNi HEA 

It can be seen from the figure that the printed alloy is 
composed of simple BCC solid solution which similar to 
the Fe – Cr solid solution (PDF#34-0396). It is indicated 
that no complex multiphase forms in the alloys. The XRD 
pattern of the composite reinforced with 30 vol.% of HEA 
is shown in Fig. 2. The pattern displays peaks 
corresponding to Al lattice. 

Several physical parameters have been proposed to 
predict structural stability and phase formation in HEAs. 
Zhang et al [9] suggested a criterion for achieving solid-
solution phases in HEAs using three parameters, ΔSmix 
(entropy of mixing) ΔHmix (enthalpy of mixing) and δ 
(atomic radius difference), as expressed below: 
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Fig. 2. XRD patterns of hot pressed Al-based composites with 

30 vol.% HEA particles 

The thermodynamic parameter (Ω) is defined as: 
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The mixing enthalpy (ΔHmix) can be represented by: 
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where ( )4 mix
ijij HΩ = ∆ is the regular solution interaction 

parameter between the ith and jth elements; ci and cj are the 
atomic percentages of the ith and jth component. It is to be 
noted that ΔHmix ij is the enthalpy of mixing, obtaining on 
the basis of Miedema macroscopic model for binary liquid 
alloys; and mixing entropy (ΔSmix) can be represented by: 
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is the gas constant (= 8.314J-1Kmol-1). 
The parameters, ΔSmix, ΔHmix, δ for the AlCrFeCoNi 

HEA are 13.09 J·mol-1K-1,  – 12.78 KJmol-1, 5.28, 
respectively. The presence of the BCC phase implies that 
the mechanical alloying AlCrFeCoNi powder results in a 
more stable phase than FCC phase or intermetallic 
compounds in virtue of high mixing entropy. 

Fig. 3 shows the SEM and TEM micrographs of the 
consolidated composites with 30 vol.% HEA. As shown in 
Fig. 3 a, it can be clearly seen that HEA particles are 
uniformly distributed on the underground of the Al alloy 
matrix. The Fig. 3 b presents the interface between the 
HEA particle and the Al metal matrix. A clean and 
dissolving diffusion surface between the HEA particles and 
the matrix phases could be observed and the obtained 
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composite materials have high density with few pores are 
visible. Especially at the interface, the Al matrix is tightly 
bound to the HEA reinforcement, and micro-reactions 
occur between the two phases, forming a lamellar layer of 
intermetallic compounds, suggesting that the AlCrFeCoNi 
HEA has good affinity with the matrix. Fig. 3 c shows the 
interface at a higher magnification. It can be found a 
diffusion reaction layer of 1 – 4 nm between matrix 
aluminum and high entropy alloy. It is well known that in 
solid phase sintering, the solid solubility between 
aluminum and transition group metal elements is very low, 
while the diffusion reaction between aluminum and iron 
and other elements requires a large solid solubility. The 
reaction layer in Fig. 3 c between aluminum alloy and high 
entropy alloy can be attributed to the following factors: the 
high entropy alloy solid solution state and the larger lattice 
distortion in high entropy alloys. 

 
a 

 
b 

 
c 

Fig. 3. Micrographs for the hot-pressed composites with 30 vol.% 
of HEA reinforcement: a – SEM micrographs; b – the 
interface between the HEA particle and the Al metal 
matrix; c – the interface at a higher magnification 

Appropriate interfacial reactions are beneficial to 
transfer loads and improve mechanical properties of 
composites [8]. 

3.2. Mechanical properties 
Fig. 4 depicts the tress-strain curve of tensile specimen 

constructed under tensile loading to the hot-pressed 6063 
Al alloy and composite materials with 10 and 30 vol.% of 
HEA particles. The tensile samples are shown in the insert 
to Fig. 4 a. The hot-pressed 6063 Al alloy has excellent 
tensile mechanical properties, namely, yield strength of 
155 ± 10 MPa, ultimate tensile strength of 190 ± 10 MPa, 
and plastic strain of 14.2 ± 0.5 %, which are higher than 
those of 6063 T5 alloy (145 MPa, 185 MPa, and 12 %, 
respectively). In contrast to cast samples from 6063Al 
alloys, the ones produced from hot-pressed and hot-
extruded powders have smaller crystalline grains and 
enhanced texture, which ensure improved mechanical 
properties of the metal matrix and make it lucrative for the 
AMC formation. 
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Fig. 4. a – stress-strain curves for 6063 Al; b – for the AMCs with 
10; c – 30 vol.% of AlCrFeCoNi HEA particles 
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The mechanical properties of hot-pressed 6063 Al 
alloy are significantly improved by the FeNiCoCrCuAl2.8 
HEA particles: the yield strength and ultimate tensile 
strength are increased from 155 ± 10 and 190 ± 10 MPa 
pure 6063 Al alloy, respectively, to 185 ± 10 and 
245 ± 10 MPa to 10 vol.% HEA aluminum matrix 
composites. The samples with 10 vol.% of HEA also 
obtains a considerable strain rate (11.2 ± 0.5 %) before 
failure. With an increase in the volume fraction of HEA 
powders to 30 vol.%, the yield strength and ultimate tensile 
strength further rose to 350 ± 10 and 475 ± 10 MPa, 
respectively. Quite unexpectedly, the plastic strain of AMC 
with 30 vol.% HEA is increased to 16.1 ± 0.5 %. 
Reinforcing particles with high hardness greatly increased 
the yield strength of the AMC matrix. Besides the 
qualitative changes in the morphology, the quantitative 
estimation of the yield strength of AMCs reinforced with 
uniformly distributed hard particles can be provided as 
follows [10]: 

21
23 






=

b
rfGMCOH εσ ,  (5) 

where M is a constant ranging from 2.6 to 3.7; ε denotes 
the mismatch strain at the coherent interface; G is the 
matrix shear modulus; r is the particle radius; f is the 
volume fraction of  particles; b is the modulus of Burgers 
vector of the matrix dislocation. The hardness and yield 
strength improvement accompanied by an increase in the 
volume fraction of AlCrFeCoNi HEA particles is shown in 
Table 1. As seen in Table 1, the yield strength values of 
AMCs calculated via Eq. 5 are in excellent accordance 
with the experimental results. 

Table 1. Yield strength and hardness tabulation of 6063 Al alloys 
and their composites 

Fig. 5 shows the corresponding fracture morphologies 
of the 6063Al alloy and AMCs. The tensile strain rate of 
the notched specimen was relatively low, the 6063Al alloy 
specimen fracture originated in the specimen center. The 
dominating macro- and microfracture mode was ductile: a 
pronounced necking as observed at the macrolevel, as well 
as multiple equiaxed dimples and a few tear ridges near the 
specimen edges at the microlevel, as shown in Fig. 5 a and 
b. The respective fractographic features of the AMC 
samples with different volume fracture of HEA particles 
are depicted in Fig. 5 c to f. In contrast to the fracture 
morphology of 6063 aluminum alloy, dimples in the 
composite correspond to peel-off sites of the reinforcing 
phase, tear ridges are observed at the reinforcing phase 
edges, and the fracture zone of the aluminum alloy matrix 
between the reinforcing phases contains equiaxed dimples. 
As compared to Fig. 5 d and f, the positions of 

AlCrFeCoNi HEA particles are shallower, and the interface 
between the particles and the matrix is less pronounced. 
Moreover, the fracture morphology of the aluminum alloy 
matrix is characterized by uniformly distributed tiny 
dimples. An increase in the HEA volume fraction from 10 
to 30 vol.% resulted in the growth of the yield strength and 
strain by 93.9 and 43.8 %, respectively. This improvement 
can be attributed not only to good wettability and, hence, a 
strong interfacial bonding strength, but also to the uniform 
HEA distribution in the matrix. 

  
a b 

   
c d 

   
e f 

Fig. 5. Fracture images of the samples: a, b – 6063 Al;  
c, d – f = 10 vol.% HEA; e, f – f = 30 vol.% HEA 

4. CONCLUSIONS 
6063Al composites reinforced with different volume 

fractions of AlCrFeCoNi particles were prepared by hot 
extrusion. The high-entropy alloy (HEA) systems are 
mainly composed of bcc solid solution. The HEA-
reinforced composites have good bonding with the matrix. 
The excellent mechanical properties of the high-entropy 
alloy composites are attributed to good wettability and, 
hence, strong interfacial bonding achieved between the 
matrix and HEA particle interface. The tested samples 
from composites with 30 vol.% HEA exhibited excellent 
mechanical properties, namely the yield strength of 
350 ± 10 MPa, ultimate tensile strength of 475 ± 10 MPa, 
and plastic strain of 16.1 ± 0.5 %. Thus, as compared with 
the matrix, the hardness and yield strength of the 
composites under study were significantly improved, with 
a notable increase of plasticity. 
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