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The influence of different types of nanofillers – carbon nanotubes (CNT) and organically modified nanoclay – on the 

flexural properties and nail penetration resistance of carbon fiber reinforced methyl methacrylate (MMA) composite 

have been investigated. An ultrasonic mixing was used to distribute various content of nanofillers (0.7 wt.% – 3.0 wt.%) 

in MMA resin. Scanning electron microscopy and X-ray diffraction analyses confirmed formation of intercalated MMA 

clay nanocomposites. Two different stacking sequences, [0/90]3 or [0/90/45]2, and two types of carbon fibre, with or 

without epoxy binder, were used for composites preparation. The composites with stacking sequence of [0/90]3 show 

higher resistance to the mechanical loading. Epoxy binder increases fibre adhesion interaction with MMA resin, 

however, almost does not influences on the fibre reinforced composite strength properties.  

The results demonstrated that only low content (up to 1 wt.%) of organically modified nanoclay Cloisite 10A 

increases the carbon fibre reinforced composites resistance to flexure and nail penetration. The low content of CNT also 

increases flexural stress and modulus, but decreases resistance to the nail penetration.  
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1. INTRODUCTION
∗

 

Materials used for orthopedic applications, such as 
external bone fixation devices, must have high modulus 
and strength, long-term dimensional stability, high fatigue, 
and abrasion resistance. Consequently, for these purposes 
usually are used metals, tough plastics, and fibre (glass, 
carbon, graphite, aramid, etc,) reinforced polymer-matrix 
composites [1 – 2]. 

Fiber reinforced polymers have been finding wide use 
in orthopedic technology for many years due to high 
strength, but lightweight and shape-retaining yet thin, easy 
to clean, and hygienic. Besides, the impact, flexural and 
other mechanical properties are important parameters for 
fibre reinforced polymer matrix to be employed in such 
areas. Especially, these properties are important in 
footwear for professional use [3 – 5]. 

Many commercial and construction situations present 
the danger of sharp object penetration through sole of the 
footwear worn by the workers. A most common example is 
the presence of nails around constructions sites. This 
dangerous but relatively unavoidable situation results in 
large number of injuries to workers. Therefore, many 
developments have been directed to creating protective 
footwear. However, main part of these developments has 
failed due to needs to balance a high degree of protection 
with comfort and wearability, since the sole must remain 
flexible. Therefore, fiber reinforced composites find wide 
application for footwear components [6 – 8]. 
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Pure not reinforced resins normally have poor impact 
resistance at room temperature and are brittle, which limit 
their use for orthopedic needs [9]. Therefore, in recent 
years extensive attention has been given to nanofillers as 
reinforcements of fiber reinforced polymer composites. 
Many nanofillers such as nanoclays, carbon nanotubes 
(CNT), and carbon nano fibers (CNFs) have been 
incorporated in to polymer matrix in order to enhance 
mechanical and physical properties [10 – 27]. There are a 
lot of investigations on the properties of fiber reinforced 
polymers based on nanoclay, CNT or CNFs filled epoxy 
[12 – 18], or phenolic [19 – 21] resins. While no 
investigations of nanofillers influence on the properties of 
the thermoset methyl methacrylate polymers.  

Materials used for medical applications to replace or 
restore damaged function should be biocompatible, non-
toxic and non-carcinogenic. Methyl methacrylate (MMA) 
polymers have been widely used as biomaterials in 
dentistry (denture construction, repair and relining, 
temporary crown and bridge materials), and in orthopaedic 
surgery as bone cements for the stabilization of metallic 
femoral hip endoprostheses or for other orthopaedic 
devices [22]. Usually, MMA polymers are obtained by free 
radical polymerization using tertiary aromatic amines 
together with benzoyl peroxide as an effective initiation 
system [23]. It significantly influences such important 
properties as molecular weight, mechanical strength, shade 
and colour stability, and biocompatibility. 

Traditionally, for polymeric nanocomposites 
thermoplastic poly(methyl methacrylate) (PMMA) has 
been used. Studies on the PMMA have shown that 
nanoclay particles incorporated by melt blending improves 
overall thermal stability of composite [24 – 26]. The 
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preparation of exfoliated PMMA/clay nanocomposites by 
in situ polymerization improves its tensile strength and 
tensile modulus [27]. 

Gorga R. [28] investigated the influence of multi-
walled carbon nanotubes (MWNT) on the mechanical 
properties of PMMA as a function of the nanotube 
orientation, length, concentration, and type. In this study 
the largest improvements (the increase in 170 %) obtained 
in the case of tensile toughness for the MWNT/PMMA 
sample with 1 wt.% of MWNT. No significant increases in 
modulus or yield strength were obtained at lower loadings 
which consistent with the very poor adhesion between 
PMMA and the MWNT. The electrical properties of 
PMMA and double wall carbon nanotubes (DWCNT) 
nanocomposites have been investigated in [29]. It was 
found that the electrical conductivity property of the 
PMMA changes from insulating state to semiconducting 
state with incorporation of DWCNT. 

The aim of the present work is to describe the process-
structure-property relationship of carbon fibre reinforced 
non-toxic methyl methacrylate composites suitable for 
manufacturing of orthopedic footwear nail penetration 
resistant inserts. 

2. MATERIALS AND METHODS 

2.1. Materials 

For investigations carbon fibre reinforced MMA 
matrix composites were produced. Two types of twill-
weave carbon fiber with and without epoxy (EP) binder 
with surface density of 204 g/m2 from R&G 
Faserverbundwerkstoffe GmbH were used.  

Methyl methacrylate resin (617H21-Orthocryl Sealing 
Resin, Otto Bock) with molar mass of 100 g/mol, viscosity 
of 450 mPa⋅s (at 20 °C temperature), and density of 
1.02 g/cm3 was applied for wet lay-up of carbon fabric. 
Tertiary aromatic amine N,N-di(2-hydroxyethyl)-p-
toluidine with benzoyl peroxide (BPO), Orthocryl Resin 
617P37 (supplier Otto Bock), was used as initiation system 
in the free radical polymerization. The role of the amine is 
to carry out the reaction in a short period of time at room 
temperature, i. e. it accelerates the free radical 
decomposition of BPO. It is generally agreed that a 
benzoyl free radical is formed when benzoyl peroxide 
reacts with the tertiary aromatic amine accelerator  
N,N-di(2-hydroxyethyl)-p-toluidine, and that this benzoyl 
free radical initiates polymerization of MMA monomers 
[30]. MMA with BPO was mixed at weight ratio of 100 : 1 
(N,N-di(2-hydroxyethyl)-p-toluidine is incorporated in 
MMA resin composition).  

Multiwalled carbon nanotubes (CNT) from Cheap 
Tubes, Inc. were used with purity verified as 95 %. These 
nanotubes were prepared by the method of catalytic vapor 
deposition. The manufacturer specified dimensions are: 
tube length L = 10 µm – 20 µm, inside diameter  
di = 5 nm – 10 nm, outer diameter do = 30 nm – 50 nm. The 
pristine nanotubes were lightly ground by pestle and 
mortar prior to use without surface modification at any 
time during processing. 

The organically modified montmorillonite clay 
Cloisite 10A (C10A) was kindly provided by Souther Clay 

Products (Gonzales, TX). C10A was commercially 
modified by dimethyl, benzyl, hydrogenated tallow, 
quaternary ammonium.  

2.2. Carbon fibre reinforced MMA polymer 

composite preparation 

The C10A nanoclay or CNT were incorporated 
directly in MMA resin by sonication (Ultrasonic cleaner 
8891, Cole-Parmer) for 5 min. The composites were 
formed by wet lay-up process of carbon fabric with MMA 
resin. For investigation four different composites based on 
carbon fiber reinforcement (with and without EP binder), 
and two different stacking sequences were used. The 
stacking sequence of the carbon fibres was 6-ply 
composites with [0/90/45]2 and [0/90]3 plates, where the 
,,0”, ,,45”, ,,90” are symbolic notation of the plies different 
orientation angles. The thickness of the composite plates 
was 2 mm.  

2.2. Flexural tests 

The flexural properties of fibre reinforced composites 
were determined by three-point bending test in accordance 
with LST EN ISO 178, using a universal testing machine 
(Tinius Olsen, Redhill, England) with a load cell of 5 kN at 
a constant speed of 1 mm/min. Six samples 
(4 × 80 × 10 mm3) were cut from composite sheets. The 
flexural strength, σf was calculated following the 
relationship:  

σf = 3Fl/2bd2,  (1) 

where F is the maximum load, l is the distance between 
supports, b is the width of the specimen, d is the height of 
the specimen. 

The flexural modulus, Ef was calculated using 
equation: 
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where 
1fσ  and 

2fσ are the flexural stress, measured at 

deflection s1 and s2, respectively. 
The flexural strain was calculated using following 

equation: 
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where s is deflection, h is the thickness. 

2.3. Nail penetration resistance 

It is relevant to examine the effect of layered structures 
resistance to penetration and layer damage [31]. In this 
study the force required to penetrate the composite sheet 
was determined in accordance with LST EN 12568, using 
universal testing machine (Tinius Olsen, Redhill, England). 
The nail with diameter of 4.50 mm and with truncated end 
was used in the test (Fig. 1). 

The three test pieces of dimensions 30 mm × 30 mm 
were cut from the composite sheets and tested separately. 
The test peace was clamped between two plates (see 
Figure 1), with its edge being at least 15 mm away from 
the tip of nail. The nail was deflected into the sample at a 
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constant speed of (10 ±3) mm/min until the point has 
penetrated completely. The test result is required 
maximum force to penetrate the composite sheet. 
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Fig. 1. Schematic example of apparatus for nail penetration 

resistance test: 1 – test nail, 2 – test piece 

Obtained load versus penetration depth plot shows two 
distinct phases of failure propagation for complete 
penetration [32]. As can be seen from Fig. 2, the first 
phase, named as damage initiation phase, is observed from 
the moment of nail impact to the point of peak load, where 
the damage initiates with almost uniform deflection with 
some initial penetration peaks.  
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Fig. 2. Plot of penetration force versus depth in nail penetration 

resistance test 

At the point of peak load, test piece is penetrated by 

nail completely and then rapid load-reduction is achieved. 

This phase can be identified as penetration propagation 

phase (Fig. 2). 

2.4. Nanocomposites characterization technique 

Wide angle X-ray diffraction (XRD) analysis was 
performed using a diffractometer DRON-6 equipped with a 
copper target (λ = 1.54 Å) and flat diffracted beam 

pyrolitic graphite monochromator. Diffraction patterns 
were recorded at 35 kV and 20 mA.  

Scanning electron microscope (SEM) analysis was 
performed using the microscope Quanta 200 FEG (FEI, 
Netherlands) at 10 keV or 20 keV and was used for 
composites surface investigation. 

3. RESULTS AND DISCUSSIONS 

3.1. Characterization of MMA/nanoclay 

composites 

The wide range XRD analysis results of MMA 
polymer, C10A nanoclay, and MMA nanocomposite with 
3 wt.% of C10A filler are shown in Fig. 3. As can be seen, 
the interplanar distances of organically modified clay 
C10A layers calculated according to Bragg's law are 
d001 = 1.96 nm. The MMA polymer diffractogram is 
characteristic for an amorphous polymer and confirms that 
any very small crystals are presented in the sample. The 
XRD pattern of MMA/C10A nanocomposites has a weak 
diffraction peak at 4.94° (d002 = 3.58 nm), relative to the 
C10A, and new peak at low angle 2.48° (d001 = 3.50 nm). 
These results indicate the formation of intercalated 
nanocomposite. It may be supposed that sonification leads 
to the delamination of silicate layers and intercalation by 
MMA macromolecules [33]. 
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Fig. 3. X-ray diffractograms for MMA, C10A nanoclay, and 

MMA/C10A (97/3 wt.%) nanocomposite 

SEM micrograph of the MMA nanocomposites 
containing 3 wt.% of C10A is presented in Fig. 4. It is seen 
that organoclay C10A is well dispersed within MMA and 
distribution of exfoliated, intercalated and not dispersed 
C10A particles are clearly seen. The diameters of nondis-
persed C10A particles are in the range of 1 µm – 3 µm. 

3.2. Investigation of flexural resistance of the 

carbon fibre reinforced MMA composites  

The differences in the materials and their structures 
are reflected in the different flexural properties of the final 
composites [34]. Table 1 presents the results of three point 
bending tests of carbon reinforced MMA polymer 
nanocomposites. As can be seen, the carbon fabric with EP 
binder had higher flexural properties of composite than 
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that without binder. The flexural stress and flexural 
modulus with EP impregnated carbon fibre are higher in 
10 % and 18 %, respectively, than that of carbon 
reinforced composite without fibers binder. It can be 
attributed to the higher adhesion interaction between MMA 
polymer and carbon fiber, because fibre impregnation by 
EP melt binder increases its adhesion capability to polar 
matrix [35]. 

 
Fig. 4. SEM image of MMA polymer surface with 3 wt.% of 

C10A nanoclay 

Fiber orientation is very important in determination of 
the strength of the composites [36, 37]. In this study the 
comparison of both stacking sequences showed that [0/90]3 
composite has slightly higher values of flexural properties 
than in the case of [0/90/45]2 composite. However, this 
difference is not significant and is close to the coefficient 
of variation. 

Table 1. Influence of C10A nanoclay on the flexural properties 

of carbon fibre reinforced MMA composites 

Fibre 

type 

Stacking 

sequence 

C10A 

content, 

wt.% 

Flexural 

modulus, MPa 

Flexural 

stress, MPa 

Not 

impreg-

nated 

[0/90]3 0 25662 ±1994 495.5 ±52.9 

[0/90/45]2 0 24003 ±1195 459.0 ±48.6 

EP 

binder 

[0/90]3 0 30433 ±1034 545.0 ±56.0 

[0/90/45]2 

0 24793 ±1372 509.0 ±38.0 

1 26542 ±2599 471.2 ±55.4 

2 21112 ±1740 341.0 ±65.1 

3 18251 ±5978 235.8 ±79.8 

From Table 1 can be seen that the flexural strength 
gradually decreases as nanoclay content increases and 
3 wt.% of C10A twice decreases the flexural stress (from 
509 MPa down to 236 MPa).  

On the other hand, 1 wt.% of C10A increases the 
flexural modulus in 7 %. However, further increase of 
nanoclay content up to 3 wt.% decreases flexural modulus 
in 35 %. Such decrease at higher clay content can be 
attributed to the higher possibility of nanoclay 
agglomerates formation and the reducing of clay 
reinforcement efficiency. It is known [38] that particle 

aggregation is the primary reason of the decrease of 
materials strength even the modulus slightly increases. 

As it can be seen from the Table 2, CNT improves 
flexural properties of carbon reinforced MMA 
nanocomposites. The flexural strength of nanocomposite 
incorporating 0.7 % of CNT is improved in 6 %, while 
flexural modulus increased in 14 %. 

Table 2. Influence of CNT on the flexural properties of carbon 

fibre reinforced MMA polymer composite* 

CNT content,  

wt.% 

Flexural modulus, 

MPa 

Flexural stress, 

MPa 

0 24793 ±1372 509.0 ±38.0 

0.7 30850 ±3729 542.4±48.8 

*stacking sequence of [0/90/45]2 and fibre impregnated with EP 

binder.  

3.3. Resistance of carbon fibre reinforced MMA 

composites on nail penetration  

Penetration force-depth curves for the carbon fibre 
reinforced MMA polymer composites are shown in Fig. 5. 
As can be seen, in the case of unfilled MMA polymer, the 
gradual increase of the penetration load is observed up to 
sharply downfalls at the moment that the nail penetrates 
into the composite sheet. As can be seen, in the case of 
MMA nanocomposites the force-penetration depth curves 
usually have several peaks until the penetration of the nail 
occurs. Therefore, in this case as penetration force is 
considered maximal value of the applied force. The 
repeating downfalls of the composite penetration force in 
the case of MMA nanocomposites may be attributed to the 
increase of composites brittleness. 
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Fig. 5. Penetration curves for EP impregnated carbon fibre 

reinforced MMA composite of [0/90/45]2 stacking 

sequences at different C10A nanoclay content, wt.%:  

1 – 0, 2 – 1, 3 – 2, 4 – 3 

From Table 3 it is evident that the nail penetration 
resistance of the carbon fibre reinforced MMA composites 
depends on the carbon fabric stacking sequence, but fibre 
impregnation with EP binder eliminates influence of fabric 
stacking sequence. Thus, for the nanofiller content 
influence investigations on the penetration resistance only 
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composite with [0/90/45]2 stacking sequences and EP 
impregnated carbon fiber was chosen.  

As it can be seen from the Table 3, the penetration 
force of carbon fibre reinforced MMA nanocomposites 
increases (in 9 %) as C10A nanoclay content increase up to 
2 wt.%. Similar improvement to penetration is observed in 
the case of nanoclay reinforced E-glass/vinyl ester matrix 
laminated composites [32]. However, further increase of 
C10A content decreases nail penetration resistance in 
14 %.  

Table 3. Nail penetration resistance of carbon fibre reinforced 

MMA polymer composites 

Fibre 

type 

Stacking 

sequence 

C10A 

content, 

wt.% 

Penetration 

force, 

N 

Penetration 

depth, mm 

Not 

impreg-

nated 

[0/90]3 0 969 ±135 2.3 ±0.2 

[0/90/45]2 0 753 ±124 1.6 ±0.3 

EP 

binder 

[0/90]3 0 822 ±77 1.7 ±0.2 

[0/90/45]2 

0 835 ±67 2.1 ±0.2 

1 909 ±124 2.0 ±0.3 

2 903 ±112 2.3 ±0.2 

3 722 ±50 2.5 ±0.2 

The CNT influence on the nail penetration resistance 
of EP impregnated carbon reinforced MMA nanocompo-
sites is shown in the Fig. 6. As it can be seen, 0.7 wt.℅ of 
nanofiller decreases composites penetration resistance 
from 835 N to 800 N (about 3 %).  
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Fig. 6. Penetration curves for EP impregnated carbon fibre 

reinforced MMA unfilled (1) and 0.7 wt.% of CNT filled 

(2) composites (stacking sequences [0/90/45]2) 

Thus, as in the case of nanofillers influence on the 
epoxy and phenolic resin properties [13, 15, 17, 21], the 
incorporation of the nanoclay or carbon nanotubes in 
polymer matrix is available way to modify the strength 
properties of the fibre reinforced MMA composites. 

4. CONCLUSIONS 

The structure and properties of the carbon fibre 
reinforced non-toxic methyl methacrylate polymer 

composites were investigated. Epoxy binder increases fibre 
adhesion interaction with MMA resin, however, it does not 
influence on the strength properties of composite. 
However, the 6-ply carbon fibre reinforced MMA 
composites with stacking sequences of [0/90]3 were found 
to show higher resistance to flexure and nail penetration.  

Low content – 1 wt.% of organically modified 
nanoclay increases the flexural stress and modulus and nail 
penetration resistance of carbon fibre reinforced MMA 
composites. However, low content of carbon nanotubes 
only slightly improves the composite flexural properties, 
but decreases nail penetration resistance. 
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