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Water quality directly affects human health. It is very important to design a probe that can detect the pollutants in water. 
In this study, we synthesized one kind of carbon dots (CDs), which could emit strong blue fluorescence. The blue 
fluorescence could be quenched by 2,4,6-trinitrophenol (TNP) ascribed to the energy transfer (ET), could be quenched 
by lemon yellow (LY) ascribed to inner filter effect (IFE), and could be quenched by HClO ascribed to surface 
passivation (SP). TNP, LY, and HClO are common contaminants in water. By our experiment, it was proved that the 
synthesized CDs are a safe and effective fluorescent material and could be used to detect the pollutants (TNP, LY, and 
HClO) in the actual water sample. 
Keywords: carbon dots, fluorescent probes, lemon yellow, pollution. 

 
1. INTRODUCTION∗ 

Development of industry has led to overuse of many 
pollutants such as fertilizers, herbicides, and pesticides, 
which easily get into the water system, sometimes even get 
directly discharged into surface water [1]. Pollutants in 
water have a direct threat to the safety of public health [2]. 
Moreover, the food additives are widely used in the food 
industry, such as pigments and flavors, which cause a 
serious threat to people’s health [3]. Human activities such 
as dye industry, washing, also contribute different 
pollutants to waters [4]. 

The carbon dots (CDs) are excellent nanomaterials, 
and could be used for detecting various pollutants. Most of 
these studies were based on detecting of only one or two 
pollutants [5]. Realizing that multimode sensing is the 
better option than detecting one pollutant, some 
researchers have made significant progress in this 
direction.  

A variety of pollutants synthesized by human beings 
bring a certain threat to the safety of water bodies. Among 
these pollutants, 2,4,6-trinitrophenol (TNP), lemon yellow 
(LY), and hypochlorous acid (HClO) are three 
representative types. TNP has been most widely used in 
fuel industry, chemical products and other industries [6]. 
LY is one of many food additives, which has been widely 
used in the beverage industry, fruit and wine products [7]. 
HClO is an important disinfectant and often used for the 
disinfection of ponds, rivers, swimming pools [8]. The 
three substances are common water pollutants, and the 
detections for them are crucial for public health. 

In this work, we synthesized one certain kind of CDs 
which could be used to detect three kinds of pollutants in 
the water, TNP, LY, and HClO. Although three substances 
are widely found in water bodies, TNP is mainly used in 
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the heavy industry, LY is often used in the food industry, 
and HClO is mainly used in the purification of water body. 

By the blue fluorescence, we could detect TNP, LY 
and HClO in some water samples (TNP: waste water and 
washing water, LY: soft drink and cocktail, and HClO: 
lake water and tap water). The detection mechanisms for 
TNP, LY and HClO are energy transfer (ET), inner filter 
effect (IFE), and surface passivation (SP), respectively 
(Fig. 1). There are many active sites in the TNP structure, 
which easily lead to electron transfer. These electrons are 
transferred between TNP and CDs, causing the 
fluorescence disappear. LY has ultraviolet absorption, 
which can shield the fluorescence by overlapping the 
signals between ultraviolet and fluorescence. There are 
many oxygen free radicals on HClO. These free radicals 
are highly oxidative and can passivate the surface of CDs. 

2. EXPERIMENTAL PROCEDURES 
The following analytical techniques were employed: 

transmission electron microscopy (TEM, Hitachi H-7700); 
UV-vis absorption spectra (UV-2000 UV-vis 
spectrophotometer, Unico China); fluorescence detection 
(FL-2700 fluorescence spectrometer, Hitachi Japan); X-ray 
diffraction (XRD) (Bruker AXS, Germany); Fourier 
transform infrared spectrometer (FTIR) (Mettle, 
Switzerland); X-ray photoelectron spectroscopy (XPS) 
(ESCALAB250Xi, Thermo Scientific); fluorescence life 
time (FLS 920 fluorescence spectrophotometer, Edinburgh 
Instruments Ltd). 

0.2 g malic acid was measured accurately and 
dissolved with 20 mL ethanolamine, made to undergo 
ultrasound for 10 minutes, placed into Teflon autoclave, 
and heating for 4 h at 180 °C. Organic solvents were 
removed by vacuum distillation and dried in a 60 °C 
vacuum drying chamber. The dispersion of the synthesized 
CDs is very good, and they can be miscible with water in 
any proportion.  
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Fig. 1. The detection mechanisms for TNP, LY and HClO (energy transfer, inner filter effect and surface passivation) 

 
Phosphoric acid buffer (PBS) was used for all the 

detection work. In order to evaluate whether this method 
could be used to detect TNP, LY and HClO, the recovery 
experiments were pursued. The detection systems of TNP, 
LY and HClO were that: industry wastewater and washing 
water, fanta soft drink and RIO cocktail, tap water and lake 
water, respectively. The wastewater was sampled from the 
factory pipe, the washing water was obtained from an 
automatic washing machine in the dormitory building, 
fanta soft drink and RIO cocktail were from the local 
supermarket, and the lake water and tap water were from 
the surrounding areas. Fanta soft drink and RIO cocktail 
were diluted to 100 times.  

3. RESULTS 

A quantum yield of 18.98 % was achieved using 
quinine sulfate method [5]. The microstructure of the CDs 
was analysed by TEM. Their shape was approximately 
spherical and the size was uniform, the average diameter 
was measured as 5.67 ± 0.26 nm (see Fig. 2 a, Fig. 2 b).  
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Fig. 2. a – TEM image; b – average diameter, c – FTIR spectrum; 

d – X-ray diffraction pattern 

The surface groups were analysed by FTIR (Fig. 2 c). 
The band at 3306 cm-1 was –OH. 1402 cm-1 was C–N. 
1688 and 1553 cm-1 were ascribed to C=O and N–H [9, 
10]. 

Crystalline was analysed by X-ray diffraction 
(Fig. 2 d). A diffraction peak (2θ) at 23.75 was observed, it 
indicating the crystalline structure of the CDs is presumed 
to be similar to the (002) lattice spacing of graphitic-like 
carbon based materials [11]. 

Three dominant peaks (C1s, N1s, and O1s) are at 285, 
400 and 532 eV in the XPS (Fig. 3 a). The high-resolution 
spectrum depicts C1s has C–C/C=C states (Fig. 3 b). The 
high-resolution N1s XPS spectrum exhibits one peak of at 
400 eV, representing N1s states in pyrrolic-like N 
(Fig. 3 c). The O1s spectrum 532 eV (Fig. 3 d), proving the 
C–OH/C–O–C groups, respectively [12].  
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Fig. 3. a – XPS spectrum. The high resolution XPS spectra:  
b – C1s; c – N1s; d – O1s 

Time-resolved fluorescence spectra of the CDs were 
collected for 446 nm at an excitation wavelength fixed at 
360 nm (Fig. 4). From the decay curve, the average 
lifetime τaverage is equal to 0.40 ns. The lifetime shows the 
basic characteristics of typical fluorescent materials. 
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Fig. 4. The fluorescence lifetime of the CDs 

UV-vis spectrum is depicted in Fig. 5 a (1). The peak 
of 250 nm might ascribe to the π→π* transition. The peak 
of 300 – 500 nm might be the n→π* transition [13, 14]. The 
excitation (Fig. 5 a (2)) and emission spectra (Fig. 5 a (3)) 
were also acquired in Fig. 5 a. 

The fluorescence intensities under different excitation 
are compared (Fig. 5 b). As excitation wavelength 
increased, fluorescence intensities were decreased, 
indicating that the CDs exhibited excitation dependence.  
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Fig. 5. a – 1 UV-Vis, 2 excitation, 3 emission. Inset: CDs water 

solution and its fluorescence; b – fluorescence at different 
wavelengths 

The photostability of the CDs was compared. By 
experiment, it was seen that the CDs were stabilized within 
60 min (Fig. 6 a). The influence of ionic strength was also 
researched (Fig. 6 b), it can be seen that the CDs are 

relatively stable for ionic strength. The fluorescence 
intensities remained unchanged, indicating that the CDs 
had acid-base stability (Fig. 6 c). pH 7.0 is the neutral 
condition, the damage of inner structure for materials by 
strong acid and strong base was avoided, suitable for 
analysis of real samples. 
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Fig. 6. a – photostability of the CDs; b – influence of ionic 

strength; c – influence of pH 

Interferences of external conditions to CDs were also 
studied. In the experiments, we used some conventional 
metal ions (Fig. 7 a), anions (Fig. 7 b), and other aditives 
(Fig. 7 c), including Galactose, Fructose, Uric acid, VC, 
Valine, Thiourea, Dopamine, Maltose, Lysine, Histidine, 
Phenylalanine, Malic acid, Threonine, Alanine, Serine, 
Imidazole, Leucine, Tyrosine, Glutamate, Glutathione, 
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Glucose, Glycine, Aspartic acid, Proline, Xylose, Cysteine. 
It could be seen that no matter metal ions, anions, or other 
interferences, had few influence on the CDs.  
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Fig. 7. Interferences: a – metal ions; b – anions; c – other 

reagents 

4. DESIGN OF THE CDS PROBE TO DETECT TNP, 
LY, AND HClO 

Fig. 8 a depicts that TNP had no fluorescence. The 
inset depicted the energy was transferred between TNP and 
CDs. The reaction time which TNP quenched the 
fluorescence of the CDs was very short (Fig. 8 b). The 
quenching mechanism was inferred that there were three 

phenolic hydroxyl groups in TNP, the phenolic hydroxyl 
groups have strong activity, when TNP was added into the 
CDs solution, the energy was transferred between TNP and 
CDs, the loss of energy caused the disappearance of 
fluorescence.  
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Fig. 8. a – UV-vis and the fluorescence spectra of TNP. Inset: the 
mechanism of energy transfer between TNP and CDs; b –
 the quenching time of TNP; c – quenching of fluorescence 
intensity by TNP. Inset: quenching rate with the addition 
of TNP; d – linear relationship between quenching rate 
and TNP 

When TNP was added, the fluorescence intensity 
decreased gradually (Fig. 8 c). A linear equation was 
obtained (Fig. 8 d), where F0 is defined as the fluorescence 
intensity in the initial state, F is defined as the fluorescence 
intensity at different LY concentrations, and C is the 
concentration of LY, respectively. Limited of detection 
(LOD) for TNP was 0.51 μM. A IFE occurred between the 
LY and CDs (Fig. 9 a). It was concluded that LY had no 
fluorescence, proving that the fluorescence quenching was 
due to IFE. Fig. 9 b depicted the quenching time of LY, it 
was seen that quenching reaction needed a shorter time. 
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Fig. 9. a – UV-vis, the fluorescence of LY, excitation, and 

emission spectra of CDs; b – the quenching time of LY; 
c – quenching of fluorescence intensity by LY. Inset: 
quenching rate with the addition of LY; d – linear 
relationship between quenching rate and LY 

HClO had the oxidability, following the reaction: 
HClO = H+ + Cl- + O, oxygen radicals (O) could passivate 
the surface groups of CDs and cause fluorescence 
quenching. Fig. 10 a indicates that HClO had no 
fluorescence, the central peak of HClO is 300 nm, which 
proved that there was no IFE. The surface groups were 
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passivated by oxygen radicals decomposed by HClO, so 
the fluorescence was quenched [15, 16]. The quenching 
time of HClO was also investigated, we could conclude 
from Fig. 10 b that the quenching reaction would occur in 
a shorter time. Similar quenching phenomenon occurred 
between the CDs and HClO (Fig. 10 c). A linear equation 
was acquired (Fig. 10 d). The LOD for HClO was 
estimated to be 0.98 μM. 
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Fig. 10. a – UV-vis and fluorescence spectra of ClO-; b – the 

quenching time of ClO-; c – quenching of fluorescence 
intensity by ClO-. Inset: quenching rate with the addition 
of ClO-; d – linear relationship between quenching rate 
and ClO- 

We could detect LY via IFE (Fig. 9 c). When the 
quantity of LY was added, the fluorescence was gradually 
quenched. A linear equation was acquired (Fig. 9 d). The 
LOD for LY was 0.14 μM. 

As presented in Table 1, Table 2 and Table 3, the 
recoveries of TNP, LY, and ClO- were detected. These 
pollutants have been effectively recovered in different 
water bodies and the deviations are within the acceptable 
range. 

Table 1. Analytical results for the detection of TNP in waste 
water and washing water 

Sample Concentration 
of TNP, μM 

Total 
found, μM 

Recovery 
(%), N=3 

RSDa 
(%), N=3 

Waste 
water 

9.0 9.0 100.5 5.9 
18.0 18.9 104.8 3.9 
20.0 21.5 107.7 2.8 

Washing 
water 

9.0 9.4 104.1 6.8 
18.0 18.7 104.0 3.4 
20.0 20.6 103.2 2.6 

a Relative standard deviation (RSD) was defined as (standard 
deviation/mean) × 100 % 

Table 2. Analytical results for the detection of lemon yellow in 
soft drink and cocktail 

Sample Concentration 
of ClO-, μM 

Total 
found, μM 

Recovery 
(%), N=3 

RSD 
(%), N=3 

Tap 
water 

24.0 24.2 100.8 5.4 
38.0 37.7 99.3 1.7 
64.0 62.1 97.0 1.0 

Lake 
water 

24.0 24.6 102.7 1.0 
38.0 38.5 101.4 1.8 
64.0 63.8 99.7 0 

Table 3. Analytical results for the detection of ClO- in tap water 
and lake water 

Sample Concentration 
of LY, μM 

Total 
found, μM 

Recovery 
(%), N=3 

RSD 
(%), N=3 

Fanta 
soft 
drink 

2.2 2.4 108.0 6.2 
5.0 5.1 102.2 3.0 
7.0 7.3 104.0 1.5 

RIO 
cocktail 

2.2 2.2 99.9 3.4 
5.0 4.8 96.1 0.6 
7.0 7.1 102.0 2.1 

5. DISCUSSION AND CONCLUSIONS 

Multimodal detection has been the one of research 
directions for many researchers. At first, people can only 
detect one substance by one mode, for example, 
metronidazole is detected by ET [17]. Later improvements 
were made, three kinds of metal ions are detected by 
changing the buffer solution [16], three kinds of medicines 
were analysed by switching different quenching manners 
[5] and triple-mode emissions were also studied [18]. 

Compared with some reports above, in this work, we 
designed three different modes (ET, IFE and SP). Firstly, 
the detection mechanisms are different from the existing 
literature.  

Secondly, the three detection modes which we used 
are different in mechanism themselves (Fig. 1). Compared 
with other analysis, due to different quenching mechanism, 
the interferences among detection substances are relatively 
small. 

Thirdly, the object of our study is the detection of 
pollutants in the water. Compared with other pollutants in 
the natural environment, the pollutants in the water are 
relatively smaller, this is one of the prerequisites for our 
successful detection. In addition, in the three detection 
modes, the detection efficiencies of ET and SP are higher 
than IFE, because the IFE detection is more susceptible to 
the interference of other pollutants. In our study, the test 
objects we used were softdrinks and cocktails, because the 
other additives in these two foods are relatively less, so we 
have achieved relatively good detection results. 

Finally, compared with chemical methods and other 
instrument analysis methods, the fluorescence detection 
method is simpler. We can even use the hand-held 
ultraviolet lamp of the money detector to detect the 
fluorescence. Meanwhile, the fluorescent material in this 
study is synthesized by carbonizing at high temperature, 
therefore have higher safety. Of course, there are still some 
deficiencies in our study, such as the detection of heavy 
pollutants is still difficult to achieve. In addition, the multi-
mode used in this study is for different water bodies, we 
preliminarily divided the water into three categories: ET 
mechanism for industrial water detection, IFE mechanism 
for beverage water detection, and SP mechanism for living 
water detection, so there is a premise for detection. In the 
future, we hope that by our efforts, this material can be 
developed into a kit to detect pollutants in different water 
bodies and contribute to environmental protection and 
people’s health. 
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