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Cellulose is a rich natural polymer material, which has the characteristics of biodegradability, environmental 
friendliness and good biocompatibility. However, compared with conventional materials, there are some 
shortcomings in performance, such as intolerance corrosion, limited strength and so on. The chemical 
modification of cellulose not only retains its own excellent characteristics, but also introduces functional 
groups to endow it with specific properties. The chemical modification and utilization of cellulose has been 
the focus of research. In this paper, the latest advances in chemical modification of cellulose, such as 
esterification, etherification and grafting modification, are introduced. The research and application results of 
cellulose derivatives in food, wastewater treatment, medicine and papermaking in recent years are reviewed.  
Keywords: cellulose, modified cellulose, chemical modifications, applications. 

 
1. INTRODUCTION 

Polymer materials based on fossil resources have 
become an indispensable part of industry and people's daily 
life because of their excellent durability, high strength and 
easy processing  . However, due to the resource and 
environmental problems caused by their non-renewability 
and non-biodegradability, people have a clear 
understanding of the importance and necessity of 
developing natural polymer-based materials [1, 2]. 
Cellulose is the most abundant natural polymer material on 
the earth, and it is cheap and has a wide range of sources. It 
has the characteristics of biodegradability, good 
biocompatibility and broad chemical modifying capacity 
[3, 4]. 

The structure of natural cellulose is characterized by 
many hydrogen bonds within and between molecules and 
high crystallinity, which makes it insoluble in water and 
general organic solvents, which greatly limits the utilization 
of cellulose. Therefore, the modification of cellulose to 
expand the utilization of cellulose has become an urgent 
problem to be solved, and chemical modification of 
cellulose is the most common method. The microstructure 
of cellulose is that there are three active hydroxyl groups on 
the D-pyrane glucose unit (AGU): one primary hydroxyl 
group (C-6) and two secondary hydroxyl groups (C-2 and 
C-3), which can undergo a series of derivatization reactions 
related to hydroxyl groups, such as etherification, 
esterification, crosslinking, graft copolymerization and so 
on [5, 6]. In particular, cellulose can be chemically modified 
to improve its solubility and stability, giving it new 
functions such as light, electricity, magnetism, biological 
activity, adsorption, separation and catalysis. In recent 
decades, the research of new cellulose-based materials has 
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developed rapidly, such as cellulose fibers [7, 8], cellulose 
hydrogels and aerogels [9 – 11], cellulose membranes 
[12, 13], cellulose microspheres [14, 15], cellulose 
nanomaterials [16, 17]. These different functional cellulose 
materials are widely used in many fields of modern industry. 
This paper mainly introduces the research and progress of 
chemical modification of cellulose, summarizes the research 
progress of the application of cellulose derivatives in recent 
years, and prospects its future development. 

2. CHEMICAL MODIFICATION OF 
CELLULOSE 

2.1. Esterification modification of cellulose 
Cellulose ester refers to the product of esterification 

reaction between hydroxyl group on the molecular chain of 
cellulose and acid, acid anhydride, acyl halide under the 
catalysis of acid [18]. Cellulose esters, as the earliest 
research and production of cellulose derivatives in cellulose 
chemistry, are widely used in textile, medicine, coatings, 
film science, petrochemical industry and other fields [19]. 
The high degree of crystallization and hydrogen bonding 
within and between molecules of cellulose prevents it from 
dissolving in general organic and inorganic solvents. Due to 
the lack of excellent cellulose solvents, commercial 
cellulose esters are currently synthesized by heterogeneous 
methods. The studies showed that heterogeneous system 
could not control the reaction process well, which was 
disadvantageous to the esterification of cellulose and had 
low degree of substitution; however, homogeneous system 
could improve the esterification reaction speed of cellulose 
and reduce the disaggregation of the main chain of cellulose 
[3, 20]. Therefore, it is urgent to find an effective 
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homogeneous esterification system for further optimization 
of cellulose esters. Lithium chloride/N, N-dimethyl 
acetamide (LiCl/DMAc) and ionic liquid are effective 
solvents of cellulose with advantages of recyclability and 
good thermal stability [21]. Meanwhile, the dissolution of 
cellulose in homogeneous system facilitates the introduction 
of functional groups, which widens the way for the 
application of cellulose esters.  

Willberg-Keyriläinen et al. [22] dissolved cellulose in 
5 % LiCl/DMAc solution, then fatty acid chlorides with 
different side chain lengths (C6-C18) were added to the 
cellulose solution to prepare a series of cellulose esters. 
Then cellulose esters were coated on CNF films to form a 3-
layer film (ester-CNF-ester). The 3-layer films have smooth 
surface, good mechanical properties and water vapor 
barrier. Based on the excellent properties of membrane 
materials, it has potential application value in the field of 
food packaging and electronic printing. Gu et al. [23] used 
bleached hardwood cellulose as raw material, 1-butyl-3-
methylimidazolium chloride (BmimCl) ionic liquid as 
reaction medium, and reacted with ε-caprolactone monomer 
to prepare cellulose-polycaprolactone graft copolymer 
(cellulose-g-PCL) from under homogeneous conditions. 
The poly-caprolactone graft copolymer has a maximum 
graft ratio of 86.7 %. 

2.2. Etherification modification of cellulose 
Cellulose ether is a series of cellulose derivatives 

produced by the reaction of alkaline cellulose and 
etherifying agent under certain conditions. It is the product 
of partial or total substitution of hydroxyl groups on 
cellulose macromolecules by ether groups. Cellulose ether 
is a cellulose derivative widely used and with high added 
value. It has important applications in textile, membrane 
science, biological materials and environmental protection 
[24 – 26]. With the development of cellulose ether research, 
cellulose ether with good reaction system or excellent 
performance has been developed gradually. Nagel et al. [27] 
synthesized methylcellulose (MC) in homogeneous phase 
using LiOH/urea system as reaction medium and dimethyl 
sulfate as etherifying agent. He first slowly dripped 
etherifying agent at 0 ℃, then heated it to 22 ℃ and stirred 
it for 24 hours. The product was precipitated and washed 
with isopropanol. The DS of the product was 1.07 – 1.59. Li 
et al. [28] used acrylonitrile (AN) as etherifying agent to 
synthesize a series of cyanoethyl celluloses with degree of 
substitution (DS) in LiOH/urea aqueous solution. The 
highest DS of CEC was 1.81. CEC samples with DS ranging 
from 0.47 to 1.01 have good water solubility, and those with 
DS greater than 1.12 can be better soluble in organic 
solvents. Dong et al. [29] used microcrystalline cellulose 
(MCC) and 5-bromo-pent-1-ene as the main raw materials, 
in the action of sodium hydride and ethyl iodide, one pot 
method was used to synthesize ethyl pent-4-enyl cellulose, 
and then a series of amorphous solid dispersed amphiphilic 
cellulose ethers were obtained by olefin cross-metathesis 
reaction using ethyl pent-4-enyl cellulose and acrylic acid 
or acrylate monomer as raw material. The synthetic steps of 
amphiphilic cellulose ether are shown in Fig. 1. These 
amphiphilic polymers have potential applications in drug 
delivery and waterborne coatings. 

 
Fig. 1. The synthetic of amphiphilic cellulose ether. Reproduced 

with the permission of Ref. [29], copyright (2016) 
American Chemistry Society  

2.3. Grafting modification of cellulose  
The graft copolymerization of cellulose is based on the 

active hydroxyl group on the molecular chain as a grafting 
point. Under the condition of not completely destroying the 
advantages of cellulose materials, the polymer chain formed 
by the polymerization reaction of the monomer is grafted 
onto the cellulose main chain through covalent bond, giving 
cellulose new properties. The common methods of graft 
copolymerization are free radical polymerization, ring-
opening polymerization, ionic polymerization and atom 
transfer free radical polymerization. And it is implemented 
mainly in the following three ways (Fig. 2): “grafting 
through”, “grafting to” and “grafting from”. The most 
commonly used method is “grafting from”. Due to the small 
molecular monomers involved in the reaction and the small 
steric resistance, this method is easier to synthesize cellulose 
graft copolymers with high graft ratio [30, 31]. 

 
a 

 
b 

 
c 

Fig. 2. Three main ways of graft copolymerization of cellulose: 
a – grafting through; b – grafting from; c – grafting to [30] 

The characteristics of graft copolymerization are that 
monomers are copolymerized to form polymer chains, and 
then grafted onto the main chain of cellulose in the form of 
covalent bonds. Common monomers are acrylonitrile, 
acrylic acid, acrylamide, methyl methacrylate and so on. 
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Nourelhoda et al. [32] successfully grafted acrylic acid 
(AA) and acrylamide (AAm) onto cellulose acetate (CA) 
matrix [CA-g-(AA-co-AAm)] by atomic radical 
polymerization, and studied the absorption of lead ions in 
wastewater by CA and modified CA. The results showed 
that the latter greatly increased the adsorption capacity of 
Pb(II) ions, reaching 66.67 mg/g. Jiang et al. [33] first 
synthesized a new cellulose-based polymer chain transfer 
agent (Cell-CTA) with cellulose 2-bromoisobutyrylate 
(Cell-BiB) and 1-dodecanethiol as raw materials, and then 
grafted n-butyl acrylate (BA) and acrylamide (AM) onto 
Cell-CTA by reversible addition-fragmentation chain 
transfer (RAFT) polymerization to prepare cellulose graft 
copolymer (Cell-g-P(BA-co-AM)) with good mechanical 
properties. 

2.4. Other modification methods 
In addition to the above modification methods, 

chemical modification of cellulose also includes oxidation 
modification and cross-linking modification. 

The oxidation of cellulose can be divided into selective 
oxidation and non-selective oxidation. The non-selective 
oxidation oxidants include hydrogen peroxide, sodium 
hypochlorite and persulfuric acid. The selective oxidants 
can be directed to oxidize the hydroxyl groups of cellulose 
to obtain cellulose derivatives with specific structures [34]. 
Wen et al. [35] used an eco-friendly oxidation process that 
combines ultraviolet light, hydrogen peroxide and ozone to 
deoxidize cellulose. The synthesis steps of oxidized 
cellulose are shown in Fig. 3. Then the oxidized cellulose 
was homogenized under high pressure to prepare nano 
cellulose fibers (CNFs). The average length and width of 
CNFs prepared by this environment-friendly method can 
reach 11 μm and 22 nm respectively, which makes the 
obtained high-quality CNFs have great application 
potential. 

Crosslinking modification of cellulose refers to the use 
of crosslinking agents (such as N,N'-methylene 
bisacrylamide (MBA), epichlorohydrin (ECH)) to connect 
cellulose or cellulose derivatives with other polymers to 
form three-dimensional network structure products, which 
is commonly used in drug-controlled release, membrane 
science and other fields. 

3. APPLICATIONS OF CELLULOSE 
DERIVATIVES 

Cellulose and its derivatives can be widely used in 
different important fields such as food industry, water 
treatment industry, pharmaceutical industry, paper industry. 
The following part mainly reviews the application of 
chemically modified functional cellulose. 

3.1. Application of food industry 
The development of edible and biodegradable materials 

is an important research topic in the field of food science. 
Cellulose has the advantages of easy to make, non-toxic, 
renewable, biocompatible, so cellulose and cellulose 
derivatives have long been widely used in the food industry 
[3, 36]. 

One of its important applications is to modify cellulose 
to form film for food packaging. Singh et al. [37] used 
sodium carboxymethyl cellulose (CMC) and hydroxyethyl 
cellulose (HEC) as membrane materials and crosslinked 
with citric acid under certain conditions to prepare a new 
cellulose-based edible film. They selected Lactobacillus 
rhamnosus GG (LGG) as the model probiotic bacteria and 
studied the viability of LGG encapsulated with cellulose-
based film. The results showed that the films could 
effectively preserve live LGG. Overall, the cellulose-based 
edible films have a bright application prospect in the field 
of food protection and packaging. Jamaluddin et al. [38] 
used cellulose nanofiber as a raw material to obtain 
acetylated cellulose nanofiber (ACNF) by grafting hydroxyl 
group on the main chain of cellulose with acetic anhydride. 
Then, PLA/ACNF films were prepared by filling poly(lactic 
acid) (PLA) with ACNF as filler. Because of its strong 
hydrophobicity, good compatibility and good mechanical 
properties, the film has broad prospects in bio-based food 
packaging. 

Considering safety and sustainable development, 
cellulose derivatives can also be used as thickeners. Gao et 
al. [39] first extracted cellulose from brown algae (BA), and 
then obtained BA cellulose nanofibers (BACNFs) through a 
series of treatments such as oxidation. They studied the 
rheological behavior of BACNFs in water and the 
thickening performance of nanofibers added to milk. 
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Fig. 3. Schematic diagram of cellulose oxidation. Reproduced with the permission of ref. [35], copyright (2020) American Chemistry 

Society 
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When nanofibers were added to milk, the nanofibers 
formed weak gelatinous structure through hydrogen bond 
adsorption, achieving the effect of thickening. Cell viability 
test showed that BACNFs had good biocompatibility and 
biological activity. Based on the above characteristics, fiber 
materials can be used as a good thickener in the food 
industry. In addition, cellulose derivatives can also be used 
in food industry as emulsifier [40], stabilizer [41] and 
expander [42]. 

3.2. Application of wastewater treatment 
The rapid development of industry and the surge of 

population in recent decades have caused serious 
environmental pollution, and the treatment of water 
pollution has become one of the urgent problems to be 
solved. In recent years, in the field of wastewater treatment, 
cellulose-based derivatives have attracted extensive 
attention due to their advantages of renewable, low-cost, 
non-toxic side effects, large absorption [43, 44]. 

In order to find an excellent dye wastewater adsorbent, 
Gopakumar et al. [45] synthesized a new type of green 
adsorption material by the reaction of cellulose nanofiber 
(CNF) and Meldrum’s acid as esterification agent. The 

synthesis equation is shown in Fig. 4. The experiment 
verified that the modified cellulose nanofiber can adsorb 
positively charged crystal violet dye. In order to increase its 
adsorption and filtration performance, they also coated 
modified cellulose nanofiber on polyvinylidene fluoride 
electrospun membrane, thereby obtaining a high degree of 
simultaneous removal of crystal violet dye and nano-sized 
Fe2O3 in water. 

A novel efficient cellulose grafting adsorbent was 
prepared by dispersing a certain proportion of clay and 
cellulose mixture in distilled water and grafting vinyl 
monomers onto the main chain of cellulose with potassium 
persulfate (PPS) as initiator [46]. Experiments showed that 
the adsorbent had good removal effect on Ca, Mg, Fe, Pb, 
and Cu ions individually in aqueous solution. The 
effectiveness and low cost of the cellulose based adsorbent 
show its potential for large-scale application in the field of 
water treatment. 

Zhang et al. [47] used sodium periodate to selectively 
oxidize the hydroxyl of cellulose at C-2 and C-3 positions 
to obtain 2,3-dialdehyde cellulose (DAC), and then reacted 
DAC with polyethylene imine (PEI) to form hyperbranched 
polyethylenimine-grafted cellulose (hPEI-CE) flocculant 
with Schiff base structure. 

 
Fig. 4. Strategy for the preparation of the Meldrum’s acid modified cellulose nanofiber. Reproduced with the permission of Ref. [45], 

copyright (2017) American Chemistry Society 

 

  
a 

 
b 

Fig. 5. Schematic diagram of hPEI-CE synthesis. Reproduced with the permission of ref. [47], copyright (2018) American Chemistry 
Society 
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The synthesis steps are shown in Fig. 5. The 
flocculation effect of the flocculant was evaluated by 
applying the flocculant to the treatment of silk dyeing 
wastewater and machining wastewater. Experiments 
showed that the flocculant with lower dosage can achieve 
better flocculation performance. For example, the removal 
rate of turbidity and total suspended solids can reach 97.8 % 
and 99.1 % respectively. Based on its better flocculation 
performance, the flocculant obtained by the modification of 
natural polymer has a bright application prospect in 
wastewater treatment. 

As wastewater treatment is still one of the problems that 
must be solved in the future, cellulose derivatives have 
attracted more and more researchers' attention because of 
their low price, abundant reserves and degradability. 

3.4. Application of paper industry 
Cellulose paper is a kind of biodegradable material, 

which is widely used in people's life because of its low cost 
and mass production. In the paper industry, cellulose 
derivatives can improve the physical properties of paper, 
such as strength, folding resistance and tearing resistance. 
With the increasing demand for high-performance paper and 
functional paper, cellulose derivatives are often used as 
paper reinforcers, surface sizing agents, water retaining 
agent and stabilizers in paper industry [52 – 54]. 

Cellulose derivatives can be introduced into the pulp to 
obtain different functions of the paper, such as paper with 
uniform ink absorption and high adhesion, or paper with 
hydrophobic and antibacterial properties. In order to 
develop functional paper, El-Wakil et al. [55] prepared 
hydroxypropyl cellulose/oxidized cellulose nanocrystals 
nanocomposites, which were coated on paper to improve the 
tensile strength and reduce the porosity of paper. and the 
mixed solution was applied to paper to obtain an 
environmentally-friendly wrapping paper which has water 
and oil resistance and has a bactericidal action against 
Escherichia coli. Shankar et al. [56] used carboxymethyl 
cellulose, and carrageenan alginate and grapefruit seed 
extract as raw material to prepare mixed polymer coating 

solution. The mixed solution was coated on paper, and a 
kind of environmentally-friendly packaging paper with 
water and oil resistance and bactericidal effect on Listeria 
monocytogenes and Escherichia coli was obtained. 

 Modified cellulose not only has some characteristics of 
cellulose itself, but also has the new characteristics given by 
the modification. It will have great application prospects in 
the paper industry, open up a new way for the utilization of 
plant resources, and also bring great economic and social 
benefits to the paper industry. 

Table 1 summarizes some cellulose derivatives 
modified by different methods and their applications. Some 
cellulose-based materials obtained by etherification, graft 
copolymerization and other methods have good 
biodegradability, non-toxic and harmless, so they are widely 
used in the pharmaceutical industry. Cellulose can be 
grafted with some polar monomers by free radical 
polymerization to obtain the adsorption effect on metal ions. 
It can be seen that the chemically modified cellulose has 
obtained new functions, which are widely used in food, 
medicine, water treatment and other fields. 

4. CONCLUSIONS 
Facing the severe challenges of energy and 

environment, the research and development of cellulose has 
become one of the important topics of global sustainable 
development. Cellulose is a green and environment-friendly 
natural polymer, and large yield, wide source and 
renewable, with good biocompatibility, mechanical 
properties and other advantages. However, its structural 
characteristics, poor solubility and intolerance corrosion 
limit its application. Fortunately, the chemical modification 
of cellulose not only retains its own excellent 
characteristics, but also introduces functional groups to 
endow it with specific properties. At present, chemically 
modified cellulose is widely used in different fields such as 
food industry, water treatment industry, pharmaceutical 
industry and paper industry. We expect extensive 
applications of chemically modified cellulose in the near 
future. 

Table 1. Modified cellulose materials and their applications 

Method Product a Application Ref. 

Esterification modification 
Long chain cellulose ester Potential packaging and printing electronics applications [22] 
Cellulose-g-PCL Potential drug carrier applications [23] 
Cellulose-g-β-CD Drug carrier [51] 

Etherification modification Pent-4-enyl cellulose Potential applications in drug delivery and waterborne 
coatings [29] 

Grafting modification CA-g-(AA-co-AAm) Pb ion adsorption [32] 
CE-PAA Biomedical application [50] 

Other CMC/HEC composite film Food protection and packaging [37] 
BACNFs Milk thickeners [39] 

a Long chain cellulose ester, long chain fatty acid chlorides modified cellulose; Cellulose-g-PCL, cellulose-graft-polycaprolactone; 
Cellulose-g-β-CD, β-cyclodextrin modified cellulose; Pent-4-enyl cellulose, 5-bromo-pent-1-ene modified microcrystalline cellulose; 
CA-g-(AA-co-AAm), cellulose acetate-graft-(acrylic acid-co-acrylamide); CE-PAA, cellulose ethers grafted poly(acrylic acid); 
CMC/HEC composite film, citric acid crosslinked carboxymethyl cellulose and hydroxyethyl cellulose; BACNFs, brown algae 
cellulose nanofibers obtained by oxidation of alginate cellulose. 
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