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The determination of microstructure influence on porous materials macro properties can be applied to predict behaviour 
of material. The numerical finite element method was used to identify stress concentration factor of porous polymer 
material microstructure in dependence on loading direction, porosity and pores distribution mode under tensile loading 
by constant strain. It was determined that the value of stress concentration factor depends upon the orientation of matrix 
microstrips with respect to loading direction and the stiffness changes of the matrix adjacent zones. If the high stiffness 
changes of the matrix adjacent zones are characteristic and the longitudinal axis of thin microstrips is in line with the 
direction of tensile, the stress concentration factor of porous structure is the highest. If the angle between these 
microstrips and the direction of tensile is equal to 45°, the stress concentration factor is the lowest. If the low stiffness 
changes of the matrix, adjacent zones are characteristic such porous material exhibits low stress concentration factor 
without reference to loading direction. 
Keywords: porous polymer, porosity, pores distribution mode, stress concentration, finite element method. 

 
INTRODUCTION∗

Porous structural materials with perfect microstructure 
were designed by nature and as it is often happening, a 
man made a copy of this for his products. Currently porous 
materials are widely used instead of monolithic these, 
because they are cheaper, lighter and exhibit good strength 
and deformability [1]. These materials, components and 
products of them are widely used in the automotive 
industry, aviation, packaging, furniture, sewing, footwear 
trades. They have many fields of applications, including 
the manufacturing of thermal insulation, building 
materials, devices of buoyancy, absorbers, various filters, 
hydrophobic membranes, artificial leathers, shoes soles 
and a lot of others products [1 – 6].  

Porous material is heterogeneous system with complex 
microstructure [7]. This system is diphase composite with 
solid matrix and gasiform filler [8, 9]. The spectrum of 
porous materials is very wide. They can be made from 
polymers (glassy, semi-crystalline, elastomeric), metals 
(aluminium, nickel, copper), ceramics [1, 10 – 14]. 
Macromechanical properties of heterogeneous systems 
depend not only on the material nature but on this 
morphology, also [14 – 16]. 

To determine the macroscopic overall characteristics 
of heterogeneous media is an essential problem in many 
engineering applications [17]. From the time and cost 
viewpoints, performing straightforward experimental 
measurements on a number of material samples, for 
various phase properties, volume fractions and loading 
histories is a hardly feasible task. On the other hand, due to 
the usually enormous difference in length scales involved, 
it is impossible, for instance, to generate a finite element 
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mesh that accurately represents the microstructure and also 
allows the numerical solution of the macroscopic structural 
component within a reasonable amount of time on today's 
computational systems. To overcome this problem several 
homogenization methods have been created to obtain a 
suitable constitutive model to be inserted at the 
macroscopic level [18 – 27]. Most of these methods are 
based on the concept of a representative volume element 
(RVE) [17]. The homogenized material properties are 
determined by fitting the results of the detailed modelling 
of the RVE (typically performed by the finite element 
method) on macroscopic phenomenological equations. The 
material configuration to be considered is assumed to be 
macroscopically homogeneous (continuum mechanics 
theory is suitable to describe the macroscopic behaviour), 
but microscopically heterogeneous. The physical and 
geometrical properties of the microstructure are identified 
by the RVE. It must be selected such that the local 
microscopic material structure can be considered as the 
RVE surrounded by copies of itself, without overlapping of 
the RVEs and without voids between the boundaries of the 
RVEs. The RVE should be large enough to represent the 
microstructure, without introducing non-existing properties 
and at the same time, it should be small enough to allow 
efficient computational modelling [17]. This issue has been 
discussed in a number of studies [28]. 

The alternative of making approaches in RVE design 
of assumption on global periodicity of the microstructure, 
suggesting the whole macroscopic specimen consists of 
spatially repeated unit cells or more realistic assumption on 
local periodicity, i. e. the microstructure can have different 
morphologies corresponding to different macroscopic 
points, while it repeats itself in a small vicinity of each 
individual macroscopic point is existing. On either case the 
choice it is some advantages and weakness, so the decision 
is leaded by particular solution of a problem [29, 30]. The 
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question about the difference of the results obtained by 
investigation of periodic or random microstructure can be 
raised, also. Studies showed that for small deformations of 
elastomeric model there is almost no difference in the 
responses originating from the periodic and random pores 
distributions [17]. For large deformations, the difference 
between the response of the periodic structure and the 
response averaged over the random RVEs does not exceed 
2 % [17]. So if the porous material with elastomeric matrix 
is investigated the choice of periodic structure is tenable. It 
results in simpler modelling and investigation of various 
factors influence on the materials mechanical behaviour. 

In the case of periodic microstructure, the loading 
direction can influence on the deformation behaviour and 
stress concentration of the material, also. So as periodic 
models are investigated it is purposeful to evaluate the 
effect of loading direction. 

The aim of this investigation was to evaluate the 
influence of loading direction and pores distribution mode 
on porous polymer material stress concentration. 

EXPERIMENTAL 
In order to clarify the deformation behaviour of porous 

polymers, computational studies have been performed. A 
typical porous polymer contains pores, usually which are 
spherical and are dispersed through the matrix. Although 
the distribution of the pores is somewhat random, here, it is 
assumed that it is periodic.  

The finite element method (FEM) was used to identify 
influence of material porosity, pores distribution mode and 
tension direction on the stress concentration. Analysis was 
performed by finite element code ALGOR. The plane 2D 
model was made to utilize symmetry and periodicity, 
assuming that there are no trough-the thickness stresses in 
the plane. The exact number of elements of each model 
depends on model type and porosity.  

To obtain the influence of loading direction and pores 
distribution mode, three types of plane models, which 
differ from each other in porous size and its distribution 
mode, were investigated. The obtained models are over-
simplified representation of porous materials structure, 
which was observed in many natural or artificial composite 
materials. Model I was designed with one-sized pores, 
which lay in parallel rows with equal distance between 
porous in each direction. The diameter of these pores was 
d1.   Model  II   was   created   on   the   basis  of  Model  I: 

symmetrically additional porous elements, diameter of 
which was d2 < d1, were added in interpores zones, located 
between pores d1. Model III consisted pores of three sizes 
that varied according selected criteria: d3 < d2 < d1. The 
ratio between pores diameter and main measure of RVE L 
(L =50 mm) was proportionally changed according to these 
expressions: d1 / L = 0.01 ÷ 0.20, d2 / L = 0.02 ÷ 0.12, 
d3 / L = 0.02 ÷ 0.04. In all cases the distance between pores 
centers was constant. The enlarged description of theses 
models was presented in previous investigations [31, 32]. 

Fig. 1 illustrates the computational model in which 
pores are assumed to be distributed periodically. There it is 
presented the case of the Model III, but the scheme is 
analogous for all investigated models. The boundary 
conditions on the macroscopic scale are that the upper 
surface is shear-free with a constant displacement 
constraint; the bottom surface has constraint on two 
directions in the point in the symmetry axe of model and 
this on one direction in other points as shown in Fig. 1. 
Whereas the right and left surfaces are assumed to be stress 
free. The total relative strain is 0.2. 

In order to investigate the effect of loading direction 
on the deformation behaviour the angle θ, which is the 
angle of the tension direction with respect to the principal 
direction of the unit cell, is introduced and is 
parametrically varied from 0° to 45°. 

Young’s modulus of matrix material is E = 3.98 MPa 
and Poison’s rate is µ = 0.46. This material was used for 
previous investigations, so the choice of this material is 
done for comparison purposes. 

RESULTS AND DISCUSSIONS 
Model I. The angle of loading direction is the angle of 

microstrips orientation in the Model I. The relationship of 
maximal stress concentration factor Kσ of this model with 
respect to the angle θ of loading direction and porosity γp is 
presented in the Fig. 2. It seems that, the increase of 
porosity up to the value equal to 0.5 the stress 
concentration factor decreases. In all investigated porosity 
range the stress concentration factor is the highest when  
θ = 0°. In this case, the longitudinal axis of microstrips 
superposes with the direction of tensile. As the θ  increases 
the stress factor decreases and it is the lowest when  
θ = 45°. It could be explained using the RVE of Model I 
made  from  four  unit  cells (Fig. 3). In the cases of  θ = 0° 
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Fig. 1. Computational model. Heterogeneous pores of RVE are assumed to be circular cylinders of diameter d1, d2 and d3 contained in 

the unit cell, which is the microscopic element of the porous material 
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Fig. 2. The relationship of maximal stress concentration factors 

Kσ with respect to the angle θ of loading direction and 
porosity γp for Model I 

and θ = 45°, it can be written maximal and minimal lengths 
of RVE cross-section in all of these cases: 
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where amax0° and amax45° are the maximal lengths of RVE 
cross-section respectively as θ = 0° and θ = 45°, amin0° and 
amin45° are the minimal lengths of RVE cross-section 
respectively as θ = 0° and θ = 45° (Fig.3). The differences 
of RVE cross-section lengths are obtained by subtraction 
of the maximal and minimal lengths: 
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So, from (5) and (6) it is clear seen that the difference 
of RVE cross-section lengths as θ = 0° is about 3 times 
higher than this as θ = 45°. In the Fig. 3 seems that the 
differences of RVE cross-section lengths as θ = 15° and 
θ = 30° are mediate. 

As the difference of tensile stiffness depends on the 
difference of RVE cross-section, it is clear that the highest 
difference of tensile stiffness of Model I is as angle of 
loading direction is equal to zero and the lowest difference 
of this is as θ = 45°. Therefore if the longitudinal axis of 
thin microstrips is in line with the direction of tensile, the 
stress concentration factor is the highest. If the angle 
between microstrips and the direction of tensile is equal to 
45°, the stress concentration factor is the lowest. 

The distribution of stress concentration factor Kσ near 
pores d1 for Model I as the angle of loading direction is 

varying from 0° to 45° and γp = 0.002 is shown in Fig. 4. It 
seems that, the maximum of stress concentration factor is 
decreasing and the location of this maximum is moving by 
angle θ as this angle increases from 0° to 45°  
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Fig. 3. The RVE of Model I made from four unit cells as the 

angle θ of loading direction is varying  
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Fig. 4. The stress concentration factor Kσ near pores d1 for Model 
I as the angle of loading direction is varying 

Model II. The influence of angle θ of loading 
direction and porosity γp on the maximal stress 
concentration factor changes for Model II is presented in 
Fig. 5. The porosity value results in the dependence mode. 
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Fig. 5. The relationship of maximal stress concentration factors 

Kσ with respect to the angle θ of loading direction and 
porosity  γp  for Model II 

Decreasing dependences are characteristic for low 
porosity value models. Increasing dependences are 
characteristic for high porosity value models. Two kinds of 
microstrips are in the Model II. Ones of them are the same 
like in the Model I formed between pores d1 and the angle 
of loading direction is equal to the angle of these 
microstrips orientation. Others of them formed between 
pores d1 and d2 and the angle between their longitudinal 
axis and tension direction is equal to 45°. So, the stress 

 125



concentration factor of Model II depends on both the 
microstrips orientation with respect to the load direction 
and the thickness of microstrips. In the case of lower 
porosity (γp = 0.51÷0.63) Model II exhibits very small 
pores d2. The thinner microstrips are formed between pores 
d1 the bigger influence of them on stress concentration 
factor is. Therefore, the dependence of stress concentration 
factor upon the angle of loading direction has the same 
character like in the case of Model I. In the case of higher 
porosity (γp = 0.68÷0.79) the thinner microstrips are 
formed between pores d1 and d2 the higher influence of 
them on stress concentration factor is. As the angle θ 
increases thin strips are oriented in the direction of tension 
and the stress concentration factor increases. 

The stress concentration factor Kσ near pores d1 for 
Model II as the angle of loading direction is varying and 
porosity is equal to 0.51 is presented in Fig. 6. As the angle 
of loading direction increases, the stress concentration 
factor near pore d1 decreases as in the case of Model I. 
Therefore, the decrease of Model II stress concentration 
factor near d1 as γp = 0.51 is leaded by decreasing of 
microstrips between pores d1 stiffness differences as θ is 
increasing.  
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Fig. 6. The stress concentration factor Kσ near pores d1 for 
Model II as the angle of loading direction is varying 

When porosity is low and θ = 0° the stress 
concentration factor near pores d2 is high (Fig. 7). As it 
was determined before [31] in the case of low porosity of 
Model II, small pores d2 act as stress concentrators. 
Besides, pores d2 fall into the zone of high shear stress as 
θ = 0° [33]. It decides the high stress concentration factor 
near pores d2. The increasing of loading direction angle 
results in the decrease of stress concentration factor. That 
is the reason of shear stress decreasing as the pores d2 pass 
into the other position. So, as θ = 45° Kσ near d2 is lower 
than this near pore d1. 

The changes of stress concentration factor of Model II 
near pores d1 and d2 when the angle of loading direction is 
varying and porosity value is high are presented in Fig. 8 
and Fig. 9. It seems that four maximums of stress 
concentration factor near both pores d1 and d2 are formed 
in the zones of thin microstrips between pores d1 and d2 
without reference to loading direction. The increasing of θ 
does not results in changes of stress concentration factor 

because in this high porosity case microstrips between 
pores d1 and d2 are very thin and in all investigates loading 
direction cases are like stress concentrators. 
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Fig. 7. The stress concentration factor Kσ near pores d2 for 
Model II as the angle of loading direction is varying 
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Fig. 8. The stress concentration factor Kσ near pores d1 for 

Model II as the angle of loading direction is varying 
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Fig. 9. The stress concentration factor Kσ near pores d2 for 
Model II as the angle of loading direction is varying 
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Model III. The influence of angle θ of loading 
direction and porosity γp on the maximal stress 
concentration factor changes for Model III is presented in 
Fig. 10. It seems that as γp = 0.76 the highest stress 
concentration factor is when θ = 30° and as γp = 0.87 it is 
as θ = 15°. However, the influence of loading direction on 
stress concentration factor of Model III is low comparing 
to Model I and Model II. If in the case of Model II the 
maximal difference of stress concentration factor values is 
50 % that in the case of Model III this difference is 16 %. 
The insignificant influence of loading direction is seen in 
Fig. 11 -13 where the stress concentration factor Kσ near 
pores d1, d2 and d3 for Model III as the angle of loading 
direction varies is presented. This is leaded by low 
stiffness changes of the matrix adjacent zones in all 
directions. 
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Fig. 10. The relationship of maximal stress concentration factors 

Kσ with respect to the angle θ of loading direction and 
porosity γp for Model III 

So the obtained results certified the decrease of stress 
concentration factor due to the decrease of stiffness 
changes of the matrix adjacent zones what was determined 
before [31, 32]. In all investigated loading direction angles 
cases the inequality is valid 
Kσmax of Model I >  Kσmax of Model II >  Kσmax. of Model III. (7) 
That means the stress concentration factor of Model III is 
the lowest in which the lowest stiffness changes of the 
matrix adjacent zones are characteristic. The stress 
concentration factor of Model I is the highest in which the 
highest stiffness changes are characteristic.  

CONCLUSIONS 
It was determined that the stress concentration factor 

of porous periodic polymer material structure depends 
upon the orientation of matrix microstrips with respect to 
loading direction and on the stiffness changes of the matrix 
adjacent zones as the loading is the constant strain 
(ε = 0.2). 

If the high stiffness changes of the matrix adjacent 
zones are characteristic and the longitudinal axis of thin 
microstrips is in line with the direction of tensile, the stress 
concentration factor of porous structure is the highest. If 
the angle between these microstrips and the tensile 
direction is equal to 45°, the stress concentration factor is 
the lowest. 

If the low stiffness changes of the matrix, adjacent 
zones are characteristic such porous material exhibits low 
stress concentration factor without reference to loading 
direction. 
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Fig. 11. The stress concentration factor Kσ near pores d1 for 

Model III as the angle of loading direction is varying 
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Fig. 12. The stress concentration factor Kσ near pores d2 for 

Model III as the angle of loading direction is varying 
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Fig. 13. The stress concentration factor Kσ near pores d3 for 

Model III as the angle of loading direction is varying 
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