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This work presents a novel way to examine the characteristics of fly ash, copper slag (CPS) along with the 
addition of Ultrafine Ground Granulated Blast Furnace Slag (UFGGBFS) based Geopolymer Concrete (GPC) 
for various molarities (10M, 12M and 14M). In GPC, fly ash was replaced with UFGGBFS (5 %, 10 % and 
15 %) and copper slag was used as fine aggregate. Mechanical Characterization such as split tensile, flexural 
strength, workability and water absorption were conducted . GPC characterization and microstructural 
behaviour was studied  by examining X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). 
From experimental results this study concludes that with a rise in molarity of GPC, along with incorporation 
of UFGGBFS, improved the performance, densification and strength of GPC. 
Keywords: copper slag, fly ash, molarity, geopolymer concrete, ultrafine ground granulated blast furnace slag. 

 
1. INTRODUCTION∗ 

The manufacturing procedure of cement consumes 
many natural resources, and causes major problems to the 
society, predominant hazard being the emission of 
greenhouse gases [1]. A ton of cement production results in 
an equal amount of CO2 emission [2 – 6]. Global production 
of cement per year would rise up to 5 % in the future; and in 
2050, it will elevate to 4.38 billion tonnes [7]. In order to 
reduce CO2 emissions, researchers are working on the 
application of eco-friendly materials. One of such material 
is alkali activated geopolymer concrete [8]. Geopolymer 
concrete acts as an emerging alternative to conventional 
concrete and holds the potential to convert wastes like fly 
ash, slags and other waste products into useful by-products 
[9]. Better geopolymerization occurs while incorporating 
Ground Granulated Blast Furnace Slag (GGBFS) and fly 
ash, which resulted in good stability and performance [10]. 
The durability and mechanical strength characteristics of 
conventional concrete were found to be less when compared 
to GPC at elevated temperatures [11, 12]. The strength of 
GPC mainly depends on the curing condition. At ambient 
temperature setting time is more; this is due to the gel form 
nature of sodium silicate; to counteract this issue GPC is 
cured at 60 °C for a period of 24 and 48 hours respectively 
[13]. Usage of heat-cured process is not cost-effective and 
causes practical problem for in-situ cases; thereby it could 
not be applied for massive geopolymer concrete 
applications. Certain studies have shown that an Ordinary 
Portland Cement (OPC) when combined with low calcium 
fly ash, accelerates the curing of GPC rather than curing by 
heat application [14]. Heat curing is best suited for the 
precast industry. To overcome the practical curing 
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problems, investigation on ambient curing should be done. 
Growth of the Construction industry requires a huge 
quantity of sand. Sand mining from river bed and beaches 
pose a serious environmental threat. Continuous sand 
mining results in an improper river flow, affecting the native 
flora, fauna and the aquifers [15]. Manufacturing one ton of 
copper, results in two to three tons of CPS [16]. Annual 
production of CPS in India is about 3.5 million tons which 
are used for eliminating rust and many impurities [17]. 
These findings have awakened the construction industry. 
Furthermore the disposal of these slags requires a huge land 
area, thereby causing land pollution. To counteract these 
challenges researchers are working on alternative fine 
aggregate and binder. In this study GPC made of CPS as fine 
aggregate was examined, GPC showed good strength 
performance along with CPS [18]. CPS used as fine 
aggregate in GPC showed an increase in strength than 
control concrete by 1.35 times, increase in quantity of 
copper slag increased the compressive strength [19]. 
Numerous studies have proved that the strength of GPC 
improved due to short term elevated temperature [20, 21]. 
Even though a lot of research has been conducted on slag 
materials, practical application of slag materials and its 
behavior has always been a grey area. Behavior of GPC 
made of UFGGBFS and high volume copper slag at ambient 
curing is unfathomed. In this novel study, geopolymer 
concrete (10M, 12M and 14M) was made by replacing low 
calcium fly ash with ultra-fine GGBFS for 0 %, 5 %, 10 % 
and 15 % respectively as a binder and copper slag was used 
as fine aggregate. Ambient curing was employed in order to 
check its suitability for the construction industry. Since 
many researches have studied about compression strength, 
in this study flexural and split tensile strength properties 
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were examined along with workability. To analyse the 
structure of fly ash and UFGGBFS based GPC for different 
sodium hydroxide (NaOH) concentration, XRD and SEM 
analysis were performed. Several researchers have 
examined about early age strength of GPC [20 – 22], so in 
this work, experiments were conducted after the age of 7 and 
28 days of standard curing. 

2. EXPERIMENTAL INVESTIGATIONS 

2.1. Materials 
Fly ash (Class F) having specific gravity 2.64 was 

procured from the Mettur Thermal Power Plant, India, and 
was utilized as the primary material. XRF analysis of fly ash 
was performed to study the chemical composition and to 
satisfy the requirements as per IS 3812: 2003 [23]. The 
chemical and physical composition of fly ash is tabulated in 
Table 1. UFGGBFS, a micro-fine low calcium silicate 
material of size 4 to 6 microns, improves the hardened and 
fresh property of concrete [24]. The physical properties 
along with the chemical composition of UFGGBFS are 
displayed in Table 2. The well-graded coarse aggregate of 
12.5 mm size with a specific gravity of 2.83, confirming to 
IS 383:2006 Standard [25] were used. Copper slag, a black 
colored glassy granular particle satisfying  
IS 2386. Part I:1963 Standard [26], was utilized as a fine 
aggregate. Table 3 displays the physical properties along 
with the chemical composition of CPS. To improve the 
workability of GPC, super plasticizer (based on 
Naphthalene sulfonate) in liquid form was used as an 
admixture confirming to IS 9103:1999 Standard [27]. 

2.2. Alkaline solution 
The geopolymerization process mainly occurs due to 

alkaline activators such as sodium hydroxide (NaOH) and 
sodium silicate (Na2SiO3). A solution of NaOH was made 
for 10M, 12M and 14M by using 98 % purity pellets. 
Commercially available sodium silicate was then mixed 
with 2.5 times sodium hydroxide to make GPC. 

2.3. Preparation of geopolymer concrete specimen 
NaOH solution prepared for 10M (314 grams of 

NaOH/1 L of NaOH solution), 12M (361 grams of 

NaOH/1 L of NaOH solution) and 14M (404 grams of 
NaOH/1 L of NaOH Solution) were used as alkaline 
solution. Preparation of NaOH was done at room 
temperature, after 24 hours Na2SiO3 was mixed to NaOH 
solution. Na2SiO3/NaOH ratio was formulated as 2.5. 
Alkaline liquid to binder ratio was kept as 0.35. UFGGBFS 
(0 %, 5 %, 10 % and 15 %) partially replaced with fly ash 
and CPS as fine aggregate was mixed with an alkaline 
solution to make GPC. The percentage of UFGGBFS 
replacement was restricted to 15 %, because any percentage 
of replacement higher than 15 % results in flash set. 
Specimens contain UFGGBFS (0 %, 5 %, 10 % and 15 %) 
along with fly ash and copper slag for different NaOH 
molarities (10M, 12M and 14M) were cast as per Indian 
standard code and testing was done after curing of 7 days 
and 28 days. Curing of geopolymer concrete specimens has 
been done in two ways. In the first case, where fly ash has 
been used as the only binder, curing in oven at 60 °C has 
been adopted. In the second case, where fly ash has been 
replaced by 5 %, 10 % and 15 % UFGGBFS, curing of 
geopolymer concrete specimens in the laboratory at ambient 
temperature has been adopted. Prisms of size 
10 cm × 10 cm × 50 cm and cylinders of size 15 cm 
diameter × 30 cm height were cast to find out the flexural 
and split tensile strength respectively for different 
combinations of GPC. As specified in Indian standard code, 
fresh and hardened GPC was tested [28, 29]. XRD analysis 
(ULTIMA-III instrument using CuKα as a radiation source) 
was performed on 15 % UFGGBFS based GPC. Fig. 1 
shows the mix proportions. 

 
Fig. 1. Mix proportion of copper slag based GPC 

Table 1. Chemical and physical properties of fly ash 

Sample SiO2 Al2O3 Fe2O3 Na2O SO3 CaO LOI Specific surface area  
Class F flyash 62.30 % 29.62 % 4.55 % 0.22 % 0.28 % 1.2% 0.55 % 322.8 m2/kg 
IS Standard requirement Minimum 70 % Maximum 1.5 % Maximum 3 % – 5 % 320 m2/kg 

Table 2. Physical properties and chemical composition of UFGGBFS 

Physical properties Chemical composition 
Property Values Property Values  
Specific surface area 12000 cm2/gm Silica (SiO2) 35 % 
Specific gravity 2.72 CaO 34 % 
Bulk density (kg/m3) 600 – 700 Alumina (Al2O3) 24 % 
Average particle size 4 to 6 micron Ferric oxide (Fe2O3) 1.7 % 
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Table 3. Physical and chemical properties of copper slag (CPS) 

CPS components CPS, % 
Fe2O3 55.00 
SiO2 31.20 
Al2O3 2.42 
MgO 1.54 
CaO 5.37 
Na2O 0.25 
SO3 1.92 
K2O 0.66 
Specific gravity 3.50 

3. RESULTS AND DISCUSSION 

3.1. Effect on workability 
Workability, one of the significant properties of plastic 

concrete, was done using slump cone apparatus as stated in 
IS 1199: 1959 Standard [29]. Fig. 2 shows the slump values 
of GPC (10M, 12M and 14M) with different percentages of 
UFGGBFS (0 %, 5 %, 10 % and 15 %). From Fig. 1, it can 
be inferred that the rise in molarity results in a decrease of 
workability. UFGGBFS (0 %, 5 %, 10 % and 15 %) showed 
an increase in slump value for 10M GPC when compared to 
12M and 14M GPC. Rise in UFGGBFS percentage from 
0 % to 15 % within 10M, 12M and 14M showed increased 
slump value. For 10M GPC slump value of 120 mm to 
155 mm was achieved, similarly for 12M and 14M slump 
value was found to be between 110 mm to 150 mm. The 
reason for this could be due to the formation of high alkaline 
content followed by sticky behavior of materials. The 
reaction of CaO content along with increased NaOH 
concentration reduces the workability of 14M and 12M 
when compared to 10M. The workability was also affected 
due to the hardening process; this may be due to the 
presence of calcium content in binding materials like fly ash 
and UFGGBFS. These materials formed supplementary 
nucleation spots which increased the solidification rate 
resulting in an increased rate of hardening process [30, 31]. 
Also, it was examined whether the increase in the 
percentage of UFGGBFS elevated the workability of each 
molarity. Due to water impermeability, the flow ability of 
GPC improved. The addition of CPS enhanced the 
workability which may be due to particle size, fineness 
modulus of CPS and changes in binder content. The 
existence of UFGGBFS, fly ash and CPS enhance the flow 
ability of GPC which resulted in better workability. 

 
Fig. 2. Workability of copper slag based GPC 

3.2. Effect of split tensile strength 
The split tensile strength result of 7 and 28 days cured 

specimens are presented in Fig. 3. From Fig. 3, it can be 
noticed that the rise in molarity of NaOH results in elevation 
of strength value. Results revealed an increase of strength in 
GPC specimens. Average split tensile strength value for 
10M, 12M and 14M GPC at 7 days (curing) was found to be 
between 2.85 MPa to 3.47 MPa and for 28 days (curing) it 
was found to be between 2.98 MPa to 4.15 MPa. A similar 
rate of strength increment trend as in compressive strength 
was observed in split tensile strength. Replacement of 
UFGGBFS (5 %, 10 % and 15 %) showed a rise in splitting 
tensile strength with the rise in molarity. Rate of strength 
increase was observed in 12M and 14M respectively when 
compared with 10M. The addition of UFGGBFS increased 
the polymerization due to the presence of calcium. The 
reaction of SiO2, Al2O3 along with alkaline solution can 
differ during reaction time. Presence of calcium reacts with 
the solution (alkaline) and thus development of heat occurs 
in GPC resulting in strength development. Presence of 
sodium silicate helps in the bonding of unreacted particles 
along with the gel matrix and thus improving the mechanical 
properties [32 – 34]. Presence of silica and alumina in the 
mineral admixture combines with alkali gel and thus cross-
link gel is formed which acts as a binding material and 
improves the GPC performance. The presence of calcium 
oxide improved the cementitious gel and thus improved the 
binder-aggregate zone. The dissolution of ingredients such 
as silica and alumina takes place due to the amorphous 
condition of copper slag along with the alkaline solution. 
Silico-aluminates structures (3D network) are formed by 
sodium aluminate silicate hydrate (NASH) and poly-
condensation which attributes higher GPC strength. 
Increased NaOH molarity helps in the formation of NASH. 
[35]. From this experimental study, it is concluded that split 
tensile strength increases with the increasing quantity of 
UFGGBFS, CPS and NaOH molarity. 

 
Fig. 3. Split tensile strength of copper slag based GPC 

3.3. Effect of flexural strength 
Average flexural strength test results are depicted in 

Fig. 4. Flexural strength effect after 7 and 28 days was found 
to be good with the rise in NaOH molarity. Similar to split 
tensile, this test also showed an increase in flexural strength. 
All the specimens after 7 days curing showed good flexural 
strength, the values were found between 3.4 MPa to 
4.4 MPa. Similarly, the flexural strength after 28 days 
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curing was found between 3.6 MPa to 4.8 MPa. Comparison 
between 10M and 12M, 12M and 14M for UFGGBFS 15 % 
shows an increasing trend of flexural strength. Similar to 
split tensile strength, 5 %, 10 % UFGGBFS based GPC 
showed an increase in flexural strength percentage for all 
molarity when correlated with 100 % fly ash based GPC. 
When comparing with split tensile strength, flexural 
strength records a higher percentage of strength increment. 
The strength improvement was found to better in 14M GPC 
containing UFGGBFS. The rise in strength is caused by the 
formation of CSH gel and due to bonding created by adding 
UFGGBFS [36]. Incorporation of mineral admixtures 
elevates the Si/Al ratio as a result increases the calcium 
alumino-silicate hydrate (CASH) attributing to good 
flexural strength. 

 
Fig. 4. Flexural strength of copper slag based GPC 

3.4. XRD analysis of GPC 
The crystalline phases of GPC were examined by XRD. 

The chemical composition of GPC (10M, 12M and 14M) 
specimen for UFGGBFS (15 %) was examined through 
XRD and is shown in Fig. 5. 

 
Fig. 5. XRD of 15 % UFGGBFS based GPC 

It can be inferred from the XRD pattern that; quartz 
(SiO2), MgO, mullites and calcium silicates (CaS) were 
dominant at peak crystalline phases. Crystalline phase 
partial dissolution takes place and as a result of decreased 
intensity of crystalline humps was observed, mainly due to 
mineral admixtures. The overall microstructure becomes 
denser because of the increase in UFGGBFS which 
indicates the high peak of quartz, which is crystalline in 

nature. The increased NaOH molarity results in the high 
peak of mullite, magnesium oxide and quartz. Copper slag 
addition indicates amorphous nature and results in the non-
identification of products that were formed in alkali 
activation [37]. Any change in the hump affects the 
efficiency of the amorphous gels [38]. Additional CSH gel 
formation at ambient curing was also found due to the 
pozzolanic reaction of UFGGBFS which leads to high 
strength. The mixed nature of amorphous and crystalline 
morphology is mainly due to ambient curing, a rise in 
temperature results in change of amorphous nature to 
crystalline form [39]. Absence of Fe improves the 
performance of GPC. Geopolymer gel (CASH & NASH) 
along with CSH gel densifies the structure of GPC. 

3.5. Microstructure of GPC specimen with 15 % 
UFGGBFS 

The morphological character and microstructure were 
studied by SEM. Fig. 6 shows the SEM analysis of 14M 
GPC with 15 % UFGGBFS. Hydration of UFGGBFS 
produces a higher amount of CSH gel, together with a 
significant bonding of the microstructure. Partial amount of 
amorphous and cluster network gels were generated; which 
are clubbed with remaining particles to form denser gel and 
microstructure. The SEM images of UFGGBFS and CPS 
based GPC showed better microstructure and lesser pores. 
An increase in polymerization and denseness leads to micro 
cracks. The existence of Na in the gel helps in the formation 
of NASH. The existence of calcium oxide in UFGGBFS is 
the main reason for the rate of hydration. Alkali activation 
results in the heat of hydration, which leads to higher 
strength and dense microstructure. One of the essential 
aspects in analyzing the performance of the geopolymer 
matrix is the Al/Si ratio. 14M GPC mix improved interfacial 
transition zone. 

 
Fig. 6. SEM of 15 % UFGGBFS based GPC 

4. CONCLUSIONS 
Following conclusions are made from this study: 
1. The improvement of concrete strength is directly 

proportional to the molarity ratio and it is also enhanced 
by the inclusion of UFGGBFS and copper slag in GPC. 

2. Addition of slag improves the split tensile and flexural 
strength properties of GPC. 
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3. Strength percentage increases with addition to 
UFGGBFS and results in denser microstructure 
concrete which improved the bonding ability. 

4. Overall, the performance of GPC increases with the 
increase in molarity, but the workability reduces. 

5. The XRD and SEM results conclude that CSH and 
NASH helped in strength development. 

6. Varied mix proportion and addition of slag improved 
the different characteristics of GPC. 

7. Copper slag can be used as an alternative fine 
aggregate. 

8. Strength of Ambient cured UFGGBFS based GPC was 
found to be better than 60° cured non UFGGBFS based 
GPC. 

9. Using UFGGBFS, CPS and fly ash in GPC prevents 
environmental pollution, and it can be employed in 
construction projects. 
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