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Finite element simulations and experimental tests were performed to study the influence of pores distribution mode on 
the stress of porous elastomeric materials in the case of large deformations. The relationships of principal stress on 
elongation ratio were obtained as the non-linear dependence of material matrix is described by Mooney-Rivlin equation. 
The results showed that, the lowest stress forms in such elastomeric material that exhibit the lowest stiffness changes of 
matrix adjacent zones. If at low elongation ratio values the principal stresses of porous elastomeric polymer material are 
similar to those of non-porous material with the same mechanical properties as the matrix, at high elongation ratio the 
principal stresses of porous material are 1.5 – 3 times higher than those of non-porous one. The results of experimental 
tests provide good agreement with these numerically obtained but the phenomenon of strengthening was observed as the 
higher stress than true stress at fracture of matrix material appears. This can occur if the pores size is on the order of 
materials dimensions. Due to this, the strengthening effect would not appear in microporous elastomers. 
Keywords: porous elastomer, pores distribution mode, stress, non-linearity, large deformations, microstructural 

modelling, finite element analysis. 
 
INTRODUCTION∗

Composites made from various kinds of rubber and 
elastomer or rubber-like matrix materials have found a 
wide range of applications in engineering [1]. Nowadays 
elastomeric materials are used in automobile, spatial, 
aeronautic, railways or pneumatic industries for assuming 
links of binding, damping or tightness tasks [2]. The 
unique feature of elastomer-based composites is that they 
can exhibit usable ranges of deformations much larger than 
these of composites with stiffer matrices, such as metals, 
ceramics, or rigid polymers [1].  

The use of porous elastomeric composites is 
widespread none the less than use of particle-reinforced 
elastomeric composites. The development and application 
of porous elastomeric materials is enforced by the 
continuous demand for lightweight constructions with 
enhanced mechanical properties [3]. Evidently, pores play 
a dominant role in the mechanical response of such 
materials. Depending on the shape, distribution and 
volume fraction of the pores, the overall properties of the 
porous elastomeric material will be various.  

A separate part of porous materials is formed by foams 
or so called cellular materials. Although the mechanics of 
low-density elastomeric foams has been widely 
investigated [4 – 11], the effects of lower levels of porosity 
on the mechanical behaviour of elastomeric materials are a 
subject that has been poorly covered in the literature [12]. 
Porous elastomers that are not referable to foams usually 
are fabricated either by the addition of a second phase with 
a lower density or by the addition of a blowing agent prior 
to curing [13]. Such porous elastomers typically have 
bubble (approximate spherical) pores which may be 
homogeneous or heterogeneous. The pores distribution 
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mode usually has random character, but if some 
presumptions are made the periodicity of pores distribution 
can be envisaged.  

As it is known, mechanical properties of porous 
elastomeric materials are governed by the information 
concerning the detailed topology and morphology of the 
material microstructure. Two porous media having the 
same composition of constituents may exhibit quite a 
different behaviour due to their different microstructures 
[3]. Two different approaches can be used to study the 
behaviour of porous material; the macroscopic modelling 
and the microscopic consideration. Using the first method 
the medium under consideration is replaced by the 
overlaying continua and thus all the laws are introduced at 
the macroscopic level. The second approach is the 
microscopic modelling and the effect of microstructure on 
macromechanical behaviour has largely been investigated 
through micromechanical models. 

The micromechanical models usually are defined by 
representative volume element (RVE). This is the small 
volume element of the medium considered which should 
contain all information necessary for the complete 
description of the medium [3]. The RVE should be large 
enough to represent the microstructure, without 
introducing non-existing properties and at the same time it 
should be small enough to allow efficient computational 
modelling [14]. 

The micromechanical modelling of porous elastomeric 
materials have some advantages over macromechanical 
this if the more fundamental studies are needed for a better 
understanding of the deformation behaviour of these 
advanced materials.  

The aim of this investigation was to evaluate the 
influence of pores distribution mode on the stress of 
elastomeric materials for the case of large deformations. 
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Fig. 1. Unit cells of three investigated models: Model I (a), Model II (b) and Model III (c). Dimensions are in µm  
 
EXPERIMENTAL 

The finite element analysis (FEA) was used to identify 
influence of material pores distribution mode on the stress 
state of porous elastomeric material. The analysis was 
performed by finite element code ANSYS. The plane 2D 
models were made to utilize symmetry and periodicity, 
assuming that there are no trough-the thickness stresses in 
the plane. Eight-node quadrilateral PLANE183 (Structural 
Solid) elements were used. The exact number of elements 
of each model depends on model type and porosity. In 
order to obtain the influence of pores distribution mode, 
three types of plane models, which differ from each other 
in porosity size, pores distribution mode and stiffness 
changes of matrix adjacent zones, were investigated  
[15, 16]. The obtained models are over-simplified repre-
sentation of porous elastomeric materials structure. Each 
model was described by a representative volume element. 
The RVE was constructed from symmetric unit cells, 
which are the smallest elements of the microstructure. The 
geometry and finite element mesh of unit cells for three 
investigated models is presented in Fig. 1. The RVE of 
each model was obtained from 36 unit cells and the 
outsider length of square RVE was equal to 30 µm. The 
porosity was calculated according to this equation: 
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where d1, d2, d3 are the diameters of heterogeneous pores; 
m is the number of pores sizes, m = 1, 2, 3; n1, n2, n3 is the 
number of pores, respectively of d1, d2, d3. Models I, II and 
III represent the porous material of porosity value 
respectively γp = 0.5, γp = 0.73, γp = 0.80. 

The boundary conditions on the macroscopic scale 
were that the upper surface is shear-free with a constant 
displacement constraint; the bottom surface had constraint 
on two directions in the point in the symmetry axis of 
model and this on one direction in other points. Whereas 
the right and left surfaces were assumed to be stress free. 

In order to investigate the nonlinear behaviour of 
porous elastomeric material, the nonlinear relation between 

principal stress σ1 and elongation ratio λ of matrix material 
butadiene-nitrile rubber SKN-40 was experimentally 
determined. This rubber was chosen because of the mecha-
nical properties of this good represent the class of elasto-
meric materials. Standard rectangular shaped specimens 
were machined using press PKP-10 from the sheet of 
butadiene-nitrile rubber SKN-40. The tensile tests were run 
on a tensile testing machine FP10/1 with strain rate 
100 mm/min. As the relation between true experimental 
stress and elongation ratio was determined the equations 
commonly applied for elastomeric materials were used: 
Neo-Hookean [17 – 19] 
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and Mooney-Rivlin [17, 18] 
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where G is the shear modulus, G = 0.88 MPa, A, C1, C2 are 
the material constants, A = 4.55 MPa, C1 = 0.259 MPa, 
C2 = 0.265 MPa. Materials constants were determined 
using code TableCurve2D. 
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Fig. 2. The relations between true stress σ1 and elongation ratio  

λ of butadiene-nitrile SKN-40 rubber: 1 – Bartenev-
Chazanovich; 2 – Neo-Hookean; 3 – Mooney-Rivlin;  
R2 – determination factor 
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The experimental results and theoretical ones obtained 
according to (2), (3) and (4) are presented in Fig. 2. 
Mooney-Rivlin equation corresponded to the experimental 
points better than others did, so this equation was chosen 
for the description of matrix behaviour. 
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Fig. 3. Specimens from butadiene-nitrile rubber SKN-40: 

Specimen I (a) and Specimen II (b). 1 – specimen part 
with cylindrical holes, 2 – monolithic part of specimen 
for the fixing in the clamps of tensile testing machine 

Experimental tests were done to verify the right of 
obtained numerical results. Proportionally to geometry of 
investigated numerical Models I and II microstructure the 
specimens from butadiene-nitrile rubber SKN-40 sheet 
were machined (Fig. 3). Specimen I and Specimen II were 
run on tensile testing machine FP10/1 with strain rate of 
100 mm/min until they were broken. From a tension 
diagram F = f (∆L) and geometry changes the true stress 
was calculated. The true stress at fracture σfr and 
elongation ratio at fracture λfr of Specimens I and II were 
obtained, also. 

RESULTS AND DISCUSSIONS 
The relations between principal stress and elongation 

ratio of Model I, Model II, Model III and non-porous 
material are presented in Fig. 4. It seems that, the mode of 
investigated Models curves is similar to this of matrix 
material i. e., model without pores, but if these curves are 
described by Mooney-Rivlin equation, the low 
determination factor is obtained (R2 ≈ 0.6 ÷ 0.7). The 
parabola equation was used and the high determination 
factor (R2 ≈ 1) was obtained: 
σ1 = A + Bλ + Cλ2 , (5) 
where A, B, C are the constants: for Model I A = – 4.66, 
B = 2.86, C = 1.55; for Model II A = – 4.37, B = 1.66, 
C = 1.83; for Model III A = – 2.04, B = 1.38, C = 1.20. 

As the elongation ratio is the same, the stress of 
Model I is higher than this of Models II, III and non-
porous one. In the case of low elongation ratio values e. g. 
as λ < 1.4 the stresses of Models II and III are similar to 
stress of non-porous material and even of less than this. 
Therefore, in the case of high elongation ratio λ > 1.4, the 
stresses of models II and III are several times higher than 
these of model without pores. The explanation of this is 
following. For the case of small deformations, the 

microstrips of Models II and III have varying orientation 
with respect to loading direction. As deformation proceed, 
the microstrips of these Models parallel with loading 
direction and this does not make the high stress. Due to 
this, the curves of Models II and III have bevel tangents in 
the beginning of deformation. For the case of large 
deformations the microstrips of Models II and III are 
oriented in loading direction and as deformation proceed 
they go through the tension and no orientation. So the 
stresses in this case are increasing and the angles of curves 
tangents are increasing, also. 
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Fig. 4. The relations between principal stress σ1 and elongation 

ratio λ of: 1 – Model I, 2 – Model II, 3 – Model III and 
non-porous material 

While all microstrips of Model I are parallel with the 
loading direction in undeformed stage, yet. The stresses of 
this model are significantly increasing from the very 
beginning of deformation process.  

The experimental test shows that the true stress at 
fracture of matrix material is equal to σfr = 14.4 MPa. The 
first of all, the Model I reach this value as the elongation 
ratio is λ = 2.7. The next to reach the value of true stress at 
fracture is the Model II as λ = 2.8 and last of all the Model 
III reach this value as λ = 3.3. The elongation ratio at 
fracture of investigated Models is respectively 1.8, 1.7 and 
1.4 time less than this of non-porous material. 

If Models compared together and to non-porous 
material it is useful to apply the stress concentration factor 
Kσ. The relationships of stress concentration factor Kσ with 
respect to elongation ratio λ of Models I, II, III and non-
porous material are presented in Fig. 5. The curves of 
dependences could be described by simply equation: 
Kσ = A + B / λ  , (6) 
where A, B are the constants: for Model I A = 3.73,  
B = – 2.25; for Model II A = 4.28, B = – 4.25; for Model III 
A = 2.92, B = – 2.72. 

It seems that, the stress concentration factors of 
Models I, II and III increase as the elongation ratio 
increase. In the case of low elongation ratio (e. g. λ = 1.2) 
the stress concentration factor of Model I is significantly 
higher than this of Models II, III and nonporous material. 
The same result was obtained, as the relationship of strains 
with stress was linear [15]. For large deformations (e. c. 
λ = 3.5) the stress concentration factor of Models I and II 
is about three times higher than this of non-porous 
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material. While the stress concentration factor of Model III 
is 2.2 times higher. Therefore in the case of conditionally 
small deformations the low stress concentration factor is 
characteristic for Models II and III and the high this for 
Model I. For large deformations the low stress concentra-
tion factor is characteristic only for Model III and the high 
this for Models I and II. It follows that; if the pores 
distribution mode of elastomeric material is similar to this 
of Model III the strength of such material would be 
significantly higher than this of elastomeric material with 
pore distribution mode identical to this of Model I. 
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Fig. 5. The relationships of stress concentration factor Kσ with 

respect to elongation ratio λ of: 1 – Model I, 2 – Model II, 
3 – Model III and non-porous material 

In order to compare the results obtained by FEA and 
the experimental these the substantial Specimens I and II 
from butadiene-nitrile rubber SKN-40 (see Fig. 3) were 
tested. The experimental and numerical data of the 
relationships of true principal stress σ1 with respect to 
elongation ratio λ of Model I, II and III are presented in 
Fig. 6. It seems that the experimental points have a good 
correlation with curves obtained by FEA. But it is evident 
that true stress at fracture of Specimens I and II is not 
equal to this of matrix material, i. e. an inequality is valid 
σfr < σfr(I) < σfrII) instead of validation of quality 
σfr = σfr(I) = σfr(II), where σfr(I) and σfr(II) are the true 
stress at fracture respectively of Specimen I and II matrix 
material. Also the experimental elongation rates at fracture 
of specimens are significantly higher than it was 
determined by numerical method. The elongation ratio at 
fracture is equal to 3.4 and 3.9 respectively for specimens  
I and II. This phenomenon manifested in experimental test 
could be explained by the effect of large pores and small 
specimen or in other words by scale factor. The similar 
phenomenon of strengthening was noticed by Andrews and 
Gibson [21 – 23]. They investigated the influence of cracks 
and cell size on tensile strength of aluminium foam with 
cells of large sizes. Authors observed that the larger the 
notch and cell size, the more significant the strengthening 
effect of unnotched zone. They used an equation for the 
evaluation of strengthening factor. If this equation is 
applied to case investigated in this study, the strengthening 
factor (SF) can be written for specimen I as 

.53.121 1 =+=
L
d SF  (7) 

This theoretical strengthening factor can be compared 
to experimental this  
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From equations (7) and (8) it seems that, the difference 
between the experimental and theoretical strengthening 
factors is not significant, it reaches just about 5 %. 
However, the predication that equation is universal and 
valid in all cases is impossible because the investigations 
of equation (7) validation is very poor, only one case of 
porosity value was analysed. Nevertheless, the idea of 
strengthening effect explanation can be based on theses 
reasoning.  

In the case of specimen II the heterogeneity of pores 
exists. So the evaluation of pores d2, not only d1 is needed. 
Good congruence of theoretical and experimental results is 
received if equation (7) is transformed in this way 
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Forasmuch the experimental strengthening factor is equal 
to 
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So, the difference between experimental and theoretical 
strengthening factors is only about 2 %. However, it is not 
good to talk about the universality of equation (9) due to 
reasons before mentioned. 
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Fig. 6. The experimental and numerical data of the relationships 

of true principal stress σ1 with respect to elongation ratio 
λ of Model I, Model II and Model III 

In conformity with a logical mind, the true stress at 
fracture of specimen III should be increased and the 
highest of all three specimens, though the experiments of 
this was not executed due to complex specimen shape. The 
elongation ratio at fracture of specimen III should be 
increased, also. Maybe, it could be higher than this of 
nonporous material. 

An ambiguity results were obtained by numerical and 
experimental methods but they do not negate the veracity 
of each other. If a microporous elastomer material is under 
consideration the relation 2d / L approximate to zero. Then 
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the equations (7) and (9) will be equal to one. It means that 
the strengthening effect will not appear in microporous 
elastomers. The fracture of these materials may occur, as 
the stress in microstrips is equal to true stress at fracture of 
matrix material. Therefore as the size of pores and the 
dimension of material are of the same order the relation is 
2d / L >> 0 and strengthening effect, i. e. the higher stress 
than stress at fracture of matrix material, could appear in 
such elastomers. 

CONCLUSIONS 
The relationships of porous elastomeric material 

principal stress on elongation ratio were obtained as the 
non-linear dependence of material matrix is described by 
Mooney-Rivlin equation. The results showed that, the 
stress values depend upon pores distribution mode, as the 
elongation ratio is the same. In all investigated elongation 
ratio cases the lowest stress forms in such elastomeric 
material that exhibit the lowest stiffness changes of matrix 
adjacent zones. 

If at low elongation ratio values (λ < 1.4) the principal 
stresses of porous elastomeric polymer material are similar 
to those of non-porous material with the same mechanical 
properties as the matrix, at high elongation ratio (λ > 1.4) 
the principal stresses of porous material are 1.5 – 3 times 
higher than those of non-porous one. 

The results of experimental tests provide good 
agreement with these numerically obtained but the 
phenomenon of strengthening was observed as the higher 
stress in microstrips than true stress at fracture of matrix 
material appears. This can occur if the pores size is on the 
order of materials dimensions. Due to this, the 
strengthening effect would not appear in microporous 
elastomers. 
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