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The theory, use and limitations of classical potentials are presented, in the specific context of computational studies of 
materials. The general form of potentials is detailed, and several examples, used for educational purposes (Lennard-
Jones) or giving good results for different kinds of materials (EAM, Stillinger-Weber, Tersoff), are described. Important 
issues related to classical potentials such as transferability, restrictions of use, and space and time limitations are also 
discussed. Three examples of theoretical studies, modeling of dislocations in zinc-blende materials, investigation of the 
dislocation formation from surface defects in a semiconductor, and study of the SiC/Si(001) interface, are presented. 
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1. INTRODUCTION∗

The last twenty years have seen a growing use of 
numerical simulations in materials science, thanks to the 
continuous improvement of computer performances. 
Indeed, complex calculations can now be performed even 
on low-price personal computers. Numerical simulations 
are interesting for several reasons. First, they could be 
considered as a necessary complement of experiments. For 
example, in spectroscopy or microscopy experiments, it is 
sometimes difficult to interpret directly the images. Useful 
insights may be obtained by comparing measurements with 
calculated images [1, 2]. Second, numerical simulations 
are also relatively cheap, a significant advantage for 
industrial research. A good example is provided by crash 
test simulations used for improving cars safety. It is now 
possible to get extremely reliable results from calculations. 
As a result, it is not necessary anymore to refine car 
prototypes in an expensive and slow iterative process of 
construction and crash test sequences. Third, numerical 
simulations allow us to explore easily a large range of 
system configurations, even for unusual or extreme 
conditions. For example, properties of matter under very 
high pressure or high temperatures, what occur inside 
stellar objects, can only be investigated with modeling. 
Finally, another advantage of simulations is prediction. 
Fast and cheap calculations could be carried out to test 
ideas about materials or processes, before building an 
expensive experiment.  

However, one has to keep in mind that simulations, 
though of great help, will not provide answers in all cases. 
Hence, simulations are done in the frame of one theory, 
which is built from or validated by established 
experimental results. By definition, calculation results are 
then only valid in this frame, and one can not simulate one 
experiment violating this theory. Obviously, calculations 
should never be considered as a proof, and always be 
compared to experiments. Moreover, prediction from 
simulations may be used as a guide for experiments but not 
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restrictively. Otherwise, new behaviors or properties of 
materials could be missed, for they were not obtained by 
calculations. In any case, the computational physicist has 
to know the liability range of each model, and whether 
computed results could be safely trusted or not.  

Here, I focus on simulations in materials sciences. 
Typically, one wants to compute the behavior of solids in a 
scale roughly from 1 meter to 1 angstrom. It is hardly 
possible to consider such a large range (1010) as a whole. 
Instead, one has to use different strategies depending on 
the problem dimensions. For example, at the macroscopic 
level, we know that the solid properties are well described 
by a continuum description and classical mechanics, if we 
exclude specific phenomena where quantum properties 
manifest themselves at this scale, such as 
superconductivity. Finite elements techniques are widely 
used for performing such calculations. At the other 
extremum, the atomic level, a continuum description of the 
matter is inadequate, and each atom must be considered as 
a definite entity, in the so-called atomistic approach. Also, 
quantum mechanics should be considered, and simulations 
done with first principles methods for example, allowing a 
very accurate description of the matter properties. 
However, only nanoscopic systems with less than about 
thousand atoms can be currently considered, even using the 
most powerful supercomputers, because of the tremendous 
difficulty to solve the Schrödinger equation for large 
systems. Obviously, there is a need for an intermediate 
description between the classical continuum and the 
quantum atomistic approaches, able to deal with systems 
whose characteristic dimensions are up to few tens of 
nanometers (i.e. about 106 atoms). This class of techniques 
exists and is commonly called “classical potential” or 
“atomistic” methods. They combine a classical mechanics 
approach with an atomistic description of the system. 
These methods can not model explicit quantum properties. 
However, the quantum contributions responsible for the 
atomic cohesion are implicitly included in the inter-atomic 
potentials. Therefore, typical applications in materials 
science focus on the atomic structure of specific systems: 
extended (dislocations) or localized (vacancies, 
interstitials) defects, surfaces, interfaces, etc... This 
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approach allows the description of the atomic properties in 
a large number of physical problems, as well as a very 
good scalability of the needed computational power with 
the system size. 

The purpose of this paper is to present the use of 
classical potentials for modeling materials. After a general 
description of the method and of the problems related to 
parameters fitting, I describe the two-body potentials as an 
introduction. Then many-body potentials are presented, 
focussing on recent potentials widely used for modeling 
metals and covalent materials. Important issues such as 
transferability and limitations of the method are then 
discussed. Finally, several applications of the method are 
shown.   

2. GENERAL IDEA AND FORMALISM 
In materials science, one wants to acquire the 

knowledge of the properties of condensed matter. In 
principle, both ionic and electronic structures should be 
known. Generally, ions are heavy enough to be considered 
as classical particles, except in very specific situations 
involving hydrogen. The energy of the system can then be 
written as  

( )NnE RR ,,,,, 11 KK ϕϕΗ=  

iϕ  being the wave function of the quantum electron i, and 
 the coordinates of the classical ion j. The electronic 

part is calculated using the fundamental quantum 
mechanics equation of Schrödinger. However, the large 
number of electrons in most systems of interest makes this 
determination almost impossible without serious 
approximations [3]. Even with these approximations, the 
calculation of the electronic structure remains a 
tremendous task. Fortunately, in a lot of physical problems 
related to atoms, the electronic structure is only implicitly 
required, for we only need to know the forces on ions due 
to electrons. The idea behind classical potentials methods 
is to not explicitly consider the electronic structure. The 
total energy of the system is then expressed as  

jR
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Now the total energy of the system will depend only 

on the ionic positions. Therefore, the function F should 
include explicitly the ion-ion contributions, and only 
implicitly the ion-electron contributions. F is not formally 
known and is only an approximate function of the ionic 
positions by definition. Usually, one tries to guess the best 
suitable form from empirical or physical insights. Because 
of the large diversity of behaviors observed in different 
class of materials such as insulator or metals, it is not 
possible to have a unique universal function F. Instead, 
several functions have been derived for each class  
of materials, and sometimes they also depend on the 
physical state of the material, whether it is amorphous or 
crystalline. 

The function F is usually a mathematical formula 
including several numerical parameters, or in some cases, a 
set of tabulated functions. Parameters or tabulated 
functions are calculated or fitted, using experimental data 
when available or results obtained from more precise 
methods. The number of parameters or tabulated functions 

solely depends on the function of the classical potential. If 
N parameters have to be determined, at least N independent 
data are needed. It is possible to use more data than 
parameters, and in that case several sets of parameters may 
be determined by using fitting procedures like least squares 
optimization.  

The knowledge of F is enough to characterize the 
system. Given a set of atomic positions, the force on each 
atom is obtained from the gradient of F, and the system 
could be relaxed to the state of minimal energy. This state 
is of course not the true ground state of the physical 
system, but rather an approximation, the accuracy 
depending on the choice of the function F. Following 
Born-Oppenheimer, the total energy could also be written 
in the following form: 
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F1 contributions depend only on the position of a 
single atom. These are generally set to zero, since they are 
irrelevant in an isolated system, where the coordinate’s 
origin is not uniquely defined. However, they could be non 
zero in the case of the study of a system under the 
influence of an external field. In that case, the field will 
change the system energy according to the atoms positions. 
The second term in the expression involves two-body F2 
contributions, which depend on the distance between two 
atoms. These energies, called pair energies, are generally 
the most important contribution to the total energy, for all 
materials, especially when the two concerned atoms are 
close together. F3 terms will be related to the position of 
three atoms, and then they will depend on the angle 
between them. Torsion angle contributions are described 
by F4 terms. The next terms in the expansion express 
higher order contributions to the total energy, but are not 
used in practice.  

3. EXAMPLES OF POTENTIALS 
In this section, I describe different kinds of potentials, 

beginning with pair potentials. Though not qualitatively 
accurate for most of the materials, they are still widely 
used in specific cases, or for educational purpose, due to 
their simplicity. As an example, I will focus on the 
Lennard-Jones potential, originally designed for rare gas, 
which is a standard and model potential in computational 
physics [4]. The pair potential total energy of the system is  
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and, for the Lennard-Jones potential,  
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The first term is a short range positive contribution, 
modeling the electrostatic repulsion between atoms. The 
second term is a negative contribution to the energy, 
representing the long range anisotropic van der Waals 
dispersion. The exponent 12 has been chosen for 
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computational reason, the first term being the square of the 
second one. There are only two parameters, ε and σ, which 
correspond to the energy and time scale of the potential. 

The Lennard-Jones potential is well suited for rare gas, 
but yields only a crude description of other materials, due 
to its two-body function. Largest deviations from 
experiments are obtained in the case of elements for which 
many-body contributions play an important role, like 
metals or semiconductors. For instance, it is known that the 
so-called Cauchy relation C12 = C44 is always verified in 
cubic systems for elastic constants obtained with pair 
potentials, while this is not the case experimentally. For the 
most studied materials, better potentials, with functions 
including either higher order contributions, or local 
environment effects, are available.  

For metals, potentials derived from the Embedded 
Atom Model (EAM) are widely used, for reasons of 
simplicity, efficiency and quality [5]. EAM potentials have 
the following form: 
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Fi is the energy to embed the atom i into the background 
electron density ρi, and Φij is the electrostatic repulsion 
pair energy [6]. The background electron density is 
approximated by the superposition of atomic densities:  
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The functions F and ϕ can be obtained from first 
principles, but in practice, it is customary to use empirical 
analytical functions, fitted to several bulk properties of the 
material [7]. Compared to pair potentials, EAM derived 
potentials include higher-body interactions. The interaction 
between two atoms depends on the slopes of their 
embedding functions F, which depends on the background 
density ρ. Therefore, the effective interactions within the 
EAM are environment-dependent. They are called bond 
order interactions, since EAM is able to describe correctly 
the effect of the coordination on the bond strength: less 
coordinated atoms, such as in surface, have stronger bonds 
and shorter bond lengths. The concepts behind the EAM 
are also used in other methods, such as the ‘glue’ model 
[8] or the Effective Medium Theory [9].  

EAM class of potentials is well adapted for metals, 
because of the bond order term that mimics the hardness of 
metallic bonds as a function of the coordination. This 
approach has proved to be inadequate for semiconductors, 
in which covalent bonds have a complicated dependence 
on coordination and bond angles. This is actually the case 
for semiconductors of group IV, such as diamond, silicon, 
germanium or silicon carbide, stable in a cubic diamond or 
zinc-blende structure. Due to their technological 
importance, several kinds of potentials have been designed 
for these materials. For example, an extended version of 
the EAM model has been developed [10], with angle-
dependent electron densities. Another one, the Stillinger-
Weber (SW) potential, for which sets of parameters for Si 
and Ge are available, has been widely used [11]. Its 
function is written below: 
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F2 and h are two analytical functions, vanishing beyond a 
given cutoff. F3 is a three-body contribution introducing an 
angular dependence in the energy. Here, the energy gain is 
maximal for the bond angle of the cubic diamond structure. 
Compared to pair potentials, an additional term of the 
Born-Oppenheimer development is included in the 
potential function, what improves the accuracy of 
interatomic forces description. In addition, this term bears 
an angular dependence, particularly well suited for 
covalent materials where bonds are directional. 

In this last example, the dependence of the interactions 
on the local environment is strengthened by taking into 
account three-body terms. However, this approach requires 
a larger computational effort, since during the calculation 
interactions have to be computed for all atomic triplets. It 
is possible to use a two-body function while introducing 
environment dependence by modifying the interactions as 
a function of the atomic environment of the atoms. An 
example is given by the potential of Tersoff [12], which is 
available for diamond, Si, Ge and compounds such as 
silicon carbide SiC and SiGe alloys [13]. 
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Here, fR and fA are repulsive and attractive functions, 
respectively, while fC is a function going smoothly to zero 
beyond a given cut-off. The bond order contributions are 
included through bij, which is modified according to local 
environment as a function of interatomic distances and 
angles. The Tersoff potential is different from the EAM 
approach in the sense that the two-body Tersoff 
interactions are directly modified by local environment, 
while bond order is obtained in EAM via electron 
distributions. Note that EDIP, a recent potential for Si and 
diamond, built from the same concepts that the Tersoff 
potential, has been recently proposed and is supposed to be 
qualitatively superior [14, 15]. 

4. TRANSFERABILITY 
A classical potential provides a rough description of 

the physical system. It is interesting to define the domain 
of validity, i.e. which physical quantities can be calculated 
with a reasonable precision, and the physical phenomena 
that can be modeled. This determination is often done 
empirically by extensive investigations [16]. In addition, 
several informations may be obtained from the analysis of 
the set of data used in the fitting procedure of the potential. 
For example, the database of a potential designed for 
studying solid phase transitions would include known 
structural data related to one or more structure. Or, for 
studying liquid state, one would take into account the 
melting temperature. The examination of the database will 
then provide several insights on the validity domain of the  
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potential, though test calculations can not be avoided. The 
ability of a potential to model several physical mechanisms 
and to reproduce a lot of different properties, for a given 
material, is called its transferability. Usually, potential 
designer tries to get the highest transferability, to the 
detriment of a better precision in specific cases. 

Transferability is closely related to the fitted 
parameters and function of the potential, and also depends 
on modeled species. It could be tempting to widen the 
database, by including all the measured available 
quantities. The idea is to get the largest validity domain, 
with a potential fitted for several states of matter, and able 
to model correctly a lot of physical mechanisms. However, 
in fundamental research, this approach is not recom-
mended, for three reasons. First, though it is possible to use 
more measured quantities than parameters during the 
fitting procedure, using a wide database requires a large 
number of parameters, and then a complicated function F. 
It is unlikely that one could build such a function from 
physical concepts only. Keeping a small function with 
different terms, each related to a unique physical 
contribution (like repulsive and attractive energies) is 
much more satisfactory from the point of view of the 
physicist. Second, with a complex function, the probability 
to get non-physical behaviors increases. For example, more 
local minima will exist in the configuration space of the 
atomic structure, and unstable phases may become stable. 
Finally, using a complicated function increases the 
required computational time, and the advantage of using an 
approximated analytical function is reduced.  

Usually designed for a specific element, it is 
sometimes possible to use the same potential for different 
species. This chemical transferability is not related to the 
parameters, which are fitted to material properties, but only 
to the function. Of course, given the variety of physical 
states and the difference in bond chemistry between all 
species, it is clear that there is no universal potential, 
giving optimal results. However, in the case of a family of 
elements sharing several properties, the same function may 
be used. For example, semiconductors of the group IV 
such as diamond, silicon and germanium, are correctly 
modeled by the Tersoff potential, since they are very 
similar, and the function of the potential is built on 
physical concepts. Another example is given by the EAM 
potentials, giving good results for a large set of metals.  

5. LIMITATIONS 
It is important to know the limitations in size and 

simulation time associated with classical potentials 
computations, the precision one can obtain, as well as 
shortcomings and failures. Regarding the size limitation or 
the maximum atoms that can be considered, it obviously 
depends on the computer resources available, and also on 
the complexity of the potential. With state-of-the-art 
massively parallel super-calculator and simple potential, it 
is nowadays possible to treat systems including at most one 
hundred millions of atoms [17, 18]. Despite this large 
number, potential simulations are still restricted to the 
submicroscopic scale, since a cube including all these 
atoms would have typically an edge length of about  
100 nm. In some specific cases where the system is two-

dimensional, it is possible to have larger dimensions. 
Using standard computers and potentials with a high 
computational cost greatly lowers these numbers. Typical 
simulations are performed with less than one hundred 
thousands of atoms, which is still largely enough to model 
a wide range of physical systems and mechanisms.  

In the case of molecular dynamics simulations, the 
simulation time, or the maximum number of iterations, is 
also an important parameter, and depends of the size of the 
system. With a small number of atoms, it is possible to 
perform calculations with more than 107 iterations, i.e. 
about 10 ns (the integration time step is typically about 1 
fs). But for large systems, the simulation time is at most of 
the order of the picosecond [19, 20].  

The choice of classical potentials for performing 
simulations depends on the size of the investigated system, 
simulation time as well as computational resources 
available. For small systems, first principles methods 
should be favored, though classical potentials calculations 
may be used to obtain very good initial configurations 
[21]. Several physical problems cannot be investigated by 
classical potentials, such as quantities and mechanisms 
closely related to the electronic structure, since the 
potentials we have described here allows only the 
modeling of the atomic structure. For example, important 
electronic effects such charge transfer mechanisms are out 
of reach of classical interatomic potentials.  Also, classical 
potentials simulations are not adequate for physical 
mechanisms occurring on a long time scale, or relying on 
rare events. This concerns particularly diffusion, growth, 
etc… Best results are obtained by calculating accurately 
the probability of each event with first principles, then 
performing kinetic Monte Carlo calculations.   

6. EXAMPLE OF APPLICATIONS 
In this section, some results of classical potentials 

calculations, recently obtained by the author and co-
workers, are presented. A first example concerns the 
modeling of extended defects in bulk silicon, such as screw 
dislocations. Although it is known that at high temperature, 
silicon plasticity occurs mainly through slip of dissociated 
dislocations [22], recent low temperature experiments 
revealed the presence of undissociated dislocations with 
screw or 60° orientations [23]. We have then performed 
numerical simulations of undissociated screw dislocations 
in silicon, for characterizing the structure and extension of 
its core, which is a pre-requisite to the study of dislocation 
mobility. A picture of several possible atomic configu-
rations, relaxed using classical potentials, potential is 
shown in the Figure 1. The structure A has the lower 
energy with Tersoff and EDIP potentials [24], which is 
confirmed by ab initio calculations [25]. We also 
considered the configuration C, which has the peculiar 
feature of a sp2 hybridization in the dislocation core. Even 
if this configuration is not the most stable for silicon, it 
may play an interesting role for the plasticity of material 
where sp2 is favored, such as diamond. In fact, recent 
calculations with the Tersoff potential indicate that the 
configuration C is the most stable one in diamond.  

In a second example, I present large scale calculations 
with almost  hundred  thousand  atoms,  prohibitive  for  ab 
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Fig. 1. Ball-and-stick representation of the perfect zinc-blende 
structure (upper left) and of three different relaxed 
configurations for perfect screw dislocations. The grey 
thick sticks show the Burgers circuit for each core. Black 
spheres are atoms with dangling bonds (B) or with 
hybridization sp2 (C) 

 

 
 
Fig. 2. Cross-section view of a silicon surface with a monoatomic 

step, submitted to a uniaxial compression of 10% 
(disoriented by 22.5° with respect to the step line), after 
relaxation at 0K  

initio calculations. Here, we aimed at the understanding of 
dislocations nucleation in epitaxied semiconductor films. 
The typical dimensions of these films are too small to 
allow the formation of the observed dislocations by usual 
mechanisms, such as the Franck-Read sources [22]. One 
hypothesis is that nucleation occurs from the surface, with 
an important role devoted to surface defects like steps or 
kinks.  We focused on the role of a step in a silicon (001) 
surface submitted to a uniaxial stress. The SW potential 
was selected, as the most suited for this study [26]. We 

found that if the stress orientation is perpendicular to the 
step, a micro-twin along the [111] direction may be 
formed, starting from the step. It is also clear that the 
orientation of the applied stress is very important. Indeed, 
if the stress is now disoriented of 22.5° versus the step, a 
perfect 60° dislocation is nucleated from the step (Figure 
2). The relation between the stress orientation and the 
dislocation type can be explained from the analysis of the 
calculated Schmidt factors [27].  

 
Fig. 3. Ball-and-stick representation along directions [110] (up) 

and [1-10] (down) of the most stable atomic configuration 
calculated for the SiC/Si(001) interface. Light grey (dark 
grey) spheres represent silicon (carbon) atoms  

Finally, my last example shows that classical 
potentials are a valuable tool for exploring quickly the 
space of configurations, and providing results with a good 
accuracy. We investigated the structure of the SiC/Si(001) 
interface using the Tersoff potential. This system may be 
considered as a model of a highly mismatched interface, 
owing to the difference of about 20 % between silicon and 
cubic silicon carbide lattice constants. In addition, this 
system may be used in electronic devices, SiC being 
increasingly considered for applications in high 
temperature or harsh environments. High resolution 
microscopy experiments revealed that the stress due to the 
lattice mismatch is released by the introduction of an array 
of misfit dislocations at the interface [28]. The structure 
remains unknown, although it has to be characterized 
before computing the electronic structure of the interface. 
Because no information were available regarding the 
location of the misfit dislocation cores compared to the 
interface, their structures as well as the stoichiometry of 
the interface, we investigated a large number of possible 
configurations [21], what is possible with classical  
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potentials simulations. The most stable solution is 
represented in the Figure 3. Our analysis showed that this 
configuration is favored because it combines three 
important characteristics [29]. First, the SiC layer at the 
interface is carbon-like, which is energetically favored by 
chemistry. Then, the core is perfectly reconstructed, almost 
all atoms being fully saturated. Finally, there are no carbon 
atoms in the core. In fact, atomic bonds are stretched in the 
core, with a high cost in energy, especially for carbon 
bonds. These findings, obtained with a classical potential, 
have been confirmed by ab initio calculations [30].  

7. FUTURE /  PERSPECTIVES 
Classical potentials are widely used in materials 

science, and it is probable that this interest will not 
decrease in the future. In fact, even if the power of 
computers is continuously growing, more accurate first 
principles calculations are still restricted to systems 
including several hundreds of atoms, and short timescale. 
Moreover, classical atomistic computations also benefit 
from better performance, which allows larger and more 
complex systems, and longer timescale. For example, even 
with potentials, it is still difficult to model a material with 
a realistic microstructure and including several structural 
defects such as dislocations.  

It is clear that in general classical potentials suffer 
from a lack of transferability. The development of 
potentials for new materials is then required. There are still 
many elementary materials for which there are no available 
potentials. In the case of complex materials, including 
several elements, the development of potentials remains 
challenging. Another working direction concerns the 
combination of classical potentials together with other 
methods. For example, the modeling of fracture in bulk 
silicon has been obtained from a complex simulation 
involving simultaneously three methods [31]. The crack tip 
is described by an accurate first principles technique. The 
area surrounding the crack is modeled by classical 
potentials, while finite elements are used for the area far 
from the crack, weakly perturbed. This so-called multi-
scale modeling is definitely an interesting and exciting 
research area, and several applications are expected in the 
near future.  
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