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The Seebeck coefficient study in 4H- and 6H- is presented. The Seebeck coefficient steeply increases with decreasing 
temperature. This behavior is assigned to the phonon drag effect. An approach to the theoretical modeling of the phonon 
drag effect is discussed and simulation of the Seebeck coefficient temperature-dependence is displayed. 
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INTRODUCTION∗

The Seebeck effect involves the voltage produced 
across two points of the material(s) when they are at 
different temperatures. It can be easily observed and 
Seebeck effect is widely used for determination of the free 
carrier charge sign. The Seebeck coefficient, S, is defined 
as the limit of the quotient of the voltage, U, generated 
between the two points divided by the difference of their 
temperature, ∆T, e. i. S = U/∆T as ∆T approaches zero. The 
magnitude of the Seebeck coefficient is related to the 
charge carrier scattering type in the material and to the 
density-of-state effective mass of the charge carriers. 
Hence, if one of the two mentioned quantities is known 
information about the other could be obtained. More 
recently it was found out that apart from classical free 
carriers diffusion the part of so-called photon drag 
phenomenon contributes significantly to the Seebeck effect 
especially at low temperatures [1]. The photon drag effect 
consists in a ‘carrying’ of electrons by long wavelength 
phonon current created by temperature gradient. In fact 
this effect is due to an asymmetrical scattering of the 
electron current by the lattice vibrations, i.e. charge 
carriers are preferentially pushed towards the cold end of 
the sample. It should be particularly emphasized that the 
Seebeck coefficient appears as a factor in the equation 
term describing any nonisothermal part of actual 
semiconductor devices and, thus, must be included 
properly during the device modelling.  

The Seebeck effect in some SiC polytypes was 
investigated in sixties and seventies. At that time, it was 
observed that in SiC the Seebeck coefficient exceeds the 
ones in silicon and germanium. It was believed that the 
reason for that phenomenon was not only in a simple 
difference in the bandgap energy but also in a stronger 
phonon drag effect. However, in those early investigations 
the polytype of SiC, the carrier concentration and many 
transport parameters of the semiconductor were not 
specified accurately enough. 

Some of the SiC polytypes are currently among the 
most attractive candidates for electronics designed to 
operate under harsh conditions including high 
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temperatures [2]. Therefore, determination of the Seebeck 
coefficient for SiC is of great importance. 

In this work, we have obtained the Seebeck coefficient 
for well-defined n-4H- [3] and p-6H-SiC [4] crystal. In 
addition, some results from the article [5] for n-6H-SiC are 
also present for Sebeck coefficient was determined in a 
wide range of the free electron concentration. Ref. 4 was 
published in Russian in such journal that remains unknown 
for a wide scientific community. Furthermore, in our 
article theoretical modeling of the phonon drag effect is 
discussed and simulation of the Seebeck coefficient 
temperature dependence is displayed. 

EXPERIMENTAL DETAILS 

Samples 

n-4H-SiC. A 300-µm thick epilayer of n-type nitrogen 
doped 4H-SiC was grown on a substrate by the 
sublimation technique [6]. Then the substrate was carefully 
polished away and Ti contacts were deposited and 
annealed for  
5 min. at 950 °C.  
p-6H-SiC. These samples were cut out from the bulk  
p-6H-SiC single crystal. Two types of the samples were 
used in the investigation: cut parallel and perpendicular to 
c-axis of SiC crystal. The concentrations of the impurities 
in the samples obtained using SIMS are presented in  
Table 1.  
Table 1. Impurities in p-6H-SiC obtained by SIMS 

Impurity Concentration (cm–3) 

B 3 · 1017

Al 1.5 · 1016

V 2 · 1016

Ti 4 · 1017

n-6H-SiC [5]. Samples of n-6H-SiC:N were cut out in the 
shape of parallelepiped from the single 6H-SiC crystal 
perpendicular to c-axis. Ohmic contacts were deposited by 
alloying Au+Ta in vacuum. Variously doped sample were 
used in this study. We take only 3 of them: low, middle 
and high doped (n = 1.1×1015, 1.5×1016 and 3.8×1017 cm–3 
at 100 K, respectively).  
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Thermopower measurement 
A typical experimental determination of the Seebeck 

coefficient follows its definition. A small temperature 
difference between two ends of the sample is maintained 
and the voltage drop between them is measured. Accurate 
measurements require a very careful sample contact 
preparation and well-defined thermal conditions. 

A sample holder used in our experiment consists of a 
fork-like body with two symmetrical contact blocks that 
carried a sample and can be heated by low-power 
subheaters. The blocks serve both as heat and electrical 
contact for simultaneous thermopower and Hall effect 
measurement. The sample holder is surrounded by a 
radiation screen and placed in a cryostat. The temperature 
of the holder can be changed in the range 85 – 400 K. The 
Copper – Constantan (Cu/Ni) thermocouples serve as 
voltage probes and temperature sensors at the same time. 
Pressure contacts were used for thermocouples and heat 
sinks. 

A sophisticated measurement procedure for deter-
mining of the Seebeck coefficient was implemented. It is 
based on the alternative use of two subheaters and the 
recording of all thermal voltages. Such method makes it 
possible to eliminate errors caused by bad thermal contact, 
parasitic heat flux through thermocouple, low heat 
conducting or inhomogeneous samples, etc. The thermo-
power voltage was measured under nearly steady state 
conditions maintaining a small positive and negative 
temperature drop ∆T between the ends of the sample. The 
measured voltages actually depend on the difference in the 
Seebeck coefficients of the semiconductor sample and the 
thermocouple wires since they are also experiencing the 
temperature drop. The double simultaneous measurements 
using Copper (UCu) and Constantan (UCon) as contact wires 
allow extracting the Seebeck coefficient of the sample. 
Any nonlinear temperature distribution and an 
inhomogeneous Seebeck coefficient lead to additional 
spurious voltage (Ue) between ‘hot’ and ‘cold’ ends of the 
sample measured in Copper and Constantan circuit. Ue is 
independent of temperature difference ∆T and can be 
eliminated if the relationship UCu, UCon vs. ∆T is known. 
So, the dependence UCu(∆T) and UCon(∆T) has been 
obtained at every temperature point. The detail procedure 
of Seebeck coefficient extracting from the measured 
parameters can be found in Ref. 7. An example of such 
measurement in  
n-4H-SiC at T = 401 K is presented in Fig. 1. Small 
spurious voltage (Ue) is evident at ∆T = 0. Two slopes (a1 
and a2) allow accurate extraction of the Seebeck 
coefficient  
(S = –0.56 mV/K in particular case shown in Fig. 1). The 
measurements of the Hall effect have been performed 
simultaneously with Seebeck coefficient. 

RESULTS AND DISCUSSION  

n-4H-SiC 
The dependencies of free electron concentration and 

their mobility vs. temperature in n-4H-SiC are presented in 

Fig. 2. Some data of similarly doped 4H-SiC from 
literature are also shown in order to illustrate the influence  
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Fig. 1. Evaluation of voltage slopes for calculating S 
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Fig. 2. Temperature dependence of the free electron 

concentration in n-4H-SiC. The line indicates the 
neutrality equation with presented parameters 

of the doping on free electron concentration and their 
mobility. Nitrogen atoms are donors in these samples. 
They can occupy position in hexagonal or cubic sites. 
Therefore, nitrogen donors form two donor levels with not 
too much different activation energies [10]. However, as 
one can see in Fig. 2 we were able to fit temperature 
electron concentration dependencies using single donor 
activation energy. We have estimated the total donor 
concentration in our samples as 6×1018 cm–3 and 
concentration of compensating acceptors to be 1×1017 cm–

3. The temperature mobility dependencies for the same 
samples as in Fig. 2 are presented in Fig. 3. The main 
difference among three presented samples is concentration 
of the impurities. As it was found in [11] the dominant 
scattering mechanisms in n-type 4H- and 6H-SiC are 
ionized impurity scattering, acoustic phonon and 
intervalley scattering for the low-, intermediate- and high-
temperature regions, respectively. Furthermore, the authors 
of Ref. 11 obtained that n-4H-SiC in the configuration B׀׀ĉ 
and j⊥ĉ mobility determined by ionized impurity 
scattering µion ~ T , by acoustic phonons impurity scattering 
– µac ~ T –1.5 and by intervalley scattering – µac ~ exp(–
E/kT). Inspection of the curves in Fig. 3 shows that the 
main scattering mechanisms of free electrons in our 
samples is likely to be ionized impurity scattering. 
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Fig. 3. Temperature dependence of the Hall mobility in n-4H-SiC 

p-6H-SiC 
The temperature concentration dependence of  

p-6H-SiC samples is presented in Fig. 4. The parameters 
of the fitting curve are also present. There were two types 
of the p-6H-SiC samples, namely parallel and 
perpendicular to SiC crystal ĉ-axis. However, in all our 
measurements (concentration, mobility, Seebeck 
coefficient) the difference between values of such 
parameters in two types of the samples was within the 
experimental error. So, in our investigation we failed to 
obtain discrepancy in the behavior samples parallel and 
perpendicular to ĉ-axis. The fitting curve has been 
calculated using the neutrality equation for a 
nondegenerate p-type semiconductor with single acceptor 
level [12]. The parameters of the fitting curve are 
presented in Fig. 4. The obtained concentration of the 
acceptors (3.1×1017 cm–3) is in good agreement with Boron 
concentration (3×1017 cm–3) derived from SIMS (see 
Table 1). The obtained activation energy ∆EA = 0.30 eV is 
also in good agreement with the same energy values of 
Boron-related centers in p-6H-SiC from literature [10, 13]. 
Quite small free carrier and large compensating atoms 
concentrations are evidence of strong semiconductor 
compensation. 
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Fig. 4. Temperature dependence of the free hole concentration in 
our p-6H-SiC and B doped p-4H-SiC from Ref. 12 
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Fig. 5. Temperature dependence of the Hall mobility 

Fig. 5 represents mobility vs. temperature. We failed 
to find mobility temperature dependence for p-6H-SiC in 
literature. There are only very few values of the hole 
mobility in this polytype of SiC at room temperature 
[14, 15]. By recognizing that the structure of the valence 
band in 6H- and 4H-SiC is very similar we assumed that 
free carrier scattering mechanisms operate in the same 
manner in both cases. Furthermore, the hole mobility at 
room temperature in 4H-SiC is 20 – 30 % higher than in 
6H- over wide range of impurity concentration [15]. So, 
assuming the mobility in 6H-SiC:B as 75 % of that in  
4H-SiC with the same Boron concentration (8.9×1015 cm–3 
[12]), we present µp by solid line (Fig. 5). Our samples are 
stronger doped and their mobility is lower. As it was found 
in Ref. 11 the dominant scattering mechanisms in n-type 
4H- and 6H-SiC are ionized impurity scattering, acoustic 
phonon scattering and intervalley scattering for the low-, 
intermediate- and high-temperature regions, respectively. 
The acceptors activation energy in p-type SiC (0.2 – 0.3 
eV) is greater than donors activation energy in n-SiC and 
hence sufficiently large amount of dopant atoms are in 
neutral state. In this case neutral impurity scattering can be 
important for acceptor concentration above 1016 cm–3 [16]. 
However, the form of the temperature mobility 
dependence in the range 400 – 100 K testifies that the 
main free holes scattering mechanism, which determines 
their mobility is acoustic phonon scattering. 

n-6H-SiC [3]] 
The values of free electron concentration in n-6H-SiC 

were determined only at two temperatures 100 and 500 K. 
They are presented in Fig. 6 together with the other n-T 
dependencies from literature to be certain that Kirsons’ 
data [5] are actual. Moreover, temperature dependencies of 
the samples from Ref. 10 allow us to imagine possible 
mobility vs. temperature relationship of Kirsons’ samples 
(Fig. 7). 

Seebeck coefficient 
The temperature dependence of the Seebeck 

coefficients is shown in Fig. 8 and 9. In all cases the 
Seebeck coefficient increases with decreasing temperature. 
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Furthermore, the value of the thermopower highly depends 
on the sample doping and Seebeck coefficient strongly 
reduces with increasing of doping (Fig. 9). 

The thermopower consists of two components: 
diffusion and phonon (phonon drag effect) and can be 
presented as a sum of them S = Se[h] + Sph. Diffusion part 
for non-generated semiconductor can be expressed as [1]: 
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Fig. 6. Temperature dependence of the free electron 
concentration in n-6H-SiC. The line indicates the 
neutrality equation with presented parameters 
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Fig. 7. Temperature dependence of the Hall mobility in n-6H-SiC 
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Fig. 8. Temperature dependence of the Seebeck coefficient in p-
6H-SiC and n-4H-SiC 

100 200 300 400
0

2

4

6

8

10

12

 #20n - 1.1•1015 (at 100 K)
 #20n - 1.5•1016 (at 100 K)
   #1n - 3.8•1017 (at 100 K)

 

 

Se
eb

ec
k 

co
ef

fic
ie

nt
, S

 (m
V/

K
)

Temperature, T (T)

n-6H-SiC [5]

 
Fig. 9. Temperature dependence of the Seebeck coefficient in  

n-6H-SiC [5] 

,
][

ln
2
5 ][

][ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

pn
N

s
e

k
S vcB

he m  (1) 

where kB is the Boltzmann constant, s is the exponent in 
the relation between free carrier relaxation time and its 
energy  
(τ ∝ εs) which depends on the scattering mechanism,  
Nc[v] is the effective density of states in the conduction 
[valence] band and n[p] is the concentration of free 
electrons [holes]. As it is mentioned above we reasoned 
that the main free carrier scattering mechanism in our  
n-4H-SiC and p-6H-SiC is ionized impurity and acoustic 
phonon scattering, respectively. Therefore, parameters in 
Eq. (1) has been adopted as 3/2 and –1/2 for n-4H-SiC and 
p-6H-SiC, respectively. The electronic part of the Seebeck 
coefficient is shown in Fig. 8 by lines. One can see that 
Se[h] makes up only a small part of the whole Seebeck 
coefficient especially at low temperature. 

Phonon drag effect 
The temperature Sph dependencies obtained as a 

difference of S and Se[h]. Phonon part of the Seebeck 
coefficient can be expressed as [3, 17]: 

ac

phl
ph T

ls
KS

µ
= , (2) 

where ŝl is the average longitudinal sound velocity, lph is 
the mean free path of the long-wavelength phonons, µac is 
the free carrier mobility controlled by acoustic phonons 
scattering and K is the correction factor which depends on 
the free carries and phonon energy relaxation times. Sound 
velocity and temperature are two well-defined parameters. 
Since not only acoustic phonon but also other scattering 
mechanisms control the mobility [11], only the lower limit 
of the µac can be evaluated from the experimental results. It 
should be note than exclusively long-wavelength phonons 
(also called nonperipheral [18]) are able to interact with 
electrons. Their wave vector qph ≤ 2qe[h] where qe[h] is the 
electron [hole] wave vector. Only these long-wavelength 
phonons must be taken into consideration during 
thermopower simulation. 

It is assumed that different relaxation processes make 
a separate and independent contribution to the overall 
mean  
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free phonon path, i.e., . The main phonon 

relaxation processes are as follow: (1) normal three-
phonon, (2) Umklapp process, (3) boundary scattering, (4) 
impurity (including isotope) scattering, (5) charge carrier 
scattering and (6) four-phonon process. Herring in his 
seminal papers [1, 19] proposed two relaxation mechanism 
for long-wavelength phonons, namely, normal three-
phonon process and boundary scattering. The boundary 
scattering is dependent on the sample dimensions and play 
significant role only at very low temperature [20, 21]. 
Thus this mechanism of relaxation is omitted from our 
calculation. As one can see in Fig. 9 the strength of 
phonon drag effect strongly depends on free carrier 
concentration. The larger n the smaller S

∑ −− =
i

phph i
ll 11

ph. Therefore, for 
the first step in the simulation of the process relatively 
low-doped samples (p-6H-SiC and n-6H-SiC # 20n) have 
been chosen. 
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Fig. 10. Phonon Seebeck coefficient part vs. temperature. Points 
are experimental values. Curves represent theoretical 
calculation 

As one can see in Fig. 10 simulation of the Seebeck 
coefficient phonon part using normal three-phonon process 
cannot described the experimental results of  
p-6H-SiC. It may be assumed that too high theoretical 
values of Sph indicates that some additional phonon 
scattering mechanism is not taken into consideration. The 
doping of the samples shown in Fig. 10 is quite low so it is 
difficult to suggest that phonon drag effect is restricted by 
impurity or free carrier scattering. One of the possible 
phonon relaxation mechanism can be the four-phonon 
process proposed by Pomeranchuk [22] especially since it 
was shown that the inclusion of this process is necessary 
for stimulation of thermal conductivity in SiC [23]. The 
coefficient a4Ph for mean free phonon path associated with 
four-phonon process has been taken from the best fitting of 
temperature lattice heat conductivity dependence for low 
doped SiC [17] and is equal to 1.5×10–22 s/K. The 
inspection of Fig. 10 shows that theoretical curves 
obtained using normal three-phonon and four-phonon 
process for phonon relaxation is in a good agreement with 
experimental points. The distinction between calculated 
curve and measured points for n-6H-SiC increases with 
decreasing temperature from 110 K. Such behavior can be 
attributed to the influence of the boundary scattering. It is 
necessary to include phonon relaxation processes 

associated with impurity and free carrier scattering into 
theoretical model describing Seebeck coefficient for higher 
doped SiC sample. 

CONCLUSIONS 
The Seebeck coefficient temperature dependence of 

4H- and 6H-SiC is presented. The main contribution to it 
for not too highly-doped sample gives part of S associated 
with phonon drag effect. Theoretical model including 
normal three-phonon and four-phonon processes into 
phonon relaxation makes possible correct simulation of the 
Seebeck coefficient temperature dependence for low-
doped SiC. Any difference in the electrical characteristics 
of the  
p-6H-SiC samples parallel and perpendicular to ĉ–axis 
have not been perceived. 
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