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The paper deals with the monitoring of brick body in the process of volumetric freezing and thawing. The samples were 
fired at temperatures of 900, 1000 and 1060 °C. Attention is focused on monitoring of the irreversible expansion, water 
absorption and pore structure of a brick body. We found that in all cases the endpoints take place continuously, where 
the amount firing temperature plays a crucial role. The greatest influence of freeze/thaw cycles on the change of the pore 
structure was also observed at the lowest temperature. The change of the pore system during the freeze-thaw cycles 
occurs in such a way, that the pore volume of small pores further decreases and conversely, the pore volume of large 
pores increases. The knowledge gained can be used not only in the production of new but also in predicting the 
remaining durability of older clay roofing tiles. 
Keywords: brick body, clay roofing tile, frost resistance, irreversible expansion, water absorption, pore structure. 

 

1. INTRODUCTION
∗

 

An important property of clay roofing tiles or facing 
bricks is the frost resistance, which is considered as the 
resistance of a fired brick body in a moist condition against 
an alternating action of water and frost. In this case, we 
encounter three factors working together.  

The first factor is the change in the state of matter 
from water to ice, it can cause a well-known expansion. 
The ice formation in porous material at the same time 
depends from the capillary diameter and extent of negative 
temperatures. With the decreasing diameter of capillary a 
negative temperature decreases and this relationship can be 
expressed by an exponential function [1]. The whole 
process of water freezing takes place in the form of rubble-
ice in the larger capillaries being pressed into the smaller 
capillaries, the pressure increases and gradually leads to 
the formation of microcracks [2]. The size of the pressure  
in the smallest capillaries can achieve a value up to 
200 MPa [3] 

The second factor: the melting of ice leads to an 
increase of the expansion due to higher thermal linear 
expansion coefficient of ice as has the brick body itself. 
(thermal linear expansion coefficient of ice is  
α ≈ 50⋅10–6 K–1 and of brick body only α ≈ 5,5⋅10–6 K–1 
[4]). The pressure from ice and melting ice applied on the 
pore walls causes an irreversible expansion of the brick 
body after each freeze-thaw cycle [5 – 7]. Concurrently a 
cumulative effect occurs until a total collapse is achieved 
[5, 8, 9]. 

The third factor: the moisture expansion of a brick 
body, which can induce reversible or irreversible volume 
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changes [10 – 13]. The fact that the irreversible changes are 
of a larger dimension can pose serious problems especially 
for large scale products. The irreversible moisture 
expansion occurs mainly in brick raw material with a 
relatively high content of clay minerals fired at 
temperatures in the range about 600 °C to 1050 °C. It is a 
spontaneous process of the water reaction with the  
non-crystalline phase of the brick body, where the 
irreversible volume changes can usually exceed the value 
of  0.8 mm/m [13].  

An intensive monitoring of the relationship between 
pore structure and frost resistance was carried out in the 
last 30 years out, where most attention was devoted to the 
distribution of the pores before the first freezing cycle  
[14 – 19]. Smaller attention is devoted to the distribution of 
pores after the end a certain number of freeze-thaw cycles, 
for example in the evaluation of old brick products 
(roofing tiles and bricks) [15, 20, 21]. 

It was found that the frost resistance of brick body can 
be better presented through the distribution of pores rather 
than just by its porosity, which is expressed through the 
pore volume or through the water absorption [22]. The 
actual distribution of pores is, however, influenced by 
several factors, such as firing temperature, mineralogical 
and granulometric composition of raw materials and the 
like [22 – 28]. 

Undoubtedly the most important impact has the firing 
temperature or the presence of a flux [29 – 33]. Insufficient 
firing temperature will have created a wide range of pores 
but it achieves only a low level of frost resistance [34]. 
Similarly, it is disadvantageous to have a very narrow 
spectrum of pores [35]. Many authors have tried to define 
most preferred composition of the pore structure, however 
neither proposal has been able to perfectly represent the 
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relationship between the pore structure and frost resistance 
for different types of brick products [36 – 42]. 

As shown in the work of Raimondo et al. [41], a 
common feature of high frost resistance of a brick body on 
the basis of previous knowledge is a large number of pores 
larger than 3 mm. This requirement should satisfy the 
conclusions, as stated by Šveda [22, 29, 32]. The author 
has found with the various raw materials and at different 
firing temperatures that the higher value of the median 
pore radius, it is also higher frost resistance of brick body. 
The relationship between the median pore radius and frost 
resistance can be expressed by a mathematical function. 
This positive effect of the median pore radius on the frost 
resistance can see also in the works [30, 43]. 

So far, there has been a little studied area, which 
monitors the gradual changes in pore structure of a brick 
body namely during the freezing cycles. Therefore we can 
presume that the explanation of these changes could have a 
positive influence for example: 

• in obtaining a high frost resistance brick product; 
• in predicting the remaining durability of clay 

roofing tiles or facing bricks; 
• in assessment the information about firing 

temperatures on the old roofing tiles or facing 
bricks. 

2. EXPERIMENTAL 

We have used the raw material from a plant, which 
produces roofing tiles. It is characterized by quaternary 
sediments, which are represented by layers of clay and 
silty loam soils of eolian origin. Its chemical and 
granulometric composition are shown in Table 1 and 
Figure 1. From the mineralogical point of view it is the 
montmorillonite/illite, almost without the calcium 
carbonates.  

Table 1. Chemical composition of clay  

Chemical composition, % Clay  

SiO2   71.81 

Al2O3  13.37 

Fe2O3  5.28 

CaO  0.46 

MgO  0.91 

Na2O  0.45 

K2O  1.46 

CaCO3  0,63 

MgCO3 0.74 

Loss on ignition 4.71 
 

The test samples were prepared by cutting unfired 
roofing tiles lengthwise in three parts, which were brought 
from brickworks. They were consequently fired in an 
electric furnace at temperatures of 900, 1000 and 1060 °C. 
The firing scheme is shown in Figure 2. For the 
determination of an irreversible expansion we used the 
edge part of the beaver tail clay tile. For the determination 
of changes in the pore structure during freeze-thaw cycles 
we used only the middle part. For each firing temperature 
was used 5 pieces of beaver tail clay tiles. 

The X-ray analysis of the samples (Fig. 3) fired at 
temperatures from 900 °C to 1060 °C in addition to the 
dominant quartz contains some mineral forms from the 
feldspar group, micaceous species and hematite.  
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Fig. 1. Granulometric composition of clay 
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Fig. 2. Firing curve at temperatures of 900, 1000 and 1060 °C 

20 30 40 50

2 Theta

900 °C

1000 °C

1060 °CM

Q Q
Q

Q

Q

Q

Q

QM M

MHe

He
He

F

F

F

 

Fig. 3. X-ray diffraction profile for fired samples (Q = quartz;  
F = feldspar group; M = micaceous species; He = hematite) 

3. TESTING PROCEDURES 

Monitoring of changes in the brick body was realized 
in such a way so as to resemble the actual conditions in 
nature, i. e. brick products saturate water for a certain 
period of time and then they are subjected to freeze-thaw 
cycles. Our aim was therefore to monitor the change 
processes in the brick body. In the first phase the samples 
were placed in the water bath for 21 days and the 
irreversible moisture expansion and water absorption were 
monitored. In the second phase, i. e. during the freeze-thaw 
cycles, we have further studied the irreversible expansion, 
water absorption and the changes in pore structure of brick 
body (volume and median pore radius). 

The irreversible expansion was determined with a 
deformeter, where the starting distance between two dots 
on a face of the test specimen was 200 mm. The 
measurement accuracy was 0.01 %. 

Frost resistance of the saturated water samples was 
determined though standard freeze-thaw cycles: 20 hours 
at air temperature of –18 ±2 °C and 4 hours in water 
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temperature of 18 ±2 °C, i. e. one freeze cycle was carried 
out in 24 hours. 

The pore structure of the brick body was determined 
by high-pressure mercury porosimeter (Thermo Finnigan 
Pascal 240, firm Thermo Scientific). The test samples for 
this measurement during freeze/thaw cycles were 
gradually taken from the same batch. 

4. RESULTS AND DISCUSSION 

The course of irreversible moisture expansion at all 
three firing temperatures is shown in Figure 4. In the first 
ten days of measurement, a rapid increase in the expansion 
we observe at all three temperatures. The fastest increase 
was carried out at temperature of 900 °C, where the highest 
final values were also achieved 
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Fig. 4. Effect of deposition in water and freeze/thaw cycles on the 
irreversible expansion (typical course on one sample) 

After a rapid increase in expansion follows a 
slowdown and it goes continually until the breach of the 
sample. In the firing temperatures of 1000 °C and 1060 °C 
is this slowing down observed even during storage in an 
aqueous medium, but at temperature of 900 °C up during 
the freeze/thaw cycles. 

With increasing firing temperature there occurs a 
significant shift in creation of the first visible crack, see 
Fig. 4. Similar results as with irreversible expansion we 
obtained well as with water absorption. The values of 
irreversible expansion are in accordance with authors [13]. 

The highest absorption after 21 days storage in water 
was achieved at the firing temperature of 900 °C and its 
steady state occurs in a rather short time, see Figure 5. 
With the increasing firing temperature, the values of water 
absorption do decrease, but their steady state shift due to a 
more difficult access of water into the pore structure of a 
brick body. 
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Fig. 5. Effect of water storage and freeze/thaw cycles on the 
water absorption 

When comparing the water absorption values between 
samples stored only in water (W) and samples exposed to 

freeze/thaw cycles (F/T) we can see that at the firing 
temperature of 900 °C their values are virtually identical 
up to 75 days of storage in water. Then, water absorption 
values for the samples F/T start to exceed the water 
absorption values of the samples W until their breach. The 
water absorption values of samples subjected to 
freeze/thaw cycles (F/T) are lower on a long-term basis 
with increasing firing temperature as compared with 
samples (W) and only very slowly approach these values 
(e. g. at the temperature of 1000 °C it is after nearly 350 
days of storage in water). 

Water absorption of a brick body during the 
freeze/thaw cycles is influenced not only by the gradual 
change in pore structure, but also by the change of the 
irreversible expansion. The effect of change in pore 
volume and change of the median pore radius on water 
absorption is virtually identical and in both cases, it is a 
linear dependence, see Figures 6 and 7. In case of the 
irreversible expansion, it is a continuous trend, where the 
increase of expansion couples with the increase of 
absorption, see Fig. 8. 
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Fig. 6. Relationship between the water absorption and pore 
volume during freeze/thaw cycles 
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Fig. 7. Relationship between the water absorption and median 
pore radius during freeze/thaw cycles 
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Fig. 8. Relationship between the water absorption and 
irreversible expansion 
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Effects of freeze/thaw cycles on the change of pore 
structure are shown in Figures 9 and 10. The course of 
changes in pore volumes according the number of freeze-
thaw cycles is shown in Figure 9. For all three firing 
temperatures we follow a continuous process. Volume 
changes of pores takes place the fastest on the brick body, 
which was fired at temperature 900 °C. With the increasing 
firing temperature is the rate of this change slowed down 
significantly. With a similar trend we can also meet at 
monitoring of the median pore radius, see Figure 10. The 
difference between these two properties lies in the fact that 
with the increase firing temperature the initial values of the 
pore volume decrease and, on the contrary, the initial value 
of median pore radius grows. These results confirm the 
fact that in order to achieve a high frost resistance of brick 
body, two important conditions have to be met: the pore 
structure should have the greatest value of the median pore 
radius (primary condition) and the lowest value of the pore 
volume (secondary condition) [22, 32]. 
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Fig. 9. Dependence of pore volume from the number of 
freeze/thaw cycles 
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Fig. 10. Dependence of median pore volume from the number of 
freeze/thaw cycles 

More detailed transformations of pore structure during 
the freeze-thaw cycles are shown in Figures 11 – 13. In 
these cases, the histograms show the percentage changes in 
volumes of pores on the brick body at firing temperatures 
of 900, 1000 and 1060 °C. Based on their increasing or 
decreasing trend a virtual boundary has been established at 
the temperature of 900 °C for the pore diameter of 1 µm, at 
temperature of 1000 °C for the pore diameter of 1.5 µm 
and at temperature of 1060 °C for the pore diameter of 
3.0 µm. From this virtual boundary the volume of small 
pores gradually decreases with the increase in number of 
freeze/thaw cycles. This trend can be observed especially 
at the firing temperature of 900 °C, see Figure 11. With an 
increasing firing temperature, the trend is no longer so 
clear.  

These changes in the field of pore volume have caused 
an irreversible change – the increase of values of the 
median pore radius, see Figure 10.  
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Fig. 11. Change of pore volume according to the diameter and 
number of freeze/thaw cycles at firing temperature of 
900 °C 
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Fig. 12. Change of pore volume according to the diameter and 
number of freeze/thaw cycles at firing temperature of 
1000 °C 
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Fig. 13. Change of pore volume according to the diameter and 
number of freeze/thaw cycles at firing temperature of 
1060 °C 

5. CONCLUSIONS 

Irreversible expansion and water absorption of the 
brick body in the process of freezing and thawing depend 
from the firing temperature; these phenomena significantly 
decrease with the rise of temperature.  

The results obtained in this work show that in order to 
achieve a high frost resistance of brick body, two 
important conditions have to be met: the pore structure 
should have the greatest value of the median pore radius 
(primary condition) and the lowest value of the pore 
volume (secondary condition). 

The change of the porous system during freeze-thaw 
cycles takes place so that the volume of small pores 
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gradually decreases and conversely, a large pore volume 
gradually increases. This results in a gradual increase in 
the value of the median pore radius. In this case, we can 
see that brick body has a tendency to adjust its pore 
structure so as to best resist the effects of freeze-thaw 
cycles. 

Interesting results were obtained in the comparison of 
water absorption values of the samples stored only in water 
(W) and samples exposed to freeze-thaw cycles (F/T) after 
21 days of common storage. Higher water absorption of 
samples F/T in contrast to the samples W underlines the 
fact that in case of the F/T samples there have been 
significant changes in the porous system. This should be a 
signal that in a short time a total destruction of the brick 
body will occur.  

The knowledge gained can be applied when predicting 
the durability of older clay roofing tiles or facing bricks, 
which have been placed in the outdoors for long periods of 
time. If this product will be subjected to e. g. 50 to 100 
freeze-thaw cycles and the values of the pore volume and 
of the median pore radius will remain practically 
unchanged, then we can state that the product has a 
suitable pore structure and can achieve high durability. 
Conversely, if the values of the pore volume and of the 
median pore radius show great changes, we can assume 
that the brick product will no longer performs its function 
in the short term. 
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