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The aim of this investigation was to evaluate the ability to predict the roughened surface area of soft polymeric materials 
using the machine learning method. Random forest and extremely random forest machine learning methods have been 
applied to predict roughened monolithic butadiene styrene rubber surface area based on the grain diameter of the abrasive 
paper. It was found that there is a very strong negative correlation between surface roughness and abrasive grain diameter 
(the Pearson correlation coefficient is equal to - 0.83 and the Spearman correlation coefficient is equal to - 0.91). The 
statistics of Shapiro-Wilk criteria confirmed that independently of the diameter of abrasive grain, the lengths of rubber 
surface profiles are normally distributed. It was determined that random forest and extremely random forest algorithms 
are suitable tools for predicting rubber surface area in dependence on abrasive grain diameter. The forest structure in which 
results obtained best coincidence with the observed (R2 = 0.95): for the random forest model the number of trees is equal 
to 20, the leaf size is equal to 4, at the subset of the feature (abrasive paper grain diameter) equal to 1. In the case of an 
extremely random forest, the number of trees is equal to 350, the size of the subset of the features is equal to 1, and the 
leaf size is 2. The experimental and generated results agree well. The relative approximation error does not exceed 0.079 %. 
Keywords: surface roughness, prediction, machine learning, random forest, extremely random forest. 

 
1. INTRODUCTION∗ 

Adhesive joints for soft polymeric materials are widely 
used in many applications and are subject to extensive 
research to evaluate their durability [1]. The results of many 
researchers indicate that not only the chemical nature and 
compatibility of materials results in the strength of adhesive 
joints but also a very important parameter is the size of the 
contact area, which, as a rule, can be increased by 
mechanical surface roughening [2 – 6]. This kind of 
treatment is also used to remove surface impurities, but the 
main effect of surface abrasion is an increase in contact 
surface area. It is shown, that by variation of surface 
roughness parameters the strength of adhesive joints for 
rubber substrate can be increased from 25 % to 90 % 
compared to those of unroughened samples [7].  

The bond contact area can only be found during the 
experiment. The method of contact or noncontact 
profilometry is usually used to obtain surface roughness 
characteristics. The surface is examined by a needle or laser 
beam perpendicular to the surface to be examined and 
transmits its image in the form of electrical signals to a 
digital one. 

Since the experiment is usually a time-consuming 
process, it is important to create a model that would allow 
predicting the real surface area of the substrate depending 
on the surface roughness characteristics without performing 
a large experiment. 

                                                 
∗ Corresponding author. Tel.: +370-611-11898. 
E-mail address: loreta.macenaite@ktu.lt (L. Macenaite) 

One way to determine the surface roughness parameters 
is based on the theory of random functions. In this case, the 
rough surface profile is assumed to be a normal stationary 
random process whose correlation function is continuous 
and has continuous derivatives. The stationarity of the 
random process allows the use of the average value and 
correlation function of the profile independently of the 
positioning on the surface, and if the condition of ergodicity 
is met, the parameter values can be calculated based on only 
one surface profile of sufficient length. Deviations from the 
stationarity and ergodicity conditions affect only the 
methodology of receiving experimental data and their 
processing. However, general probability regularities at the 
selected conditions are the same. There, the model 
roughness parameters are the numerical characteristics of a 
random process. The possibility of applying a rough surface 
model as a random process has been investigated in [8 – 10]. 

Based on these assumptions, several models for 
calculating the contact area between surfaces have been 
proposed. As examples can consider Hertz, Johnson-
Kendall-Roberts (JKR) [11, 12]; Greenwood-Williamson 
(GW) [13]; Greenwood-Tripp (GT) models. Predicting the 
contact area according to Hertz's theory, large errors are 
obtained. They can be reduced by applying the JKR model, 
which improves the Hertz model and additionally evaluates 
the adhesion work between elastic surfaces. The 
disadvantage of this model is its suitability only for 
macroscopic surfaces. The disadvantage of the GW and GT 
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models is that they assume peaks of irregularities as 
spherical. It is clear that the real surface irregularities not 
always are spherical. Fractal models (Majumdar-Bhushan 
(MB) model [14]) are also used to calculate the contact area. 
However, the disadvantage of the MB model is that the 
conditions for a fractal surface are not always met. 
Therefore, some researchers are skeptical about the 
application of fractal models to characterize surface 
roughness [15]. The various shortcomings of the models 
encourage researchers to develop new models to predict 
contact area, which mainly depends on the surface 
roughness of the substrate. 

In recent decades a real breakthrough has been made in 
the prediction of various processes using different machine 
learning methods. Among them, the random forest method 
and its modifications are presented as the most 
advantageous. Random forest is a popular machine learning 
procedure that can be used to develop prediction models. 
First introduced by Breiman in 2001, random forest are a 
collection of classification and regression trees, which are 
simple models using binary splits on predictor variables to 
determine outcome predictions. Random forests 
consistently offer among the highest prediction accuracy 
compared to other models in the setting of classification 
[16]. 

Assuming that, this investigation aimed to evaluate the 
ability to predict the roughened surface area of soft 
polymeric materials using random forest and extremely 
random forest methods. 

2. EXPERIMENTAL 

2.1. Materials 
It was found a very limited amount of information about 

the application of machine learning methods for the 
prediction of soft polymer materials surface roughness, and 
the prediction of the influence of the contact surface area on 
the strength of adhesive joints. Butadiene-styrene rubber is 
well known for its poor adhesion properties with different 
types of adhesives. It is believable, that selection of this 
material will allow evaluating the effect of mechanical 
surface treatment of soft polymer materials, decreasing the 
effect of chemical interaction between adhesive and 
substrate. For the investigations black leather-like 
butadiene-styrene rubber (BSR) pieces have been used. The 
density and hardness according to the Shore scale were 
ρ = 1.25 g/cm3 H = 75 a.u., respectively. 

For surface roughening, 5 abrasive papers of different 
grade number have been selected. The relation between the 
number of abrasive paper and the average grain diameter is 
presented in Table 1. The larger the number of abrasive 
papers the smaller diameter of abrasive grain is found. 
Table 1. Relation between abrasive paper number and the abrasive 

grain diameter 

Abrasive paper number Average grain diameter d, µm 
P24 698 
P40 382 
P60 260 
P100 149 

2.2. Methods 
2.2.1. Experimental procedure of profiles obtaining and 

evaluation 

BSR rubber strips (100 mm × 100 mm) surface was 
roughened using abrasive papers of different numbers. 
During treatment sample feed rate to the abrasion tool was 
10 mm/s and the clamping force was P = 80 N. For each 
abrasive paper seven samples have been prepared.  

Roughened rubber surface profiles were carried out 
perpendicular to the abrasion direction using a testing-
machine profilograph “Hommelwerke T500” (Germany). 
Measurement accuracy was ±0.2 μm. 7 profiles for each 
abrasive grade number treated surface was carried out.  

It was assumed that each profile is described by a set of 
points of the curve (xn, yn), n = 1, 2,…, N. Then the length 
of the profile l can be calculated according to the curve arc 
length formula: 

𝑙𝑙 = ∑�(𝑥𝑥𝑛𝑛+1 − 𝑥𝑥𝑛𝑛)2 + (𝑦𝑦𝑛𝑛+1 − 𝑦𝑦𝑛𝑛)2. (1) 

Surface roughness characteristic l for each case of the 
roughened surface was calculated for the same lenght 
segment equal to 10 mm. 

2.2.2. Machine learning methods 

Two machine learning methods were used to predict the 
length of the roughened surface profile: random forest and 
extremely random forest. The recursive feature removal 
method was used to determine the best features of each 
method. 

Machine learning was performed using the 
programming languages R 4.0.5 and JupyterLab 3.0.14. 
environment. The R package randomForest 4.6-14 was used 
for the random forest algorithm and extraTrees 1.0.5 for the 
extremely random forest algorithm testing. 

A random forest algorithm consists of a set of decision 
trees that are constructed according to the following 
algorithm [17]: 

1 – Selection of the number of trees m; 
2 – Design a cycle for finding trees: 

for i = 1 to m do 
A random sample of data distribution is 
generated. 
According to this sample, the tree is trained: 
 
for each cros-section do 

A random subset of features with k elements is 
formed. 
An optimal cross-section is selected from the 
features of this subset. 

end 
Tree training is finalized when the stop criterion is 

reached. 
end 

The predicted cross-section suitability is estimated by 
calculating the total sum of squares error SSE: 

𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ (𝑦𝑦𝑖𝑖 − �̄�𝑦1)2𝑖𝑖∈𝑆𝑆1 + ∑ (𝑦𝑦𝑖𝑖 − �̄�𝑦2)2𝑖𝑖∈𝑆𝑆2 , (2) 

https://www.sciencedirect.com/topics/computer-science/machine-learning
https://www.sciencedirect.com/topics/computer-science/classification
https://www.sciencedirect.com/topics/engineering/predictor-variable
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where S1, S2 are the subsets into which the data are split; yi 
is the response values; �̄�𝒚𝟏𝟏 and �̄�𝒚𝟐𝟐 are the averages of the 
response values of the subsets S1 and S2. Cross-section is 
acceptable if condition SSE→min is fulfilled. 

Typically, a splitting of the tree leaf is not applied when 
less than five values remain in it. If there are no more leaves 
left that can be split, the tree construction is stopped. The 
optimal values of parameters k and m are determined by 
cross-validation. The overall forecast is made after 
calculating the average of all prognoses. 

The extremely randomized forest algorithm is a 
modification of the random forest algorithm [18]. Like a 
random forest, an extremely random forest consists of a set 
of trees, but individual trees are trained differently. Firstly, 
not random data sets as in the case of random forest 
algorithm, but a full data distribution is used for tree 
training. Second, this method does not require an optimal 
cross-section of features. Instead, they are selected at 
random, and the best among them is selected. Due to that, in 
this model, one additional parameter, the number of tested 
random sections for each characteristic, is introduced. 

The root mean square error (RMSE) for all predicted 
models was calculated to evaluate how predicted values 
coincide with observed ones in a regression analysis. In 
other words, how concentrated the data around the predicted 
line of best fit: 

𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆 = �∑ (𝑃𝑃𝑖𝑖−𝑂𝑂𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
, (3) 

where 𝑃𝑃𝑖𝑖 is the predicted value for the i-th observation in the 
dataset; 𝑂𝑂𝑖𝑖 is the observed value of the i-th observation in 
the dataset; n is the size of the dataset. 

3. RESULTS AND DISCUSSION 

3.1. Surface roughness characteristics of a real 
roughened leather-like rubber surface 

In Fig. 1 typical profiles of abraded BSR surfaces vs 
abrasive paper grain diameter are presented. It is evident 
that the shape and number of micro-irregularities are highly 
dependent on the abrasive paper number. If it will be 
assumed that roughness is treated as the overall micro-
irregularities with a relatively small distance between them, 
it can be stated that the amount of surface irregularities after 
treatment with the abrasive paper P24 is less than obtained 
with the abrasive paper P100. The digital data of profiles 
were used to calculate the statistical characteristics and 
length of the profile. 

The Shapiro-Wilk criterion with a significance level of 
0.05 was applied to confirm/ deny the assumption of normal 
distribution of profile length. The calculated values of the 
Shapiro-Wilk statistic W and p-value are presented in 
Table 2. W values close to 1 and p-value significantly higher 
from 0.05 confirms the normal distribution of profile length. 
The R software was used to calculate confidence intervals 
for the average profile length lave of seven tested samples. 
The results of the calculations are presented in Table 3. The 
relative increase in the surface profile length ∆ was 
calculated to show the effect of surface roughening 
compared to that of untreated (lo = 10 mm): 

∆= |𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎−𝑙𝑙𝑜𝑜|
𝑙𝑙𝑜𝑜

× 100%. (4) 

 
a 

 
b 

 
c 

 
d 

Fig. 1. BSR surface profiles vs abrasive paper diameter d, μm: 
a – 698; b – 382; c – 260; d – 149 

Table 2. Shapiro-Wilk statistics W and p-value for the profiles 
lengths vs abrasive paper grain diameter 

Abrasive grain diameter 
d, μm 

Statistics 
W p-value 

698 0.913 0.414 
382 0.844 0.108 
260 0.967 0.871 
149 0.934 0.584 

As is evident from the data presented in Table 3, the 
decrease in abrasive grain diameter results in increase in the 
total profile length. The length of the abraded surface profile 
of the highest number of abrasive paper (smallest grains 
diameter) increases by 18.32 % compared to the length of 
the untreated one. The Pearson correlation coefficient 
between the abrasive grain size and the profile length is 
equal to - 0.83 and the Spearman correlation coefficient is 
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equal to - 0.91. Confirmation of a strong negative 
correlation between the size of the abrasive grain and the 
length of the roughened surface profile is presented in 
Fig. 2. 
Table 3. Real profile characteristics vs. abrasive paper number 

Abrasive 
grain 

diameter d, 
μm 

lave, μm Confidence interval  
(α = 0,05), μm ∆, % 

698 10470.35 (10359; 10582) 4.49 
382 10644.25 (10460; 10829) 6.05 
260 11384.43 (11224; 11545) 12.16 
149 12243.58 (12086; 12402) 18.32 

 
Fig. 2. Correlation between the length of the roughened surface 

profile length and the diameter of the abrasive grain 

That allows us to state that abrasive grain size can be 
used as a variable to predict profile length in the machine 
learning process. This presumption was verified by methods 
of random forest and extremely random forest. 

3.2. Prediction of surface roughness using machine 
learning methods 

To predict the relationship between surface area and 
abrasion paper characteristics, the lengths of the roughened 
surface profiles were generated using two machine learning 
algorithms: random forest and extremely random forest. 

Machine learning for each model was performed by 
five-time repeating multiple (10 times) cross-validation. 
Two assumptions were made: I – the test area of the sample 
is So = 10 mm × 10 mm = 100 mm2 (108 μm2); II – the 
surface without roughness is smooth and its true surface area 
is equal to 100 mm2. The surface area of the roughened 
surface S is obtained by multiplying the generated profile 
length by the width of the sample (w = 10 mm). 

Initially, the dependence of the profile length on the 
abrasive grain size was generated using the random forest 
algorithm. The random forest model was trained in three 
stages: Stage I was the determination of the number of trees 
at which RMSE reaches its lowest value; Stage II was the 
determination of the optimal subset of features, and 
Stage III was the determination of the size of the leaf at 
which RMSE reaches its lowest value. 

To find a number of trees in the forest that meets the 
requirement for learning Stage I, various numbers of trees 
were tested, and for each case the RMSE was calculated. 
The dependence between the calculated tree number and the 
RMSE is presented in Fig. 3. It seems that the dependence 
is non-linear with the lowest error at the number of trees 
equal to 20. 

Usually, the optimal value of a subset of characteristics 
is determined in the same way. Since only one variable 
(abrasive grain diameter) is included in the model, the only 
possible value for this parameter is 1. Therefore, the size of 
a subset of variables is simply set to 1. 

The last parameter to be defined is the smallest tree leaf 
size. The value of this parameter and the RMSE was 
estimated by testing various leaf sizes. The relationship 
between RMSE and leaf size during random forest learning 
is presented in Fig. 4. According to the results presented, it 
can be stated that the leaf size at which the lowest RMSE 
value is reached is 4. Thus, modeling the dependence of the 
profile length on the abrasive grain size by the random forest 
method gives the best results when the number of trees in 
the random forest is equal to 20, the size of the subset of the 
variable is equal to 1, and the leaf size is equal to 4. 

 
Fig. 3. Random forest model error vs. the number of trees 

 
Fig. 4. Dependence between random forest error RMSE and leaf 

size 

The extremely random forest algorithm is trained in the 
same way. First, the number of trees in the forest was 
determined by testing the various numbers of trees and 
estimating the model error RMSE. The dependence between 
RMSE and the number of trees during extremely random 
forest model learning is presented in Fig. 5. Based on these 
results, it can be stated that the number of tested trees needs 
to be 350. 

 
Fig. 5. Relation between an extremely random forest algorithm 

error and the number of trees 
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Since the model includes only one variable, the same as 
for the random forest algorithm, the only possible value for 
the size of a subset of features is set to 1. 

The last parameter to be determined is the smallest tree 
leaf size. Various leaf numbers were tested to determine at 
which leaf number minimal RMSE is found. The results 
obtained are presented in Fig. 6. The lowest RMSE value is 
found when the leaf size is equal to 2. In summarizing, it can 
be stated that by applying an extremely random forest 
machine learning method for the prediction of profile length 
vs. the abrasive grain diameter the best results can be found 
at the number of trees equal to 350, the size of the subset of 
the variable is equal to 1, and the leaf size is equal to 2. 

 
Fig. 6. Relation between extremely random forest algorithm leaf 

size and model RMSE 

In Table 4 RMSE values and determination coefficient 
R2 calculation results are presented which confirm the 
adequacy of the generated results to the experimentally 
observed values. 
Table 4. RMSE and R2 for models trained only with abrasive grain 

size 

Model RMSE, μm R2 
Random forest (trees number is 
20, variable is equal to 1, and the 
leaf size is 4) 

219.36 0.9495 

Extremely random forest (trees 
number is 350, the variable is 
equal to 1, and the leaf size is 2) 

219.58 0.9493 

In Table 5 generated roughened surface area values in 
dependence on abrasive grain diameter are presented.  
Table 5. Predicted results in dependence on machine learning 

method and the abrasive grain diameter 

Algorithm Abrasive grain 
diameter d, μm 

Surface area  
S, μm2 δs, % 

Random forest  698 104762922.978 0.056 
382 106379009.724 0.059 
260 113835602.677 0.008 
149 122369344.256 0.054 

Extremely 
random forest 

698 104739905.794 0.035 
382 106358282.475 0.079 
260 113844600.414 0.0003 
149 122409807.909 0.021 

In this table relative approximation errors between real 
Sr and generated Sg surface area values are also presented. δs 
was calculated according to the following formula: 

𝛿𝛿𝑠𝑠 = �𝑆𝑆𝑔𝑔−𝑆𝑆𝑟𝑟�
𝑆𝑆𝑟𝑟

× 100%. (5) 

Calculated δs values show that the experimentally 
obtained and generated data coincide well. 

Obtained results confirm the presumption that random 
forest and extremely random forest algorithms can be 
successfully used for the prediction of the roughened rubber 
surface area when the grain diameter of abrasive paper is 
known. 

4. CONCLUSIONS 
Random forest and extremely random forest machine 

learning methods have been applied to predict roughened 
monolithic butadiene styrene rubber surface area based on 
the grain diameter of the abrasive paper. It was found that 
there is a very strong correlation between surface roughness 
and the diameter of abrasive grain. The statistics of  
Shapiro-Wilk criteria confirmed that independently of the 
diameter of abrasive grain, the lengths of rubber surface 
profiles are normally distributed. It was determined that 
random forest and extremely random forest algorithms are 
suitable tools for predicting rubber surface area in 
dependence on abrasive grain diameter. The forest structure 
in which results obtained best coincides with the observed 
(R2 = 0.95): for the random forest model the number of trees 
is equal to 20, the leaf size is equal to 4, at the subset of the 
feature (abrasive paper grain diameter) equal to 1. In the 
case of an extremely random forest, the number of trees is 
equal to 350, the size of the subset of the features is equal to 
1, and the leaf size is 2. The experimental and generated 
results agree well. The relative approximation error does not 
exceed 0.079 %. 
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