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The study deals with the use of attapulgite as a corrosion inhibitor of two metals, namely aluminum and zinc, and their 

alloy (aluzinc), in a 0.5 M hydrochloric acid medium. The study was carried out by monitoring the free-corrosion potential 

and performing dynamic polarization measurements (Tafel curves) at different concentrations of inhibitor in solution. The 

measurements suggested that in a 0.5 M acidic medium, the surface of each of the three materials was attacked. The 

decrease in current density was very noticeable in aluminum and zinc at a level of 2 gL-1. A weak tendency to passivity 

was noticed for zinc and aluzinc. The experimental results obtained showed a decrease in the current intensity in the 

presence of the corrosion inhibitor in the acidic medium. The maximum inhibitory efficiency rate reached for the metals 

and their alloy was higher than 99 %. This percentage was obtained for aluminum and zinc in the presence of 4 gL-1 of 

attapulgite and 3 gL-1 for aluzinc. 

Keywords: attapulgite, corrosion inhibitor, dynamic polarization. 

 

1. INTRODUCTION 

Aluminum and its alloys are increasingly used, 

especially because of their good strength-to-weight ratio, 

tensile properties, fatigue strength, fracture toughness, good 

suitability for engineering processes, etc [1, 2]. In addition, 

they are more resistant to corrosion, which makes them 

better materials for military, aerospace, marine and 

automotive applications [3]. Zinc and aluzinc, used 

interchangeably, are mainly used in the construction 

industry as roofing and cladding materials. Because of its 

durability and environmental friendliness, Aluzinc requires, 

like zinc and aluminum, protection against corrosion by 

using environmentally-friendly inhibitors. Among the 

ecological inhibitors, we can mention green inhibitors such 

as gum arabic, essential oils and mineral inhibitors such as 

clays [4 – 9]. Corrosion is an electrochemical phenomenon 

and any study done on it can only be made in the context of 

an electrochemical representation of the processes involved 

[10]. Corrosion control can be achieved in different ways: 

organic or inorganic coating, anodization of the metal, 

protection by organic or mineral inhibitors and cathodic 

protection by the applied current. The choice of one of these 

processes depends on ecological and economic 

considerations and the conditions of use. 

The use of the chemicals identified as corrosion 

inhibitors for metals in aqueous media requires prior 

verification of their toxicity. These are usually substances 

containing XO4
2- oxo-anions such as chromates, 

molybdates, tungstate, etc., or other oxo-anions such as 
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nitrates, phosphates, borates and silicates [11, 12]. Because 

of toxicity concerns, an alternative class of inhibitors called 

green or ecological inhibitors has emerged, including a wide 

variety of plant extracts [13, 14] and clays [15 – 17]. In this 

context, tuffs [8, 9] and montmorillonite [8] have recently 

been studied in our laboratory as corrosion inhibitors for 

steel as suspended solids in aqueous solutions. We obtained 

maximum efficiencies of 62 % for montmorillonite and 

70 % for tuffs. 

In this work, we studied the effect of attapulgite used as 

a corrosion inhibitor for aluminum, zinc and aluzinc in a 

corrosive environment of 0.5 M hydrochloric acid (HCl). 

We chose attapulgite which, in contrast to tuffs and 

montmorillonite, is rich in Mg. This is expected to lead to 

higher inhibition efficiencies. The electrochemical methods 

used to study the behavior of these materials in a corrosive 

environment are respectively open circuit potential 

measurements and dynamic polarization. 

2. MATERIALS AND METHODS 

Aluminum and aluzinc with mass percentages of 

55 % Al, 43.4 % Zn and 1.6 % Si, were supplied by the 

Senegalese company of transformation of materials (CSTM 

SAFOR), Dakar, Senegal. Zinc was supplied by the hot-dip 

galvanizing plant in Sebikotane, Senegal. Aluzinc, also 

known as Al-Zn, is a carbon steel sheet coated by dipping 

prepared products in the melted mixture containing 

55 % Al, 1.6 % Si and 43.4 % Zn and with a weight of 

185 g/m² on both sides. 
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The metals were cut into square sheets of 1 × 1 cm2 

surface. One of the surfaces is exposed to the electrolyte and 

the rest was coated with an epoxy oxide layer. The surface 

in contact with the electrolyte solution was polished with 

abrasive paper of varying grit sizes (400, 600, 800 and 1000) 

and then rinsed with distilled water and dried. 

Attapulgite extracted from the quarries of Mbodiène 

(Senegal), used as a corrosion inhibitor, is composed 

essentially of Si (42.90 %), Mg (13.20 %), Ca (17.12 %), 

Fe (15.16 %) and Al (6.97 %) [18]. Its chemical 

composition is given in Table 1. 

Table 1. Chemical composition of attapulgite [18] 

Compound, % 

SiO2 MgO CaO Fe2O3 Al2O3 TiO2 K2O P2O5 SO3 Cl 

55.15 13.8 11.11 8.3 7.78 0.99 0.97 0.78 0.35 0.33 

The electrolyte used was hydrochloric acid with a 

concentration of 0.5 M, prepared by appropriate dilution of 

the commercial acid (37 %, Sigma Aldrich). We used the 

solution without and with attapulgite, to study the 

electrochemical behavior of each material. Electrochemical 

measurements were performed using a three-electrode cell 

consisting of a counter electrode (platinum grid), a reference 

electrode (Ag/AgCl), and a working electrode made of the 

sample under study (aluminum, zinc or aluzinc). We used a 

μ-Autolab III potentiostat-Galvanostat controlled by 

General Purpose for Electrochemical System (GPES) and 

Frequency Response Analyzer (FRA) software for 

electrochemical measurements. Before each experiment, the 

working electrode was kept immersed in the HCl solution 

containing the inhibitor at free-corrosion potential for one 

hour under magnetic stirring, in order to stabilize the 

suspension. We first investigated the free-corrosion 

potential or open-circuit potential (OCP), measured in the 

absence of current. In potentiodynamic mode, we performed 

a potential sweep between - 0.25 and + 0.25 V/Ag/AgCl 

relative to the OCP. The potential scan rate for all 

measurements was 0.5 mV/s. This value allowed testing 

under quasi-stationary conditions [13, 18]. The 

equilibration time was set to 2 h. The electrochemical 

parameters (icorr, Ecorr, Rp, ba and bc) were obtained using 

Tafel polarization curves. The calculation of these 

parameters was performed by fitting the experimental 

values into the theoretical model of Stern-Geary [19] by a 

linear regression by GPES software after correction for the 

ohmic drop. The inhibitory efficiency was calculated from 

the following equations [14]. 

IE= 
𝑖corr−𝑖corr
0

𝑖corr
0 × 100, (1) 

where 𝑖corr
0  and 𝑖corr  being respectively the current 

densities without and with inhibitor. 

This inhibitory efficiency was also evaluated by means 

of the polarization resistance. 

EI = 
𝑅P−𝑅P

0

𝑅P
× 100, (2) 

where 𝑅P  and 𝑅P
0  are respectively the polarization 

resistances with and without inhibitor. 

3. RESULTS AND DISCUSSION 

3.1. Free-corrosion potential 

The monitoring of the free-corrosion potential, or open-

circuit potential (OCP) as a function of time makes it 

possible to appreciate the behavior of the metal surface in a 

corrosive environment and determine the equilibrium time 

necessary to obtain a stationary regime essential to the 

potentiodynamic plots. This behavior is reflected by the 

attack of the material and/or the formation of a protective 

layer. 

Chronopotentiometry at zero current does not allow to 

conclude on the evolution of the anodic and cathodic 

reactions. It is a preliminary test for electrochemical studies. 

The free-corrosion potential is the most immediately 

measurable electrochemical quantity. It is the only 

measurement that does not involve any disturbance of the 

state of the system to be studied [15]. Fig. 1, Fig. 2 and 

Fig. 3 show the evolution of the free-corrosion potential of 

aluminum, zinc and aluzinc, respectively, in a 0.5 M HCl 

solution at different inhibitor concentrations. 
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Fig. 1. Evolution of the free-corrosion potential of aluminum in 

0.5 M HCl at different concentrations of inhibitors 

0.0 0.5 1.0 1.5 2.0

-0.8

-0.6

-0.4

-0.2

0.0

 

 

E
, 
V

/A
g
/A

g
C

l

Time, h

 0 g/L  1 g/L  2 g/L  3 g/L

 4 g/L  5 g/L  6 g/L

Zn

 

Fig. 2. Evolution of the free-corrosion potential of zinc in 

0.5 M HCl at different inhibitor concentrations 
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Fig. 3. Evolution of the free-corrosion potential of aluzinc, in 

0.5 M HCl at different inhibitor concentrations 

Table 2 presents the OCP values for the three materials 

in 0.5 M aqueous HCl solution without attapulgite. 

Table 2. The free-corrosion potential of the materials and time to 

reach a constant value, in 0.5 M HCl 

Materials Aluminum Zinc Aluzinc 

OCP, V/Ag/AgCl -0.384 -0.820 -0.520 

t, min 90 105 120 

We noted in most cases an initial decrease of the free-

corrosion or open-circuit potential (OCP) which may be due 

to the dissolution of the remaining oxides that are still 

present on the metal surface [20]. Table 2 shows that the 

free-corrosion potential of Aluzinc is between the value 

obtained for aluminum (-0.384 V) and that of zinc  

(-0.820 V). For a duration of 15 min, fluctuations are noted 

on the curves, which would seem to prove attacks on the 

substrate surfaces. Beyond this time, a stabilization of the 

curve is observed. This stabilization is justified by the 

destruction of the oxides and hydroxides and the possible 

formation of a thin layer of adsorbed inhibitor molecules. 

For a concentration of 6 g/L, the curve steepens after 15 min 

showing the effect of the self-protective layer. Like 

aluminum, there is for zinc the possibility to have a self-

protective layer formed on the metal/electrolyte interface. In 

the absence of an inhibitor, the free-corrosion potential of 

zinc decreases significantly in the first few minutes. Its 

evolution eventually stabilizes over time after 15 min. 

(Fig. 2). We believe that at 2 g/L, the protective layer has 

broken down under the action of chloride ions. The Cl- ion 

is known to be destructive to passive films that can be 

formed at the metal/electrolyte interface [21, 22]. The 

chloride ion causes a localized corrosion phenomenon, such 

as pitting and stress corrosion cracking [23 – 25]. In the case 

of aluminum and aluzinc, OCP appears to be less fluctuating 

and is almost constant over time. 

In hydrochloric acid solution, we can expect that the 

reaction mechanism of zinc or aluminum is similar to that 

of iron suggested by other authors [26, 27]. Therefore, the 

anodic oxidation of zinc by the Cl- can be represented by the 

following reactions: 

Zn + Cl-       (ZnCl-)ads, (3) 

(ZnCl-)ads      (ZnCl+) +  2e- , (4) 

(ZnCl+)          Zn2+  + Cl-. (5) 

The cathodic reduction of hydrogen follows the 

following reactions: 

Zn  +  H+       (ZnH+)ads, (6) 

(ZnH+)ads + e-     (ZnH)ads, (7) 

(ZnH)ads + H+ + e-     Zn  + H2. (8) 

The same reaction schemes can describe the aluminum 

corrosion in protonated media. The anodic oxidation of zinc 

by the Cl-: 

Al + Cl-     (ZnCl-)ads, (9) 

(AlCl-)ads    (AlCl2+) +  3e-, (10) 

(AlCl2+)       Al3+  +  Cl-. (11) 

The cathodic reduction of hydrogen is given by the 

following reactions: 

Al  +  2H+    (AlH2
2+)ads, (12) 

(AlH2
2+)ads  + e-    (AlH2

+)ads, (13) 

(AlH2
+)ads  +  H+ + 2e-   Al  + 

3

2
 H2. (14) 

The introduction of attapulgite in the hydrochloric acid 

solution does not modify the mechanism of evolution and 

reduction of hydrogen on the surface [28] but acts 

simultaneously on the half-equations of oxidation and 

reduction by modifying the adsorption process. 

Metal in acid solution:  M            Mn+ + ne-.  (15) 

The corrosion of Al, Zn and Al-Zn in HCl 0.5 M is 

globally manifested by the dissolution of the materials 

according to Eq. 15, any oxide or hydroxide being soluble 

in the highly acidic medium. 

We reported in Table 2, for each material, the necessary 

time to reach a constant potential. The values are comprised 

between 90 and 120 min. Therefore, an equilibrium time of 

2 h was chosen before dynamic polarization measurements. 

3.2. Dynamic polarization 

Corrosion is mainly an electrochemical process. The 

action of the inhibitor can only take place at one of the stages 

of the elementary reactions which are the transport of 

species in solution, the transfer of electronic charges, the 

absorption of species at the surface of solid phases, the 

formation of surface intermediates. The inhibitor acts 

according to the conditions in which it has been placed. 

Therefore, the additional inhibitor in hydrochloric acid must 

give such dynamic polarization behavior. 

The dynamic polarization curve in the absence or 

presence of different concentrations of inhibitor is shown in 

Fig. 4, Fig. 5 and Fig. 6. 

We observed that the cathodic branches are almost 

parallel, as well as the anodic ones. Therefore, a charge-

transfer probably occurred between the electrolyte and the 

metal [27]. During this charge transfer, there is a shift in the 

corrosion potential from cathodic to anodic values. An 

inhibitor can be qualified as an anodic or cathodic type when 

the corrosion potential (Ecorr) shifts by ± 85 mV after adding 

an inhibitor. 
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Fig. 4. Dynamic polarization curves of aluminum in a 0.5 M HCl 

solution 

When the shift is less than 85 mV, the inhibitor is said 

to be mixed. 
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Fig. 5. Dynamic polarization curves of zinc in a 0.5 M HCl 

solution 

In our case, there is a clear shift of the free-corrosion 

potential towards anodic values. The addition of 1 g/L of the 

inhibitor to the HCl solution causes a variation in corrosion 

intensity regardless of the smallest variation in the potential 

difference. 

The variation of this current density can be due to the 

interactions between the CI- ions responsible for the attack 

and the Attapulgite responsible for inhibiting the 

progression of corrosion. In addition to the corrosion 

potential shift, the added inhibitor causes the corrosion 

current density to decrease significantly. 
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Fig. 6. Dynamic polarization curves of aluzinc in 0.5 M HCl 

solution 

In the case of aluzinc, we noted a shift of the potential 

towards the more negative values for some inhibitor 

concentrations. This decrease in current density may be due 

to the formation of a protective film on the surface of the 

alloy rather than simple adsorption onto the active sites. The 

combined contribution of aluminum and zinc makes aluzinc 

good protection for attapulgite because it has almost the 

highest polarization resistance. 

The corrosion parameters obtained by dynamic 

polarization of the three materials in a 0.5 M HCl solution 

at different inhibitor concentrations are grouped in Table 3. 

Table 3. Dynamic polarization corrosion parameters of aluminum, zinc and aluzinc in 0.5 M HCl solution at different inhibitor 

concentrations. The results are obtained from Fig. 4, Fig. 5 and Fig. 6 

C, g/L  0 1 2 3 4 5 

Ecorr, V 

Al -0.805 -0.851 -0.761 -0.777 -0.662 -0.621 

Zn -0.621 -0.681 -0.538 -0.550 -0.416 -0.409 

Al-Zn -0.638 -0.685 -0.694 -0.623 -0.422 -0.481 

icorr.,μA/cm2 

Al 27.500 15.910 15.820 10.100 0.0561 0.0603 

Zn 8.739 3.842 2.377 2.301 0.773 0.0491 

Al-Zn 40.460 26.090 1.074 0.476 0.102 0.0804 

Rp, Ω.cm2 

Al 13.31 23.08 23.22 25.91 27100 10100 

Zn 59.33 124.5 234.2 239.0 45900 40300 

Al-Zn 32.89 272.1 5273 6302 46030 42000 

bc, mV/dec 

Al 16 73 64 48 62 77 

Zn 27 75 30 52 85 64 

Al-Zn 34 54 114 84 112 75 

ba, mV/dec 

Al 36 74 106 132 52 72 

Zn 22 49 88 229 97 67 

Al-Zn 23 42 114 81 97 106 

EI, % 

Al – 42.3 43.6 48.6 99.1 99.8 

Zn – 75.2 52.3 74.6 99.87 99.84 

Al-Zn – 87.9 99.3 99.4 99.93 99.92 
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The efficiency of the inhibitor is obtained from (Eq. 2). 

The reported values of the corrosion current density (Icorr) 

are the average of three values obtained by drawing anodic 

and cathodic lines. Before 2 g/L of attapulgite, there is an 

attack activity justified by a value of the corrosion current 

density which varies in an increasing way. After 2 g/L 

passivation seems to be observed with a decrease of the 

corrosion current density. At 2 g/L the inhibitory 

efficiencies are 43.6 % for aluminum, zinc 52.3 % for and 

99.3 % for aluzinc. For Zn and Al, attapulgite concentration 

should be equal or higher than 4 g/L to reach inhibitor 

effectiveness of 99 %. The very high percentage for aluzinc 

shows the existence of two combined effects. The effect due 

to the sacrificial anode protection played by zinc combined 

with the inhibiting effect of Attapulgite. For a concentration 

of 1 g/L for aluzinc the value 87.9 % of the inhibitory 

efficiency is due to the sacrificial oxidation of the anode. 

4. CONCLUSIONS 

In hydrochloric acid environments, attapulgite provided 

fairly significant protection on these Al, Zn and aluzinc with 

optimum inhibitor concentrations of 2 g/L for aluzinc, and 

4 g/L for Al and Zn in order to reach 99 % effectiveness. 

Partial blocking of the anodic areas by adsorption of the 

inhibitor can lead to an increase in the local current density. 

On the other hand, if the unblocked portions of the anode 

surface are not passivated, a pitting corrosion process is 

observed. This increase in current density cannot be due to 

a local attack on the metal surface. Attapulgite, which is not 

harmful to the environment, is a very effective inhibitor to 

protect these three metals. The experimental study showed 

that the inhibitory efficiency reached a maximum rate of 

about 99 % for these three materials. 
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