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As a raw material, phosphorus availability in agriculture has been a critical concern in terms of phosphate rock 

consumption related to a price-dependent supply-demand chain. Novel approaches have been proposed for alternative 

phosphorus sources in agricultural applications. Although nano-hydroxyapatite (nHA) is a commonly used bioceramic 

material, its utilization as an alternative phosphorus fertilizer is an emerging field. Phosphogypsum (PG), a by-product of 

wet process phosphoric acid production, is a promising raw material for nHA production. With an approximate 300 Mton 

annual accumulation rate of PG puts pressure on the research for introducing alternative strategies for the resource 

utilization of legacy PG piles in an environment-friendly and cost-efficient manner. Valorization of PG as the calcium and 

phosphorus precursor in nHA production would both provide an efficient waste management strategy and low-cost raw 

material. This study gives a brief review of the various synthesis routes on PG-derived nHA and criticizes nHA utilization 

as a phosphorus fertilizer. 
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1. INTRODUCTION  

Worldwide growth in population triggers some cause-

effect chain, including a permanently increasing demand for 

energy, water, and food, together with some ecological and 

societal challenges. Agriculture is one of the most affected 

areas of interest to provide the exponentially rising demand 

for food, and mineral fertilizers are the most promising and 

quick problem-solving option [1, 2]. Plant nutrition is the 

key point to achieve both high yield and maintain soil 

fertility in agricultural applications [3]. Mineral fertilizers 

compose of the primary and secondary nutrients together 

with some trace elements, and they have been applied to the 

soil to meet the nutrient requirement of plants in case of 

inadequate nutrient content in the physical structure of soil 

[4]. However, the use of mineral fertilizers in food 

production continues to increase day by day due to the 

insufficient production capacity of organic fertilizers. 

Phosphorus (P) is one of the essential nutrients, which 

helps the conversion of the other nutrients to build blocks 

for healthy growth. Phosphorus fertilizers are the major P 

nutrient source for plants, in which P can be uptaken as 

phosphoric acid (H3PO4) derived phosphate salts. Thus, 

phosphoric acid production is the starting point of 

commercial phosphorus fertilizer manufacture.  Industrial 

scale phosphoric acid production can be conducted through 

thermal or wet process methods [5]. Fig. 1 and Fig. 2 shows 

thermal and wet process methods, respectively. The thermal 

process allows a high-purity product yield, in which 

phosphoric acid is generally utilized in food and 

pharmaceutical applications. 

The wet process, on the other hand, is defined as the 

dissolution of phosphate rock via sulfuric acid (H2SO4) at a 

moderate temperature range (70 – 80 °C), nitric acid 

(HNO3) or hydrochloric acid (HCl) can also be utilized on 

some occasions [7]. Although the thermal process allows a 

high-purity product yield, it requires high energy cost, and 

corrosion problems can also be observed in the types 

equipments. Thus, the thermal method is not economically 

feasible for industrial-scale phosphoric acid production. The 

wet process results in a relatively low-grade purity of 

phosphoric acid, however the economic benefits allow the 

wet process method feasible for the fertilizer industry; 

additionally, the ease in the separation of phosphoric acid 

from the leachate makes wet process the current commercial 

method for phosphoric acid production [8]. 

 

Fig. 1. Thermal process phosphoric acid production method [6] 
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Fig. 2. Wet process phosphoric acid production method [11] 

 

85 % of the phosphoric acid produced via the wet 

process is utilized in the fertilizer industry [9, 10]. 

Fertilizer demand forecasts help to account for a long-

term plan for achieving a sustainable food chain [12]. Since 

the green revolution, emerging demand in mineral 

fertilizers, i.e. phosphate fertilizers has increased the 

production capacity of phosphoric acid. By the year 2023, 

annual phosphoric acid production is expected to increase 

by 50 Mtons, which also accounts for an annual 180 Mtons 

phosphate-rock mining [13]. Produced phosphoric acid can 

be used in the production of a series of both liquid or solid 

phosphate fertilizers, single and/or triple superphosphates 

(SSP, TSP) and ammonium phosphates (MAP, DAP) are the 

most generally used products. Fig. 3 shows a schematic 

illustration of phosphate fertilizers production. 

Phosphate fertilizers can be readily adsorbed on the soil 

surface, resulting in a relatively lower migration rate to the 

roots of the plants. This results in an inefficient absorption 

and low bioavailability of the nutrients provided by the 

phosphorus fertilizer [14]. P uptake efficiency by 

conventional mineral fertilizers is reported to be in the 

5 – 30 % range, resulting an excessive use of phosphate 

fertilizers. Additionally, the P resource in the phosphate 

fertilizers is based on phosphoric acid, in which the 

phosphate rock is the original resource of the P used in 

agriculture. Limited phosphate rock resources are an 

increasing concern, since the availability of P in the 

agriculture has been showing a decreasing trend related to 

the extensive consumption of phosphate rocks [15]. 

To sustain an efficient P resource availability, recycling 

P fertilizers from waste materials have emerged as a 

promising approach [16, 17]. As an industrial non-metallic 

waste, phosphogypsum (PG) contains Ca in CaSO42H2O 

form by > 90 %, and P in P2O5 form approximately by 

1.8 – 0.9 % by mass, respectively [18, 19]. Although P2O5 

content in PG is low, annual mass generation enables PG as 

a promising secondary P resource. Synthetic nano-

hydroxyapatite (nHA) contains both calcium and phosphate 

nutrients, or trace elements such as zinc, copper, and iron 

can also be impregnated in the structure, resulting an 

enriched formulation as an alternative fertilizer. Resource 

utilization of PG is of importance on the economic and 

environmental issues. This study gives a brief review of 

synthesis methods of PG-derived nHA, providing a further 

insight into the utilization of nHA in agriculture as an 

alternative phosphorus fertilizer. 

Phosphogypsum is in the form of CaSO4 in terms of its 

chemical structure and is used in the production of 

ammonium sulfate today. However, the release of 

hydroxyapatite as a by-product in this process has led 

fertilizer manufacturers to create alternative areas of use 

[20]. In this sense, the use of hydroxyapatite in the 

agricultural industry can be considered as a new alternative 

for the fertilizer industry. This study, by its nature, is a 

comparison of different methods and aims to give an idea 

about the researchers' work on new methods. However, 

industrial-scale studies on the subject are very limited. 

In this study, different synthesis methods in the 

literature were investigated for the use of phosphogypsum 

in HAP production. 

 

Fig. 3. Schematic illustration of the production routes of phosphate fertilizers 
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However, it was stated that HAP could be evaluated as 

an alternative fertilizer and PG used in HAP production 

could be considered as a secondary raw material source. 

Due to the compilation nature of the study, it was deemed 

necessary to explain the different HAP synthesis processes. 

Because industrial production of hydroxyapatite presents 

economic challenges. In this study, possible methods were 

evaluated, and alternative ideas were presented to the 

researchers. 

2. RESOURCE UTILIZATION AND 

PHOSPHOGYPSUM 

Current projections show that the annual phosphate 

fertilizer consumption would rise approximately by 59.16 

Mtons by 2028, accounting for an annual 2.7% growth for 

the next decade [21]. This permanently increasing demand 

for phosphate fertilizers result a continuous production rate 

of phosphoric acid. The current commercial method for 

phosphoric acid production is the wet process route, 

resulting in the generation of a solid by-product, 

phosphogypsum (PG), as 4.5 – 5 folds than the desired 

product, phosphoric acid, by mass. The annual PG 

generation rate is approximately 200 – 250 Mtons, following 

the same growth trend as the phosphoric acid production 

rate [19, 22]. 

PG is synthetic gypsum, general structure is based on 

calcium sulphate dihydrate, together with some impurities 

such as rare-earth elements (REEs) as well as heavy metals 

(As, Pb, Cd), phosphate rock-based radionuclides and wet 

process residues such as phosphates, fluorides and some 

organic materials [23 – 25]. Resource utilization of the 15 % 

of the generated PG is generally conducted as building 

materials, agricultural applications, CO2 sequestration, 

REEs extraction, and environmental functional materials. 

The rest 85 % of PG, like many other industrial by-products, 

is disposed as open dumps at coastal regions or discarded 

into the sea, posing its own environmental and ecological 

concerns in terms of groundwater leakages, soil, and 

atmosphere pollution [26 – 28]. 

PG has a complex and changeable structure, so it cannot 

be defined with a single formulation [29]. However, Ca and 

P can be available in the structure of PG as in CaSO4.2H2O 

and P2O5 form, respectively. Replacement of synthetic 

reagents with recycled waste or residue-based materials is 

still an emerging area since this approach provides the 

utilization of waste resources together with economic and 

environmental advantages [30]. 

PG management is a rapidly emerging area of interest 

in environmental solid waste treatment, in which current 

research is focused on alternative valorization technologies. 

Feasible research on resource treatment and valorization 

technology of PG is of importance to increase the 

consumption and recycling rate of PG as well as reduce its 

environmental risks [31]. 

3. NANO-HYDROXYAPATITE POTENTIAL AS 

A PHOSPHORUS FERTILIZER 

Hydroxyapatite (HA) crystals can be available both 

naturally and synthetically, and are one of the most popular 

bioceramic materials in bone tissue engineering applications 

i.e., bone grafting, dental implants, bioactive ceramic 

coatings [32, 33]. Natural HA crystals can be available in 

eggshells, teeth, and bones, whereas synthetic nHA crystals 

have a high similarity to natural HA on a chemical and 

crystallographic basis. The chemical and crystallographic 

accordance of synthetic nHA to those of natural HA makes 

it a promising biocompatible and bioactive functional 

material. Besides, synthetic nHA can also be used in various 

industrial applications such as catalysis, ion exchange, 

adsorbent and impurity removal [34, 35]. 

Conventional methods to produce synthetic nHA are 

proposed to be the precipitation technique, sol-gel method, 

hydrothermal synthesis, multiple emulsion method, 

biomimetic deposition, and electrodeposition methods [36]. 

Novel approaches such as microwave synthesis and atomic-

layer deposition methods have been also proposed, 

providing the production of nHA with desirable structure 

and properties [37 – 39]. 

Although application area of synthetic nHA has been 

widespread, its expensive and complex synthesis methods 

are still a concern. Studies focusing on simple and cost-

effective natural source-derived synthetic nHA synthesis 

have been proposed for utilization in tissue engineering 

applications [40]. Although synthetic nHA is a popular 

bioceramic material, its calcium-phosphate based chemical 

structure provides readily available nutrients for plants, thus 

utilization of nHA as a nanofertilizer has been gaining 

attention. Recent studies published in 2022 regarding the 

enhancement in the phosphorus uptake efficiency and yield 

by nHA fertilizer show promising results. Elsayed et al. 

utilized nHA particles as a phosphorus nano-fertilizer on the 

Rosmarinus officinalis plants compared to conventional 

NPK fertilizer. Results showed that the rosemary oil 

component yield in nHA nano-fertilizer was higher than 

conventional NPK, showing promising results in improving 

yield on rosemary plant [41]. Sharma et al. prepared zinc 

and magnesium doped nHA particles modified with urea to 

evaluate their performance as fertilizers. They reported that 

doping nHA particles with Zn and Mg reduced the particle 

size of nHA, allowing higher accommodation of urea. 

Nanohybrid fertilizers showed a slow-release performance, 

increasing dehydrogenase and urease enzyme levels in soil, 

without any adverse effects. Nutrient uptake efficiency in 

nHA hybrid fertilizers was enhanced [42]. 

Utilizing nHA particles as phosphorus fertilizer would 

trigger research on designing environment-friendly novel 

synthesis technologies and elaborate the release and uptake 

efficiency mechanisms by plants. The bioavailability of 

nHA particles should also be tested by long-term exposure 

studies [43]. By far, studies propose promising results for 

nHA as an alternative fertilizer, however, these studies are 

still in the greenhouse level and need to be supported with 

long-term field studies [44 – 47]. 

3.1. Phosphogypsum as a resource for nano 

hydroxyapatite production 

PG, having both Ca and P in its chemical structure, can 

be utilized to prepare synthetic nHA as the calcium and 

phosphorus precursor. There have been various studies 

suggesting a synthesis route for nHA preparation from PG. 

Zhang et al. utilized the microwave irradiation method to 
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synthesize nHA from PG. They started with 2 g of PG as a 

basis, added into 50 ml of 10 % hydrochloric acid and the 

mixture was vigorously stirred for 24 hours. After stirring, 

the mixture was filtered through a 0.45 µm membrane filter. 

pH adjustment of the filtrate was conducted with 8 % 

sodium hydroxide solution until pH was 9, then the solution 

was filtered again. The filtrate of 2nd filtration was 

vigorously stirred while 20 ml of 26 % diammonium 

phosphate solution was added slowly. pH adjustment was 

conducted with 8% sodium hydroxide solution until pH 11 

was reached. Prepared translucent colloid was microwave 

irradiated at 60 °C for 4 hours in a microwave reactor of 

500 W powers equipped with reflux and stirring system. 

After 4 hours, the solution was cooled to room temperature 

and filtered with a 0.45 µm membrane filter. The precipitate 

was washed with deionized water and ethanol, followed by 

vacuum-drying at 120 °C for 4 hours and then ground into 

fine powder. The powder was then calcined at 500 °C for 

2 hours to obtain nHA particles [48]. A flowchart of the 

synthesis procedure is given in Fig. 4. Synthesized high-

purity nHA particles had a hexagonal structure with a 

particle size of 20 nm  60 nm and when reported to have 

good efficiency in fluoride removal applications from 

aqueous solutions in accordance with a pseudo-second-

order kinetic model defined by the Langmuir-Freundlich 

equation. 

Mousa and Hanna reported a simple and versatile 

method to synthesize nHA from PG through PG- phosphoric 

acid in an alkaline medium, diluted ammonium sulfate 

solution being the by-product of the proposed synthesis 

route. They firstly mixed PG with tap water and stirred the 

mixture vigorously at ambient temperature for 30 min to 

obtain a homogenous PG-water slurry. A stoichiometric 

amount of phosphoric acid was added, and the pH was 

adjusted with ammonia solution until the pH was 11. After 

a 1 h reaction period, the reaction medium was filtered. The 

cake was dried at 80 °C and calcined at 600 and 900 °C for 

2 h to obtain nHA particles [49]. Fig. 5 shows the flowchart 

of the proposed synthesis route. nHA particles calcined at 

600 °C showed poor crystallinity, whereas the crystallinity 

for those calcined at 900 °C showed a decomposition to the 

β-TCP phase. nHA particles have a particle size of around 

54 – 74 nm and rod-like morphology. 

Nasrellah et al. proposed a synthesis route starting with 

the decomposition of PG with 67 % sulfuric acid. After 

stirring, the slurry was filtered, and the cake was then treated 

with H3PO4 and pH adjustment was performed with NaOH 

until pH:11. The mixture was mechanically agitated for 

48 h. Finally, the suspension was filtered, and the cake was 

washed with distilled water, followed by drying at 105 °C 

and calcined at 600 – 900 °C for 3 h. Fig. 6 shows the 

flowchart of the proposed synthesis route, which is similar 

to those which was reported by Mousa and Hanna [50]. 

Obtained nHA particles were reported to have a Ca:P ratio 

of 1.667, which is very similar to 1.67, which is found in 

mammalian bone structure. Synthesized nHA particles 

showed high crystallinity and purity. 

Bensalah et al. performed a hydrothermal synthesis 

method route to produce nHA from PG. They treated 2 g PG 

with 0.3 M potassium dihydrogen phosphate solution and 

stirred for 30 min at ambient temperature. The pH of the 

solution was adjusted between 5 – 11 by 1 M NaOH 

solution, further 0.003-0.01 mol Brij 93 surfactant was 

added to the solution to obtain uniform rod-like nHA 

particles. Hydrothermal synthesis was performed in a 

Teflon lined steel autoclave container at 100, 150 and 

200 °C for different reaction periods of 1, 2, 6 and 15 h. 

 

Fig. 4. nHA production process by decomposing PG with HCl based on heavy metal and Mg removal [47] 
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Fig. 5. nHA synthesis using water as solvent from PG by high temperature calcination process (< 900 °C) [48] 

 

 

Fig. 6. Production of nHA by decomposition of PG with H2SO4 

and calcination at high temperature (< 900 °C) [49] 

After the reaction was performed, synthesis products 

were washed with water and ethanol, phase separation was 

performed by centrifugation. The cake was dried at 70 °C 

for 24 h [51]. Fig. 7 shows the flowchart of the proposed 

synthesis route. Characterization studies showed that high 

purity nHA could be obtained at a strong alkaline medium 

(pH:11) at relatively high temperatures (200 °C) and long 

reaction duration (15 h). 

According to these synthesis routes proposed in the 

literature, high purity nHA particles can be successfully 

synthesized from PG waste. PG is generally recycled for 

roadbed construction or building materials manufacturing. 

The utilization of PG as a secondary raw material for nHA 

synthesis would be a novel approach to an effective waste 

management strategy. Synthesized nHA particles have high 

crystallinity, but it should be noted that there might be PG- 

based impurities in the structure. Pre-treatments and PG 

purification methods might be required for further 

utilization of nHA particles. Proposed synthesis routes are 

simple to operate, however, economic feasibility should be 

considered in case of scale up studies. Although studies 

report that obtained nHA particles might potentially be 

utilized in wastewater treatment applications, having a 

calcium- phosphate structure makes this material attractive 

as a phosphorus fertilizer. There are some studies regarding 

the phosphorus uptake efficiency upon nHA utilization in 

agriculture. Promising results have been obtained at the 

greenhouse level; however further field-scale studies are 

required to support the preliminary studies. 

Although industrial fertilizer manufacturers make a 

significant effort to solve this problem, every step to be 

taken towards a solution is an important milestone. Because, 

when every idea that will be put forward is accepted to 

completely eliminate the problem, the importance of ideas 

is indisputable. 

All the results reported to date on phosphogypsum 

heavy metal content are efforts to minimize the problem on 

an industrial scale and show significant differences from 

one another. Revealing these differences in a single study 

will present new ideas to researchers on the subject. 
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Fig. 7. Production of nHA by degradation of PG with KH2PO4 [50] 

 

4. CONCLUSIONS 

Phosphorus in agriculture is provided by phosphorus 

fertilizers, in which phosphate rocks are the primary raw 

material for conventional phosphorus fertilizers production. 

Global population increase has directly affected the annual 

mineral fertilizer production rate, in which phosphorus 

fertilizers also show an increased production capacity trend. 

The continued consumption of phosphate rocks has been a 

concern for phosphorus availability and has resulted in 

higher prices due to the supply of raw materials. Therefore, 

studies on the subject have focused on low-cost sources of 

phosphorus for the production of alternative phosphorus 

fertilizers and their effectiveness in agricultural 

applications. PG, which contains both calcium and 

phosphate in its structure, is a promising candidate for nHA 

production. It has been attractive to consider a waste 

material as a raw material. Using this industrial waste 

material as a secondary source ensures a sustainable waste 

management strategy and low-cost raw material supply. PG, 

having both calcium and phosphate in its structure, is a 

promising candidate for nHA production. Consideration of 

waste material as a raw material has been attractive. 

Utilization of this industrial waste material as a secondary 

resource enables a sustainable waste management strategy 

and low-cost raw material supply.  

There have been various routes to produce nHA from 

PG, however the suggested application area of PG- derived 

nHA material is utilizated as an adsorbent in wastewater 

treatment. Some studies report that PG-derived nHA could 

be utilized for biomedical applications, however there is a 

possibility that nHA structure might contain PG-based 

impurities. Thus, to utilize in biomedical applications, 

effective purification methods should be employed, 

followed by proven performance studies. Apart from 

utilization in wastewater treatment or bioceramic material, 

nHA could also be used for agricultural applications. Recent 

studies have focused on strategic and efficient solutions for 

phosphorus supply-demand balance in agriculture. nHA is a 

promising alternative phosphorus fertilizer, greenhouse 

studies in terms of phosphorus uptake efficiency have given 

promising results. However, these studies should be scaled 

up to field studies and long-term effects should be observed 

for more precise evaluation. 

While this study reports important studies on heavy 

metal removal from phosphogypsum on an industrial scale, 

it aims to provide researchers with alternative methods for 

the processes they focus on by comparing the application 

forms. In this respect, it is a known fact that the number of 

references on heavy metal removal on an industrial scale is 

quite limited. 
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