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An accurate approach is proposed for the temperature dependence of electron concentration and Lorenz number in the 
spherically symmetric zone of semiconductors. The evaluation includes more accurate analytical calculations over the 
study for two parameters of Fermi functions. Recently, a new analytical approach for the calculation of the two parameters 
of Fermi functions has been reported in terms of summations of binomial coefficients and incomplete gamma functions. 
The method is applied to the case of the Ge and GaAs semiconductors, which can determine the electron concentration 
and Lorenz number as a function of temperature variation. The results obtained by the suggested and numerical methods 
are satisfactory for a wide range of temperatures. The method descriptions are very well for the investigation of other 
thermoelectric effects over the whole temperature ranges. 
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1. INTRODUCTION∗ 

The thermoelectric and thermomagnetic effects are 
important both as a means of determining the 
characterization of semiconductors materials and practical 
applications like all type of engineering science and 
technology [1 – 7]. Note that all thermoelectric phenomena 
(Thomson, Seebeck, Peltier effects etc.) in semiconductors 
are effective much more strongly than in metals. There is a 
wide class of semiconductors in which the conduction band 
is spherically symmetric but nonparabolic. The spherically 
symmetric zone is characterized by the fact that the energy 
in such a zone depends only on the modulus of the wave 
vector k k=


 [3 – 6]. 

The electron concentration and other thermoelectric 
effects of semiconductors were studied in many papers 
[8 – 23]. In [9], an effective approach has been proposed for 
predicting the temperature dependence of Hall electron 
concentration and mobility in n-GaN. The authors in work 
[10] have reported n(T) in type converted Si by using the 
method presented in the article [11]. Kumar et al. [24] have 
done a detailed analysis of the experimental determination 
methods of the Lorenz number in metals, semi-metals, 
alloys and degenerate semiconductors. In studies [25, 26] 
authors proposed as an alternative the first-principles 
approach to the evaluation of Lorenz numbers for complex 
thermoelectric materials. As seen from reported researches 
the majority of these have included semi-empirical or 
experimental methods. By applying Fermi-Dirac statistics, 
the general analytical formulas have been presented for the 
thermoelectric effects and electron concentration which 
these formulas are expressed by two parameters of Fermi 
functions [6 – 8]. Because it is difficult to generate an 
analytical formula for the two parameters Fermi function, 

                                                 
∗ Corresponding author. Tel.: +90-416-2233800-1130.  
E-mail: memek@adiyaman.edu.tr (M. Emek) 

the application of these formulas to date is very limited. In 
the literature, there are few theoretical studies, which have 
been applied for the evaluation of the two parameters of 
Fermi functions [6]. Very recently in the study [27 – 29], a 
full analytical formula for the two parameters of Fermi 
functions was developed and implemented.  

In the present work, the electron concentration and 
Lorenz number are evaluated for the spherically symmetric 
zone of semiconductors by using the two parameters of 
Fermi functions formulae. The analytical formula is 
presented for Lorenz number and electron concentration 
which are used to obtain knowledge of the electrical 
conductance performance of semiconductor materials in 
arbitrary temperature ranges. Finally, the approach is used 
for calculations of electron concentration and Lorenz 
number for the spherically symmetric zone of the 
semiconductors materials Ge and GaAs.  

2. EXPERIMENTAL SECTION 

2.1. Definition and general analytical expressions 
The electron concentration and Lorenz Number for the 

spherically symmetric zone of the semiconductors are 
expressed using the following formulae, respectively [6-8]: 
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where mn is the effective mass of the electron, ħ is the Planck 
constant, kB is the Boltzmann coefficient, e is the charge 
electron, T is the absolute temperature, η is the reduced 

chemical potential, the parameter B

g

k T
β =

ε
 characterizes the 

non-standard zone and εg is the energy gap and the quantity 

, ( , )m
n kI η β  is two-parameter Fermi functions and defined as 

[6]: 
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As seen from studies [5 – 8] all thermoelectric effects 
evaluation has been reduced to two parameters of Fermi 
functions. Therefore, the analytical relation for  two 
parameters of Fermi functions is important for accurate 
determining the thermoelectric effects of semiconductors. 
Earlier the authors developed a new analytical model for the 
accurate calculation of two parameters of Fermi functions 
[27] as follows: for 0, 0, 0n k m≠ ≠ ≠  
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where N is upper limit of summations and   is binomial 
coefficient defined as: 
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The quantities  ( )αΓ , ( , )xαΓ and ( , )xγ α  are the 
incomplete Gamma functions defined by [30]: 
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See Ref. [27] for the exact definition of the auxiliary 
functions Pn(p, q), Qn(p, q) and Ln(p) occurring in the Eq. 5 
and Eq. 7. Also, for evaluation of incomplete Gamma 
functions, is described in [31, 32]. 

3. NUMERICAL RESULTS AND DISCUSSION 
As seen from the studies in the literature, the proposed 

theoretical approaches to evaluating the temperature 
dependence of the electron concentration and Lorenz 
number of materials yield appropriate results in the 
restricted ranges of temperature. A new alternative 
evaluation method of the electron concentration and Lorenz 
Number for the spherically symmetric zone of the 
semiconductors is developed based on two parameters 
Fermi functions. The method applied in this research is 
based on kinetic theory, which simplifies the calculation of 
thermoelectric effects. In this study, the two parameters of 
Fermi functions are calculated with Eq. 4 – Eq. 8 developed 
in Ref. [27]. To demonstrate the usefulness of this approach, 
a computer program using Mathematica 10.0 compiler is 
established for the calculation of the electron concentration 



277 
 

and Lorenz number. The comparison results of the 
temperature dependences of the electron concentration and 
Lorenz Number of the Ge and GaAs obtained from the 
proposed and Mathematica 10.0 numerical methods are 
shown in Fig. 1 – Fig. 4. 

 
Fig. 1. The temperature dependence of Lorenz number of Ge (solid 

red line – mathematical numerical results, blue dashed line- 
results of this study) 

 
Fig. 2. The temperature dependence of electron concentration of 

Ge (solid red line – mathematical numerical results, blue 
dashed line- results of this study) of Ti-6Al-4V and 
MWCNT composite corrosion specimen 

 
Fig. 3. The temperature dependence of Lorenz number of GaAs 

(solid red line – mathematical numerical results, blue 
dashed line- results of this study) 

As seen from the figures, in the wide range temperature 
the calculated results are satisfactory. Also, it is shown from 
figures that the Lorenz number decrease with increasing 
temperature for Ge and GaAs semiconductors but the 
electron concentration vice versa. To our knowledge, there 
are no results in the literature on the wide range of 

temperature behavior of the electron concentration and 
Lorenz number. 

 
Fig. 4. The temperature dependence of electron concentration of 

GaAs (solid red line – mathematical numerical results, blue 
dashed line- results of this study) 

This study provides an advancement in accurately 
calculating the temperature dependence of the electron 
concentration and Lorenz number for an arbitrary range of 
temperatures. Using data of the Lorent numbers for all the 
temperature values, allows us to follow the change of 
thermal and electrical conductivity of electronic materials 
according to temperature. It is well known that the 
determination of the thermal effects of thermopower 
materials with the variation of temperature is important in 
its uses in technological devices. All calculations have been 
developed for Ge and GaAs semiconductors with the 
parameters: 0.66 ,gGe eVε = 0.33FGe eVε = and

1.424 ,gGaAs eVε = 0.712FGaAs eVε = ,
11.3806504 23k E JK −= − and 191.6021766 10e x C−= , 

1r = . All present calculations were carried in SI unit 
systems. We note that in the study [29], the temperature 
dependence of the Lorenz number has been studied in the 
case of the scattering of acoustic phonons r = 0. In the 
present work, the evaluations of the electron concentration 
and Lorenz number have been done in the case of scattering 
on optical phonons r = 1. Consideration of the suggested 
method is not restricted by evaluation of the electron 
concentration and Lorenz number and provides a 
comprehensive study of other thermoelectric and 
thermomagnetic effect in semiconductors and materials. 

4. CONCLUSIONS 
In conclusion, we proposed a general analytical 

approach to calculate the electron concentration and Lorenz 
number for the spherically symmetric zone of the 
semiconductors. This work enables new developments in 
the evaluation of thermoelectric effects of metals, semi-
metals, alloys and semiconductor materials in a wide range 
of temperatures. The present work is effective in evaluating 
the thermoelectric properties of materials from low 
temperature to high temperature which is the novelty of this 
study. 
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