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Essential steel components with variable cross-sections are fabricated from welded plates, which are primarily employed for the 
growth of the construction industry in beams according to the stress and stiffness requirements of the structure. Lateral-torsional 
buckling, in which the beam experiences nonuniform twisting and buckling about its weaker axis, is one of the most common 
failure modes. This dissertation focuses primarily on the lateral-torsional buckle of nonprismatic I-beams. The development of 
differential equations for deformation analysis of the nonprismatic beam. ANSYS results and deformation equation results are 
compared to validate the methodology. Using ANSYS, the lateral torsional buckling of a non-prismatic I-beam section with a 
uniformly distributed load is analysed. In finite element analyses, the solid element approach is used to determine the lateral 
buckling load for various cross-sections (β = 0.1 to 1.0) by analysing their behavior. In addition, a stiffener is used to prevent 
lateral buckling, and the results are compared to a model without stiffeners. 
Keywords: lateral-torsional buckling, finite element method, nonprismatic beam. 

 
1. INTRODUCTION∗ 

Beams and columns are the most important structural 
components for both concrete and steel construction. The 
use of prismatic beams in steel structure buildings is 
common, but nonprism beams are currently preferred in the 
construction of steel structures. Nonprismatic beams are 
those in which the height of the section varies in proportion 
to its length. Today, nonprismatic beams are favoured due 
to the structure's stability (shapes are designed based on the 
bending moment diagram, which can result in substantial 
material savings), aesthetics, and economy (reducing 
weight, and fabrication costs) [1, 2]. 

Members of steel structures typically have a cross-
section with a thin wall thickness. In these members, the 
loads are applied in the plane of the minor axis of the cross-
section, causing bending about the major axis. The elastic 
lateral-torsional buckling load is a critical load where the 
member deflects laterally and rotates out of plane. These 
loads are governed by several factors, including the cross-
section shape, the unbraced length and support condition, as 
well as the type and location of the applied loads along the 
member axis [3 – 6]. 

Andrade [7] investigated the elastic lateral-torsional 
buckling behaviour of a singly symmetric thin-walled 
tapered beam and deduced its total potential energy. The 
numerical equation was solved using the Rayleigh-Ritz 
method to validate it. Zhang Lei [8] modified the Andrade 
derived an equation for a beam with a single symmetry. 
Zhang derived equation for the double symmetric thin-
walled tapered beam and analysed the total potential for 
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lateral buckling in web-tapered I-beams. Using the shell 
element model, the web-tapered cantilever and simply 
supported I-beam sections are analysed in the ANSYS 
software. Kovaca [9] validated the equation driven by 
Zhang Lei and explained the fundamentals of lateral-
torsional buckling of web-tapered I-beams in 1D and 3D 
utilising the FEM approach and beam model assumption to 
reduce local and distortional buckling occurring in global 
lateral-torsional buckling modes. Dogariu [10] investigated 
the behaviour of various material properties in tapered 
beam-column elements subjected to both bending moment 
and compressive axial force. Concluded that dispersion in 
the material properties could result in a situation that is not 
conservative. Yilmaz [11] discussed the influence of beam 
slenderness and loading positions on the lateral-torsional 
buckling behaviour of European wide-flange I-section 
beams. The study uses various European flanged beams 
(e.g., HEA, HEB, HEM) and concludes that design 
procedures can be used safely. Instead of the I-section, Tong 
and Zhang [12] studied the C and Z sections under wind 
suction. Finite element analysis is used to estimate the 
buckling loads on the purlins, and shell element modelling 
is employed to produce finite element results. Tankova [13] 
conducted an experiment on nonuniform members, which 
included columns, beams, and beam-columns. In this 
experimental test, he addresses member dimensions, 
material property characterisation, geometrical dimensions, 
flaws, and residual stresses. The numerical equation is 
calculated, and the numerical and analytical results are 
verified. Xu [14] investigated the elastic-plastic threshold 
stiffness of the stiffened steel plate and the subpanel aspect 
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ratio, subpanel width-to-thickness ratio, and a number of 
stiffeners. Also developed a formula for predicting the 
elastic-plastic threshold stiffness and compared the elastic-
plastic threshold stiffnesses. Ronagh [15] discussed the 
distortional buckling of tapered doubly-symmetric  
I-sections using the finite element method and studied the 
distortion effect of tapered beams with different flange-to-
web thickness ratios, end conditions, and lengths. They 
concluded that as the degree of tapering increases, the 
effects of distortion diminish. 

2. NOVELTY OF THE PRESENT STUDY 
From the above literature, most researchers are 

focused on the analysis of the web-tampered I beams with 
ANSYS and FEM approaches to determine the output 
differential equations. However, in the present scenario, 
nonprismatic beams are favoured due to the stability of the 
structure. In this connection, the present proposed work is 
favourable and novel, which can give output differential 
equations through the ANSYS and FEM approaches to 
justify the deformation analysis with the lateral-torsional 
buckle (LTB) of nonprismatic I beams. 

Therefore, the present study focused primarily on the 
lateral-torsional buckle of nonprismatic I-beams and 
developed differential equations for the deformation 
analysis of the nonprismatic beams. Using ANSYS, the 
lateral torsional buckling of a nonprismatic I-beam section 
with a uniformly distributed load is analysed. Finite element 
analyses are used for the solid element approach to 
determine the lateral buckling load for various cross-
sections by analysing their behavior. In addition, a stiffener 
is used to prevent lateral buckling, and the results are 
compared to a model without stiffeners. 

3. DEFORMATION ANALYSIS 
In the analysis, the following assumptions are adopted: 

1. material is linearly elastic and homogeneous; 
2. only thin-walled I-beams are considered; 
3. cross-sections are rigid in their own planes; 
4. the linear shear strain on the middle surface of each 

plate composing thin-walled beams is negligible; 
5. deformation analyses are in the framework of the small 

deformation theory. 
Before further investigations on nonprismatic I-beams, 

basic deformation analysis including axial deformation, 
bending and torsion of singly symmetric I-sections, is 
studied. 

For a nonprismatic thin-walled I-section beam shown 
in Fig. 1 a and b, a right-handed coordinate system x, y and 
z is chosen, in which the x axis coincides with the centroidal 
axis and the y and z axes coincide with the principal axis of 
the cross-sections. The width and thickness of the flanges 
remain constant along the x axis (longitudinal direction), 
while the web height varies linearly. The section height at 
any distance x from the small end is given by 

ℎ =  𝑉𝑉𝑆𝑆 + ( 𝑉𝑉𝐿𝐿 −  𝑉𝑉𝑆𝑆) ∗  𝑥𝑥
𝐿𝐿
 , (1) 

where L is the length of the beam and VS and VL are the 
distances between the centroid of the two flanges at the 
small and large ends respectively (Fig. 1 a). 

 
a 

 
b 

Fig. 1. Nonprismatic I-beam: a – co-ordinate; b – section 

3.1. Axial deformation 
For a nonprismatic I-beam, the centroidal axis of the top 

flange (f-axis of the top flange shown in Fig. 2) is not 
parallel to the centroidal axis of the beam (x-axis), so the 
deformation of the top flange, web and bottom flange of the 
beam are studied separately. 

 
Fig. 2. Axial deformation of the segment 

Fig. 2 shows the axial deformation of the nonprismatic 
I-beam segment. The original length of the beam along the 
x-axis is du, while the original length of the top flange is df. 
Using geometric relationships, 

𝑑𝑑𝑓𝑓 =  �(𝑑𝑑𝑑𝑑)2 +  (𝑑𝑑𝑑𝑑)2. (2) 

In rigid profile assumption, each section remains in the 
plane of deformation configurations, so after deformation, 
the length of the top flange length df1 becomes 

𝑑𝑑𝑓𝑓1 =  �(𝑑𝑑𝑑𝑑 + 𝑑𝑑𝑑𝑑)2 + (𝑑𝑑𝑑𝑑)2. (3) 

The axial force of the top flange in the f direction is 
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𝑄𝑄𝑓𝑓,𝑠𝑠 = E 𝐴𝐴𝑡𝑡𝑓𝑓 𝜖𝜖𝑓𝑓,𝑠𝑠
𝐿𝐿  = E 𝐴𝐴𝑡𝑡𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐2 𝛼𝛼 (𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
). (4) 

The component of 𝑄𝑄𝑓𝑓,𝑠𝑠 in the x direction is given by: 

𝑄𝑄𝑡𝑡𝑓𝑓 = 𝑄𝑄𝑓𝑓,𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 = E 𝐴𝐴𝑡𝑡𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐3 𝛼𝛼 (𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

), (5) 

where 𝐴𝐴𝑡𝑡𝑓𝑓  = 𝑡𝑡𝑡𝑡𝑓𝑓 b. 
The axial force on the web is 

𝑄𝑄𝑤𝑤 = E 𝐴𝐴𝑤𝑤 (𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

), (6) 

where 𝐴𝐴𝑤𝑤  = 𝑡𝑡𝑤𝑤 h. 
The axial force of the bottom flange is 

𝑄𝑄𝑏𝑏𝑓𝑓  = E 𝐴𝐴𝑏𝑏𝑓𝑓 (𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

), (7) 

where 𝐴𝐴𝑏𝑏𝑓𝑓  = 𝑡𝑡𝑏𝑏𝑓𝑓 b 
By considering Eq. 5, Eq. 6 and Eq. 7, the axial force of 

a nonprismatic I-beam is: 

Q = 𝑄𝑄𝑡𝑡𝑓𝑓+ 𝑄𝑄𝑤𝑤+ 𝑄𝑄𝑏𝑏𝑓𝑓; (8) 

𝑄𝑄 = E 𝐴𝐴𝑒𝑒  (𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

), (9) 

where 𝐴𝐴𝑒𝑒 = ( 𝐴𝐴𝑡𝑡𝑓𝑓 cos3 α + 𝐴𝐴𝑤𝑤 + 𝐴𝐴𝑏𝑏𝑓𝑓 ). 

3.2. Bending about the y-axis 
Moment about the weak axis (y-axis): 

𝑀𝑀𝑦𝑦 = E I(𝑑𝑑
2𝑑𝑑

𝑑𝑑𝑑𝑑2
). (10) 

For nonprismatic beam, My must be used correctly, as 
was done by Kovac [9] and Zhang [8]: 

𝑀𝑀𝑦𝑦 = E 𝐼𝐼𝑒𝑒  (𝑑𝑑
2𝑑𝑑

𝑑𝑑𝑑𝑑2
) cos3 α, (11) 

where Ie is the equivalent second moment of area about the 
centroidal axis 

𝐼𝐼𝑒𝑒  = 𝐼𝐼𝑡𝑡𝑓𝑓+ 𝐼𝐼𝑤𝑤+ 𝐼𝐼𝑏𝑏𝑓𝑓 . (12) 

3.3. Torsional deformation 
As shown in Fig. 3, when a nonprismatic I-beam twists 

about the x-axis with a twisting angle θ, the twisting angle 
of a top flange about the f-axis depends on the twist angle 
of the beam about the x-axis. 

 
Fig. 3. Torsion of non-prismatic beam 

Torsional torque of the top flange: 

𝑇𝑇𝑡𝑡𝑓𝑓 = G 𝐽𝐽𝑡𝑡𝑓𝑓 cos3 α (𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

), (14) 

where 𝐽𝐽𝑡𝑡𝑓𝑓 = 𝑡𝑡𝑤𝑤
3  𝑏𝑏𝑓𝑓 
3

. 
Torsional torque of web: 

𝑇𝑇𝑤𝑤 = G 𝐽𝐽𝑤𝑤  (
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

), (15) 

where 𝐽𝐽𝑤𝑤 = 𝑡𝑡
3𝑤𝑤 ℎ𝑤𝑤 
3

. 
Torsional torque of bottom flange: 

𝑇𝑇𝑏𝑏𝑓𝑓  = G 𝐽𝐽𝑏𝑏𝑓𝑓  (
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

). (16) 

Resultant torque: 

T = 𝑇𝑇𝑡𝑡𝑓𝑓+ 𝑇𝑇𝑤𝑤+ 𝑇𝑇𝑏𝑏𝑓𝑓; (17) 

𝑇𝑇 = G 𝐽𝐽𝑒𝑒  (
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

),  (18) 

where 𝐽𝐽𝑒𝑒  = ( 𝐽𝐽𝑡𝑡𝑓𝑓 cos3 α + 𝐽𝐽𝑤𝑤 + 𝐽𝐽𝑏𝑏𝑓𝑓 ). 

3.4. Validation 
The derived equation for axial deformation (Eq. 9), 

bending moment about the y-axis (Eq. 11), and torsional 
deformation (Eq. 18) for the nonprismatic I-beams. To 
check and validate these equations, we use the ANSYS 
Workbench results. A comparison is shown in Fig. 4 for 
different cross-sections. And the ANSYS results are 
compared with Eq. 11. 

In Fig. 4, the cross-sectional beams 
(200 mm × 400 mm, 300 mm × 600 mm and 
400 mm × 800 mm) differences are compared. Fig. 4 
compares the results of Eq. 11 and ANSYS. Upon 
comparison, it was determined that the acceptable error 
percentage range is between 2 % and 7 %. It is concluded 
from the results that as the height of the cross-section 
increases, so does the error percentage; consequently, the 
maximum height of the cross-section is determined to be 
400 mm. Additional research has been conducted on the 
parameter beta (β), which represents the ratio of minimum 
to maximum height. Beta (β) values range from 0.1 to 1. 

4. RESULTS AND DISCUSSION 
Identification of the buckling mode is not possible in 

structural systems with greater complexity. In this instance, 
a finite element (FE) approach is the ideal method for 
calculating the buckling load. To calculate the LTB load, 
various types of loads, end moments, and axial forces are 
utilised. The objective of this thesis is therefore to determine 
the LTB load for nonprismatic I-beams. This research 
employs a uniformly distributed load and a simply 
supported condition. 

In FE modelling utilising Brick elements, the 
commercial FE software ANSYS is used. In brick element 
modelling, the beam is modelled using the elastic thin shell 
element Solid185, with contact 175 and target 173/176. The 
finite element method (FEM) reduces degrees of freedom 
from an infinite number to a finite number by means of 
discretization [16], i.e., meshing (Fig. 5). To save time and 
avoid unnecessary calculations, mesh convergence is 
performed to obtain the optimal number of elements. 
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a 

 
b 

 
c 

Fig. 4. Comparison of equation and ANSYS results: a – beam, 
200 mm × 400 mm; b – beam,  300 mm × 600 mm; 
c – beam,  400 mm × 800 mm 

While modelling a simply supported beam, the 
translational displacements of all nodes of the support 
sections are constrained in the y and z directions, and a 
random node is fixed in the x direction to prevent motion in 
the x direction. These treatments fulfill both the rigid profile 
requirement of the support member and the simply 
supported condition [17 – 19]. The material properties are 
the Young’s modulus is 2 × 105 MPa, Poisson’s ratio is 0.3, 
and density is 7850 kg/m3. 

 
Fig. 5. Meshing 

4.1. Lateral buckling of nonprismatic beams 
without stiffeners 
A nonprismatic simply supported I-beam (as shown in 

Fig. 6) is considered. Along the x-axis (longitudinal axis), 
the top flange and bottom flange have the same dimensions, 
while the height of the web varies linearly. 

 
Fig. 6. Line diagram 

As shown in Fig. 7, the span of simply supported 
nonprismatic beam L varies from 4.0 m to 6.0 m and the 
ratio of Vs and VL, (β), varies from 0.1 to 1.0. The load is 
applied on the top flange of the nonprismatic beam. The 
parameters of the model are the thickness of web 
tw = 9.5 mm, the thickness of flanges tf = 12.7 mm, the 
width of the flanges b = 150 mm and maximum 
height = 400 mm. 

 
Fig. 7. LTB load comparison of different length specimen 
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In ANSYS, beams with lengths ranging from 4 m to 
6 m are analysed. According to the results, the load value 
decreases as the length of the beam increases. Fig. 7 
demonstrates that the beam with a length of 4 metres has a 
greater load than the other beams. As the beam length 
increases, the load decreases. Therefore, stiffeners are used 
to increase the load value (i.e., lateral torsional buckling 
load) and provide greater stability. Stiffeners provide 
nonprismatic I-beam stability and aid in preventing lateral-
torsional buckling [20]. According to ISO 800:2007, the 
maximum stiffener spacing for the prismatic beam is 3d, and 
the minimum spacing is 0.75d (where d is the distance 
between the flanges).  

There are no standard criteria for nonprismatic I-
beams, so in this thesis, 3d spacing of the stiffeners is 
experimented with to determine how and to what extent it 
improves the nonprismatic beam's properties. Initially, the 
model is created in SOLIDWORKS (Fig. 8) and then the file 
is transferred to the ANSYS workbench for analysis. 

 
Fig. 8. Nonprismatic I-bean with stiffeners (isometric view) 

4.2. Lateral buckling of nonprismatic beams with 
stiffeners 
In a nonprismatic I-beam, the web is usually made of a 

very thin plate to derive maximum economy in weight. 
Wide ranges of stiffeners are provided to make strong and 
stable webs, which are inadequate to carry the load. 
Different stiffeners are classified based on their role in 
strengthening the web [21 – 23]. 

In this thesis, we have used the Intermediate transverse 
web stiffener. This type of stiffener is used to provide the 
buckling strength of the nonprismatic I-beam web due to 
shear. The ANSYS results of nonprismatic beam with 
stiffeners are shown in Fig. 9. 

 
Fig. 9. LTB of nonprismatic bean with stiffeners (front view) 

From the results, it can be deduced that the use of 
stiffeners in nonprismatic I-beams increases the buckling 
load (as shown in Fig. 10). The stiffener spacing of 3d 
(where d is the average depth between the stiffeners) 
increased the buckling load by 7.99 % (approximately 8 %) 
compared to the absence of stiffeners [24, 25]. 

5. CONCLUSIONS 
This paper focuses on the lateral torsional buckling of a 

nonprismatic I-beam. The relationships between the web 
and flanges are determined as a result of an analysis of 
deformations that takes thin-walled members into 
consideration. 

 
Fig. 10. Comparison of buckling loads 

Deformation analysis equations (including axial 
deformation, bending about the y-axis, and torsional 
deformation) are derived and compared to the ANSYS 
workbench results. The error range for the proposed cross-
sections is between 2 and 7 percent, which is within the 
acceptable range, thereby validating our methodology. 
Additionally, the buckling load was compared for members 
with and without stiffeners, and it was discovered that using 
stiffeners increased the buckling load by 7.99 %. In 
addition, it can be extended to beams with mono-symmetric 
tapered I-sections, C-sections, and other generic section 
types. 
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