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Colloidal quantum dots (QDs) based on CdS were directly incorporated into a sol to fabricate solid rods. Various 
characterization techniques were employed to study the properties of the composite rod. A comparison between the 
absorption, emission, and excitation spectra of the QDs in the solid rod and in solution revealed their significant and 
stable nature in the solid state. SEM image shows that QD particles are well interacted with the sol gel environment. The 
observed particle size of QDs was heteronomous approximately from 5 to 10 nm. The XRD pattern of QDs illustrates 
their crystalline nature. The significant spontaneous emission (SE) signal was enhanced from QDs composite rod under 
the excitation of a 355 nm Pico second laser source. These findings suggest that further improvements in the integration 
of QDs into sol gel rods could be achieved by employing a higher density of QDs in the solid rod. The fabrication of 
QDs composite rods with a high concentration holds the potential for testing stimulated or amplified spontaneous 
emission in future studies. 
Keywords: CdS QDs composite sol gel, absorption, PL, TEM, spontaneous emission. 

 
1. INTRODUCTION∗ 

In recent years, there has been a growing interest in 
semiconductor nanocrystals known as quantum dots. These 
quantum dots have unique properties that make them 
highly attractive, including their ability to absorb light 
across a wide range of wavelengths [1], their high quantum 
yield [2] and the size-dependent wavelength of 
photoluminescence (PL) due to quantum confinement  
[3 – 6] due to quantum confinement. Among the different 
quantum dots, CdS quantum dots (QDs) is one of the 
important II-VI group of semiconductor compounds which 
possess size dependent PL and is tunable in the visible 
range [7]. Therefore, QDs have been interested for many 
optoelectronic applications, such as light emitting diodes 
[8, 9], lasers [10], telecommunications [11], and solar 
energy [12]. Enormous studies on different properties of 
QDs especially in thin films prepared by various 
techniques [13 – 16] were done for many applications. 
From the optical application point of view, the most 
interesting property is the PL stability of QDs in an 
environment. Currently, sol-gel technology has emerged as 
a promising matrix for embedding semiconductor 
nanoparticles [17]. This method allows for low-
temperature preparation and enables the use of composite 
materials for diverse applications. A quantum size effect 
from the CdS sol-gel composite has been observed [18]. 
Influence of the Cd/S molar ratio on the properties of 
nanocrystalline CdS doped sol gel thin films has been 
reported [19]. QDs embedded in a PMMA composite film 
demonstrated stable emission bands regardless of 
variations in excitation energy [20]. 

CdS QDs doped sol gel matrix resulted in the strong 
luminescence without any casing [21]. QDs embedded 
silicate glass as an inorganic color converter was observed 
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with significant stability [22]. Though the significant 
works of CdS in sol gel matrix have been reported in the 
literature, most studies of the QDs were either in solutions 
or composite thin films. In view of the previous studies, 
the exploration of optical gain from composite QDs is still 
limited. A research group has successfully fabricated and 
studied the silicon nanoparticles doped sol-gel rod, ormosil 
rod [23, 24] and polymer rod [25]. Significant optical 
stability of the nanoparticles in such matrix rods was 
observed. Recently, perovskite quantum dots were 
employed in polymer rods which enhanced the amplified 
spontaneous emission (ASE) like behavior [26]. In this 
study, a new approach was adopted in which CdS quantum 
dots were incorporated into a sol-gel matrix and 
transformed into solid composite rods. The QDs composite 
rods were subjected to various optical characterization 
techniques, and their stimulated emission was tested to 
evaluate the optical response under a tunable laser system. 

2. EXPERIMENTAL DETAILS 
A solution of CdS quantum dots (QDs) dispersed in 

methanol at a concentration of 10 mg/L was obtained from 
MK Impex Corp., Canada. The QDs were 98 % pure and 
had a size range of 5 – 10 nm (APS). The QDs solution was 
doped in sol gel matrix. In the procedure of sol-gel 
preparation, the inorganic precursor tetraethylorthosilane 
(TEOS; Aldrich, 98%) and methanol (Riedel-deHaen) was 
reacted to form silica sol. Formamide and nitric acid was 
involved as drying control chemical additive (DCCA) and 
catalyst respectively. The molar ratio of the sol 
composition was [1:1.5:0.5:1:0.01], TEOS: methanol: 
formamide: water: HNO3 acid respectively. The final sol 
was further stirred during which the QDs solution was 
directly encapsulated dropwise. Then the QDs composite 
sol was poured into some polystyrene test tubes and quartz 
cuvettes and placed in an oven at 50 °C. The samples 
slowly became a gel and formed crack free solid in a few 



weeks. The final product of QDs composite rods was 
studied using different characterization techniques. 

Absorption and emission spectra of the QDs were 
recorded using a UV–Visible-NIR spectrophotometer 
(Jasco V-670) and fluorescence spectrometer (Lumina, 
Thermo) respectively. The crystal structure of the QDs was 
inspected using XRD equipment PANanalytical X’Pert 
with Cu-Kα radiation (λ = 0.154 nm). The size and 
morphological structure of the QDs was examined by 
HRTEM (JEOL, Model-JEM2100F) and FESEM (JEOL, 
Model-JSM-6380LA) respectively. The spontaneous 
emission spectra of the QDs in solution and composites rod 
were tested by 355 nm laser pulse at the repetition rate of 
15 Hz from Q-switched Nd:YAG picosecond tunable laser 
system (LS-2151, Lotti III) through an optical fiber 
attached with a spectrograph (QE65 Pro, Ocean Optics). A 
UV lamp (model XX15NF, Spectroline-USA) was used in 
this case to obtain images of samples with luminescent 
emission of QDs. 

3. RESULTS AND DISCUSSION 
The digital image of the light emitting QDs solution, 

undoped and doped sol-gel rods under the exposure of UV 
lamp is displayed in (Fig. 1 a and b). 

 

 

a 

 
b c 

Fig. 1. CdS QDs: a – solution; b – undoped and doped sol gel rods 
under UV exposure; c – SEM image 

The emission of light from the QDs composite rods 
indicates a well-distributed dispersion of QD particles 
within the matrix, demonstrating their stability during the 
sol gel process. The noticeable inhabitant of QD particles 

inside the rod environment was confirmed by the image of 
Scanning Electron Microscopy (SEM) as shown in 
(Fig. 1 c). Many QD particles are scattered inside the 
surface layer of sol-gel matrix. The composite surface 
shows that QD particles are well intermingled with the sol-
gel environment. The good interaction of the QDs with the 
matrix environment could yield a good stable composite 
material. The size of QD particles was inspected by TEM. 
Fig. 2 a shows the image of QDs distribution of different 
size in sol gel environment. The majority of QD particles 
are well spreading and heteronomous sizes of 
approximately from 5 to 10 nm. The crystalline nature of 
the QD particle is seen in (Fig. 2 a-inset). It indicates that 
there is no agglomeration of particles within the solid 
environment. In addition, the presence of QD particles in 
the sol gel is confirmed by EDX spectrum. Cadmium rich 
with sulfide is seen in the EDX spectrum as displayed in 
(Fig. 2 b). The typical crystalline nature of QDs in the 
TEM image is supported by the XRD pattern as shown in 
(Fig. 3). 
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Fig. 3. XRD spectrum of CdS quantum dots 

The XRD peaks of QDs indicate crystalline nature. 
Prominent peaks and few cubic phase of QDs structure are 
observed at 23.30, 35.12, 49.9, 52.2 deg. corresponding to 
lattice planes (100), (102), (103) and (201) which 
correspond to the data from JCPDS file no. 42-1411. The 
XRD peak at around 31 deg. of CdS QDs shows the 
presence of cubic phase and corresponds to plane (200) 
according to the result work [27]. The peak at around 33 
deg. may correspond to diffraction plane 105 of the 
hexagonal phase [28]. 
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Fig. 2. TEM image of QDs: a – composite sol-gel; b – EDX spectrum 



To observe the higher absorbance of quantum dots 
(QDs) in both solution and sol-gel solid rod, the absorption 
spectra were measured using high (10 mg/L) and low 
(5 mg/L) concentrations. The results are depicted in 
(Fig. 4). The enhancement of absorbance with a 
concentration of QDs is observed in solution and sol-gel 
rod. The differences in absorbance of QDs between the 
solvent and sol-gel rod are shown in (Fig. 4). The 
absorption peak of QDs solution is observed with a 
shoulder peak at around 315 nm which is supported by the 
observed absorption peak value at 320 nm of 2.5 nm size 
[29]. 

 
Fig. 4. Absorption spectra of QDs: a1, a2 – solution; b1, b2 – sol-

gel rod 

The two weak absorption peaks of QDs in solution at 
around 412 nm and 460 nm appeared. The absorbance of 
the QDs composite sol-gel rod is higher than the solution. 
But the absorption peak becomes broad with a slightly 
blue-shift when QDs doped in sol-gel rod as shown in 
(Fig. 4). There are two absorption peaks observed at 
around 370 and 420 nm in the sol gel matrix which is 

fundamentally weak. The effect of absorption spectra is 
due to the solid environment of the matrix. In addition, the 
nature of the distribution of QD particles in sol-gel may 
affect the absorption property. It is also possible to cause 
the absorption property of QDs during the transition of 
phase from sol to solid [25]. Present absorption spectra of 
QD in sol-gel rod are comparable to the observed feature 
of CdS particles in xerogel state [30] and hybrid sol gel 
matrix [21]. The broad particle size distribution within the 
matrix [30] likely contributes to the effect of QDs in the 
matrix. In the present study, the sample with high 
concentration was only employed. The main motive of this 
work is to understand the PL and SE property of QDs in 
sol gel rod that could be employed in testing the optical 
gain. The excitation wavelengths for emission and 
excitation spectra of QDs were evaluated from  
450 – 650 nm and 300 – 500 nm respectively. The 
excitation peaks of the QDs in solution were observed at 
395 nm, 418 nm and 465 nm as seen in C1 and C2 spectra 
of (Fig. 5 a). 

The excitation wavelengths of the QDs for a solution 
and sol-gel rod were selected as 355 nm, 395 nm, 418 nm, 
465 nm and 355 nm, 378 nm, 418 nm, 460 nm respectively 
as listed in Table 1. Fig. 5 a, the peaks a1, a2, a3 and a4, 
(Fig. 5 b), peaks b1, b2, b3 and b4 indicate that the emission 
peak and relative intensity of QDs solution and sol-gel rod 
are influenced by the excitation wavelengths respectively. 
This suggests that varying the excitation energy has an 
impact on the relative intensity of the QDs in both samples. 
But the change in emission peak of the QDs solution and 
sol-gel rod by different excitation is not clear but it may be 
possible to the presence of a large number of 
heterogeneous QDs size. Moreover, the emission peaks 
and relative intensity of QDs sol gel rod is considerably 
changed from the peaks of QDs solution. For instance, the 
peak observed at 485 nm of QDs solution was excited by 
the 355 nm wavelength observed at 470 nm in sol-gel rod. 
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Fig. 5. The emission and excitation spectra of QDs: a – solution; b – sol-gel solid 
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Table 1. Comparison of peaks between the QDs in solution and sol-gel rod 

Samples Absorption peak, nm Excitation peaks, nm Emission peaks, nm Spontaneous emission peaks, nm 
QDs Solution 315 

412 
460 

395 
418 
465 

a1 – 485 at λexc 355 
a2 – 492 at λexc 395 
a3 – 501 at λexc 418 
a4 – 510 at λexc 465 

506 

QDs sol-gel rod 298 
370 
420 

378 
412 
460 

a1 – 470 at λexc 355 
a2 – 483 at λexc 378 
a3 – 498 at λexc 418 
a4 – 512 at λexc 460 

500 

 
It means that emission peaks and intensity of QDs are 

quite caused and enhanced by sol gel solid medium. 
Similarly, the excitation spectra of the QDs in solution are 
affected when they are embedded in the sol gel rod. The 
influences on the emission peaks and band shape of the 
QDs in the sol gel may be attributed to the solid 
environment, suggesting that the presence of the sol-gel 
matrix alters the optical properties of the QDs. 

The absorbance and emission intensity of quantum 
dots (QDs) solution exhibit remarkable stability in 
comparison to the absorption and emission of QDs in solid 
rod, as demonstrated in (Fig. 4 and Fig. 6). 

 
Fig. 6. The comparison between the emission spectra of QDs 

solution and sol-gel solid at 355 nm excitation wavelength 

When the QDs solution is directly incorporated into a 
sol and converted into a solid rod, the optical properties of 
the QDs in the solid rod remain largely unaffected. The 
comparison of emission spectra between QDs solution and 
sol-gel rod is displayed in (Fig. 6). No degradation on the 
emission intensity of QDs in sol-gel rod is observed since 
the scattering and reflection of light are highly possible 
within the solid environment. The emission and excitation 
peak positions of QDs in solution and solid sol-gel are 
listed in Table 1. There is clearly a shift in PL features by 
different excitation wavelengths which may correspond to 
excitation energy and the presence of quantum size effects 
[12]. With the consideration of optical gain, we 
investigated the spontaneous emission spectra (SE) of 
Quantum Dots (QDs) in both solution and solid sol-gel 
rods. A high-power picosecond laser system with a 355 nm 
laser source was utilized for excitation. The energy 
pumped ranged from 50 µJ to 1.5 mJ was used to prevent 
photobleaching of the solid sol-gel rod by the 355 nm laser 
source. Fig. 7 display the SE spectra of QDs in solution 
and sol-gel rod, respectively, under various excitation 
energies. As the excitation energy increases, the intensity 
of QDs in both solution and sol-gel rod also increases. 
However, the SE intensity of QDs in the sol-gel rod is 
more pronounced compared to the solution when pumped 
with the same excitation energy, as depicted in (Fig. 7). 
Additionally, there is a slight shift in the peak position of 
QDs in the solid sol-gel rod compared to the peak of QDs 
in the solution.  
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Fig. 7. Spontaneous emission spectra of QDs: a – solution; b – sol gel rod 
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For example, the spontaneous peak observed at 
506 nm in the QDs solution of (Fig. 7 a) shifts to 500 nm 
in the solid sol-gel of (Fig. 7 b). The spontaneous emission 
of QDs in the solid sol-gel exhibits significant 
improvement under different excitation energies. The SE 
peak positions of the QDs in the composite sol-gel rod and 
solution are listed in Table 1. 

Increasing of emission intensity of QDs in the rod 
with the variation of pump energy shows good stability of 
QD particles in a solid environment. Moreover, the 
uniformity of inhabitant and distribution of QDs particles 
in solid medium could produce a stable PL. The 
comparison of emission and SE peak of QDs in solution 
and solid sol-gel at excitation of 355 nm is shown in 
(Fig. 8). 

 
Fig. 8. Comparison of normalized emission and spontaneous 

emission peaks between QDs in solution and sol gel rod at 
355 nm excitation wavelength 

In Fig. 8, the emission peaks of QDs in sol-gel rod 
observed at a1 – 470 nm and a3 – 485 in solution. The SE 
peak at a2 – 500 nm and a4 – 506 nm of QDs are observed 
in sol-gel rod and solution respectively. No significant 
effect on SE peaks between QDs sol-gel solid and solution 
which is more or less 6 nm. Overall, the observed SE peak 
of QDs in solid rod upon the laser pump energy is quite 
stable. 

Although the current SE peak does not satisfy the 
optical gain condition, it holds potential for future 
improvements by utilizing a higher density of QDs 
solution within such a solid rod. These findings suggest 
that a high-density QDs composite sol-gel rod could be a 
promising material for future studies in optical 
applications, potentially leading to stimulated emission or 
amplified spontaneous emission (ASE). 

4. CONCLUSIONS 
The CdS quantum dots composite rods were 

successfully prepared. Optical stability of QDs in solid sol 
gel rod was observed. PL property of the QDs composite 
rod was quite stable. The emission peaks and relative 
intensity of the QDs in both solution and sol gel rod were 
found to be influenced by the excitation wavelengths. No 
aggregate of QD particles in the solid environment was 

observed. The significant spontaneous emission from QDs 
composite rod was exhibited under the laser pump energy. 
Present results revealed that addition of quantum dots in 
solid rod is quite possible without any degradation of 
optical property. It is highly expected that such QDs 
composite rod may be used as active media for the further 
testing of ASE if it is employs a highly dense packed of 
QDs nanocomposites rod. 
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