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Colloidal quantum dots (QDs) based on CdS were directly incorporated into a sol to fabricate solid rods. Various 

characterization techniques were employed to study the properties of the composite rod. A comparison between the 

absorption, emission, and excitation spectra of the QDs in the solid rod and in solution revealed their significant and 

stable nature in the solid state. SEM image shows that QD particles are well interacted with the sol gel environment. The 

observed particle size of QDs was heteronomous approximately from 5 to 10 nm. The XRD pattern of QDs illustrates 

their crystalline nature. The significant spontaneous emission (SE) signal was enhanced from QDs composite rod under 

the excitation of a 355 nm Pico second laser source. These findings suggest that further improvements in the integration 

of QDs into sol gel rods could be achieved by employing a higher density of QDs in the solid rod. The fabrication of 

QDs composite rods with a high concentration holds the potential for testing stimulated or amplified spontaneous 

emission in future studies. 
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1. INTRODUCTION 

In recent years, there has been a growing interest in 

semiconductor nanocrystals known as quantum dots. These 

quantum dots have unique properties that make them 

highly attractive, including their ability to absorb light 

across a wide range of wavelengths [1], their high quantum 

yield [2] and the size-dependent wavelength of 

photoluminescence (PL) due to quantum confinement  

[3 – 6] due to quantum confinement. Among the different 

quantum dots, CdS quantum dots (QDs) is one of the 

important II-VI group of semiconductor compounds which 

possess size dependent PL and is tunable in the visible 

range [7]. Therefore, QDs have been interested for many 

optoelectronic applications, such as light emitting diodes 

[8, 9], lasers [10], telecommunications [11], and solar 

energy [12]. Enormous studies on different properties of 

QDs especially in thin films prepared by various 

techniques [13 – 16] were done for many applications. 

From the optical application point of view, the most 

interesting property is the PL stability of QDs in an 

environment. Currently, sol-gel technology has emerged as 

a promising matrix for embedding semiconductor 

nanoparticles [17]. This method allows for low-

temperature preparation and enables the use of composite 

materials for diverse applications. A quantum size effect 

from the CdS sol-gel composite has been observed [18]. 

Influence of the Cd/S molar ratio on the properties of 

nanocrystalline CdS doped sol gel thin films has been 

reported [19]. QDs embedded in a PMMA composite film 

demonstrated stable emission bands regardless of 

variations in excitation energy [20]. 

CdS QDs doped sol gel matrix resulted in the strong 

luminescence without any casing [21]. QDs embedded 

silicate glass as an inorganic color converter was observed 
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with significant stability [22]. Though the significant 

works of CdS in sol gel matrix have been reported in the 

literature, most studies of the QDs were either in solutions 

or composite thin films. In view of the previous studies, 

the exploration of optical gain from composite QDs is still 

limited. A research group has successfully fabricated and 

studied the silicon nanoparticles doped sol-gel rod, ormosil 

rod [23, 24] and polymer rod [25]. Significant optical 

stability of the nanoparticles in such matrix rods was 

observed. Recently, perovskite quantum dots were 

employed in polymer rods which enhanced the amplified 

spontaneous emission (ASE) like behavior [26]. In this 

study, a new approach was adopted in which CdS quantum 

dots were incorporated into a sol-gel matrix and 

transformed into solid composite rods. The QDs composite 

rods were subjected to various optical characterization 

techniques, and their stimulated emission was tested to 

evaluate the optical response under a tunable laser system. 

2. EXPERIMENTAL DETAILS 

A solution of CdS quantum dots (QDs) dispersed in 

methanol at a concentration of 10 mg/L was obtained from 

MK Impex Corp., Canada. The QDs were 98 % pure and 

had a size range of 5 – 10 nm (APS). The QDs solution was 

doped in sol gel matrix. In the procedure of sol-gel 

preparation, the inorganic precursor tetraethylorthosilane 

(TEOS; Aldrich, 98%) and methanol (Riedel-deHaen) was 

reacted to form silica sol. Formamide and nitric acid was 

involved as drying control chemical additive (DCCA) and 

catalyst respectively. The molar ratio of the sol 

composition was [1:1.5:0.5:1:0.01], TEOS: methanol: 

formamide: water: HNO3 acid respectively. The final sol 

was further stirred during which the QDs solution was 

directly encapsulated dropwise. Then the QDs composite 

sol was poured into some polystyrene test tubes and quartz 

cuvettes and placed in an oven at 50 °C. The samples 

slowly became a gel and formed crack free solid in a few 
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weeks. The final product of QDs composite rods was 

studied using different characterization techniques. 
Absorption and emission spectra of the QDs were 

recorded using a UV–Visible-NIR spectrophotometer 

(Jasco V-670) and fluorescence spectrometer (Lumina, 

Thermo) respectively. The crystal structure of the QDs was 

inspected using XRD equipment PANanalytical X’Pert 

with Cu-Kα radiation (λ = 0.154 nm). The size and 

morphological structure of the QDs was examined by 

HRTEM (JEOL, Model-JEM2100F) and FESEM (JEOL, 

Model-JSM-6380LA) respectively. The spontaneous 

emission spectra of the QDs in solution and composites rod 

were tested by 355 nm laser pulse at the repetition rate of 

15 Hz from Q-switched Nd:YAG picosecond tunable laser 

system (LS-2151, Lotti III) through an optical fiber 

attached with a spectrograph (QE65 Pro, Ocean Optics). A 

UV lamp (model XX15NF, Spectroline-USA) was used in 

this case to obtain images of samples with luminescent 

emission of QDs. 

3. RESULTS AND DISCUSSION 

The digital image of the light emitting QDs solution, 

undoped and doped sol-gel rods under the exposure of UV 

lamp is displayed in (Fig. 1 a and b). 

 

 

a 

 

b c 

Fig. 1. CdS QDs: a – solution; b – undoped and doped sol gel rods 

under UV exposure; c – SEM image 

The emission of light from the QDs composite rods 

indicates a well-distributed dispersion of QD particles 

within the matrix, demonstrating their stability during the 

sol gel process. 

The noticeable inhabitant of QD particles inside the 

rod environment was confirmed by the image of Scanning 

Electron Microscopy (SEM) as shown in (Fig. 1 c). 
Many QD particles are scattered inside the surface 

layer of sol-gel matrix. The composite surface shows that 

QD particles are well intermingled with the sol-gel 

environment. The good interaction of the QDs with the 

matrix environment could yield a good stable composite 

material. The size of QD particles was inspected by TEM. 

Fig. 2 a shows the image of QDs distribution of different 

size in sol gel environment. The majority of QD particles 

are well spreading and heteronomous sizes of 

approximately from 5 to 10 nm. The crystalline nature of 

the QD particle is seen in (Fig. 2 a-inset). It indicates that 

there is no agglomeration of particles within the solid 

environment. In addition, the presence of QD particles in 

the sol gel is confirmed by EDX spectrum. Cadmium rich 

with sulfide is seen in the EDX spectrum as displayed in 

(Fig. 2 b). The typical crystalline nature of QDs in the 

TEM image is supported by the XRD pattern as shown in 

(Fig. 3). 
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Fig. 3. XRD spectrum of CdS quantum dots 

The XRD peaks of QDs indicate crystalline nature.  

 

 

a b 

Fig. 2. TEM image of QDs: a – composite sol-gel; b – EDX spectrum 
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Prominent peaks and few cubic phase of QDs structure 

are observed at 23.30, 35.12, 49.9, 52.2 deg. corresponding 

to lattice planes (100), (102), (103) and (201) which 

correspond to the data from JCPDS file no. 42-1411. The 

XRD peak at around 31 deg. of CdS QDs shows the 

presence of cubic phase and corresponds to plane (200) 

according to the result work [27]. The peak at around 33 

deg. may correspond to diffraction plane 105 of the 

hexagonal phase [28]. 

To observe the higher absorbance of quantum dots 

(QDs) in both solution and sol-gel solid rod, the absorption 

spectra were measured using high (10 mg/L) and low 

(5 mg/L) concentrations. The results are depicted in 

(Fig. 4). The enhancement of absorbance with a 

concentration of QDs is observed in solution and sol-gel 

rod. The differences in absorbance of QDs between the 

solvent and sol-gel rod are shown in (Fig. 4). The 

absorption peak of QDs solution is observed with a 

shoulder peak at around 315 nm which is supported by the 

observed absorption peak value at 320 nm of 2.5 nm size 

[29]. 

 

Fig. 4. Absorption spectra of QDs: a1, a2 – solution; b1, b2 – sol-

gel rod 

The two weak absorption peaks of QDs in solution at 

around 412 nm and 460 nm appeared. The absorbance of 

the QDs composite sol-gel rod is higher than the solution. 

But the absorption peak becomes broad with a slightly 

blue-shift when QDs doped in sol-gel rod as shown in 

(Fig. 4). There are two absorption peaks observed at 

around 370 and 420 nm in the sol gel matrix which is 

fundamentally weak. The effect of absorption spectra is 

due to the solid environment of the matrix. In addition, the 

nature of the distribution of QD particles in sol-gel may 

affect the absorption property. It is also possible to cause 

the absorption property of QDs during the transition of 

phase from sol to solid [25]. Present absorption spectra of 

QD in sol-gel rod are comparable to the observed feature 

of CdS particles in xerogel state [30] and hybrid sol gel 

matrix [21]. The broad particle size distribution within the 

matrix [30] likely contributes to the effect of QDs in the 

matrix. In the present study, the sample with high 

concentration was only employed. The main motive of this 

work is to understand the PL and SE property of QDs in 

sol gel rod that could be employed in testing the optical 

gain. The excitation wavelengths for emission and 

excitation spectra of QDs were evaluated from  

450 – 650 nm and 300 – 500 nm respectively. The 

excitation peaks of the QDs in solution were observed at 

395 nm, 418 nm and 465 nm as seen in C1 and C2 spectra 

of (Fig. 5 a). 

The excitation wavelengths of the QDs for a solution 

and sol-gel rod were selected as 355 nm, 395 nm, 418 nm, 

465 nm and 355 nm, 378 nm, 418 nm, 460 nm respectively 

as listed in Table 1. Fig. 5 a, the peaks a1, a2, a3 and a4, 

(Fig. 5 b), peaks b1, b2, b3 and b4 indicate that the emission 

peak and relative intensity of QDs solution and sol-gel rod 

are influenced by the excitation wavelengths respectively. 

This suggests that varying the excitation energy has an 

impact on the relative intensity of the QDs in both samples. 

But the change in emission peak of the QDs solution and 

sol-gel rod by different excitation is not clear but it may be 

possible to the presence of a large number of 

heterogeneous QDs size. Moreover, the emission peaks 

and relative intensity of QDs sol gel rod is considerably 

changed from the peaks of QDs solution.  

  
a b 

Fig. 5. The emission and excitation spectra of QDs: a – solution; b – sol-gel solid 
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Table 1. Comparison of peaks between the QDs in solution and sol-gel rod 

Samples Absorption peak, nm Excitation peaks, nm Emission peaks, nm Spontaneous emission peaks, nm 

QDs Solution 315 

412 

460 

395 

418 

465 

a1 – 485 at λexc 355 

a2 – 492 at λexc 395 

a3 – 501 at λexc 418 

a4 – 510 at λexc 465 

506 

QDs sol-gel rod 298 

370 

420 

378 

412 

460 

a1 – 470 at λexc 355 

a2 – 483 at λexc 378 

a3 – 498 at λexc 418 

a4 – 512 at λexc 460 

500 

 

For instance, the peak observed at 485 nm of QDs 

solution was excited by the 355 nm wavelength observed 

at 470 nm in sol-gel rod. It means that emission peaks and 

intensity of QDs are quite caused and enhanced by sol gel 

solid medium. Similarly, the excitation spectra of the QDs 

in solution are affected when they are embedded in the sol 

gel rod. The influences on the emission peaks and band 

shape of the QDs in the sol gel may be attributed to the 

solid environment, suggesting that the presence of the sol-

gel matrix alters the optical properties of the QDs. 

The absorbance and emission intensity of quantum 

dots (QDs) solution exhibit remarkable stability in 

comparison to the absorption and emission of QDs in solid 

rod, as demonstrated in (Fig. 4 and Fig. 6). 

 

Fig. 6. The comparison between the emission spectra of QDs 

solution and sol-gel solid at 355 nm excitation wavelength 

When the QDs solution is directly incorporated into a 

sol and converted into a solid rod, the optical properties of 

the QDs in the solid rod remain largely unaffected. The 

comparison of emission spectra between QDs solution and 

sol-gel rod is displayed in (Fig. 6). No degradation on the 

emission intensity of QDs in sol-gel rod is observed since 

the scattering and reflection of light are highly possible 

within the solid environment. The emission and excitation 

peak positions of QDs in solution and solid sol-gel are 

listed in Table 1. There is clearly a shift in PL features by 

different excitation wavelengths which may correspond to 

excitation energy and the presence of quantum size effects 

[12]. With the consideration of optical gain, we 

investigated the spontaneous emission spectra (SE) of 

Quantum Dots (QDs) in both solution and solid sol-gel 

rods. A high-power picosecond laser system with a 355 nm 

laser source was utilized for excitation. The energy 

pumped ranged from 50 µJ to 1.5 mJ was used to prevent 

photobleaching of the solid sol-gel rod by the 355 nm laser 

source. Fig. 7 display the SE spectra of QDs in solution 

and sol-gel rod, respectively, under various excitation 

energies. As the excitation energy increases, the intensity 

of QDs in both solution and sol-gel rod also increases. 

However, the SE intensity of QDs in the sol-gel rod is 

more pronounced compared to the solution when pumped 

with the same excitation energy, as depicted in (Fig. 7).  

  
a b 

Fig. 7. Spontaneous emission spectra of QDs: a – solution; b – sol gel rod 
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Additionally, there is a slight shift in the peak position 

of QDs in the solid sol-gel rod compared to the peak of 

QDs in the solution. For example, the spontaneous peak 

observed at 506 nm in the QDs solution of (Fig. 7 a) shifts 

to 500 nm in the solid sol-gel of (Fig. 7 b). The 

spontaneous emission of QDs in the solid sol-gel exhibits 

significant improvement under different excitation 

energies. The SE peak positions of the QDs in the 

composite sol-gel rod and solution are listed in Table 1. 

Increasing of emission intensity of QDs in the rod 

with the variation of pump energy shows good stability of 

QD particles in a solid environment. Moreover, the 

uniformity of inhabitant and distribution of QDs particles 

in solid medium could produce a stable PL. The 

comparison of emission and SE peak of QDs in solution 

and solid sol-gel at excitation of 355 nm is shown in 

(Fig. 8). 

 
Fig. 8. Comparison of normalized emission and spontaneous 

emission peaks between QDs in solution and sol gel rod at 

355 nm excitation wavelength 

In Fig. 8, the emission peaks of QDs in sol-gel rod 

observed at a1 – 470 nm and a3 – 485 in solution. The SE 

peak at a2 – 500 nm and a4 – 506 nm of QDs are observed 

in sol-gel rod and solution respectively. No significant 

effect on SE peaks between QDs sol-gel solid and solution 

which is more or less 6 nm. Overall, the observed SE peak 

of QDs in solid rod upon the laser pump energy is quite 

stable. Although the current SE peak does not satisfy the 

optical gain condition, it holds potential for future 

improvements by utilizing a higher density of QDs 

solution within such a solid rod. These findings suggest 

that a high-density QDs composite sol-gel rod could be a 

promising material for future studies in optical 

applications, potentially leading to stimulated emission or 

amplified spontaneous emission (ASE). 

4. CONCLUSIONS 

The CdS quantum dots composite rods were 

successfully prepared. Optical stability of QDs in solid sol 

gel rod was observed. PL property of the QDs composite 

rod was quite stable. The emission peaks and relative 

intensity of the QDs in both solution and sol gel rod were 

found to be influenced by the excitation wavelengths. No 

aggregate of QD particles in the solid environment was 

observed. The significant spontaneous emission from QDs 

composite rod was exhibited under the laser pump energy. 

Present results revealed that addition of quantum dots in 

solid rod is quite possible without any degradation of 

optical property. It is highly expected that such QDs 

composite rod may be used as active media for the further 

testing of ASE if it is employs a highly dense packed of 

QDs nanocomposites rod. 
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