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Latvian Darkhead (LD) is a local sheep breed and a genetic resource in Latvia. Preservation and development of the sheep 

population in the local region is important for the recultivation of fields, it serves as a source for export and local use, as 

well as waste wool can be applied for developing new products, for example, sorbents for volatile organic pollutants. 

Therefore, investigation of the sorption properties of the LD sheep wool fibers is under interest. In addition, modification 

options of the wool for improvement of properties are viewed. Therefore, in the present work, sheep wool fibers as well 

as accelerated electron-irradiated fibers are analyzed and compared. Fourier transform infrared (FTIR) spectrometry is 

applied to develop the sorption testing system of volatile organic compounds. An analytical system consisting of a volatile 

organic compound source, sheep wool filter, and FTIR spectrometry cell is tested and applied for analysis of wool sorption 

properties for acetone molecules. Registration of the FTIR spectra was performed within the range of 600-4000 cm-1, in 

the nitrogen flow of about 150mL/min. FTIR analysis shows, that the accelerated electron irradiated sheep wool fibers 

absorb acetone of about 33% more than non-irradiated fibers. The obtained results will be used for developing 

recommendations for filter producers to fabricate filter components containing LD sheep wool fibers. 
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1. INTRODUCTION 

Only sheep wool fibers of high quality are utilized by 

the textile industry, while unprocessed sheep wool fibers 

often regrettably become waste at loading depots [1]. Non-

textile sheep wool has found its place already as an 

insulating material [2], building additive [3, 4], keratin 

source [5], or fertilizer [6, 7]. However, still new 

applications are required, therefore ionizing radiation 

modifications can be applied [8, 9]. Absorbed doses up to 

410 kGy [10 – 14] have been applied and shown to increase 

content of free radicals [15]. Among the applied irradiation 

types are 5 MeV accelerated electrons [16] and gamma rays 

(cobalt-60 source) [17]. Therefore, an absorbed dose of 

several hundred kGy can be selected for this work to 

perform comparable measurements to the previous studies. 

Previously, the time dependency of the various effects on 

wool has been investigated, for example, storage conditions 

[18] and post-irradiation changes [19]. It is proposed that 

sheep wool fibers can be applied in air filtrating systems 

[20 – 22]. However, for the first opinion, if the material has 

the potential for further applications as a filter, a rapid 

evaluation is required. Therefore, for the estimation of 

volatile organic compounds sorption capabilities in the 

wool, an approach involving Fourier transform infrared 

spectra (FTIR) registration is developed and exploited in the 

present work. As example for testing the FTIR method for 

sorption of volatile pollutants [23], acetone is selected that 

occurs in paint, pharmaceutical [24], and polymers 

processing [25, 26]. The application of recovery of vapors 

of volatile organic compounds from air is targeted to 

pollution control, and solvent recovery [27, 28]. Among the 

known acetone sorption systems are water columns [29], 

wood barks [30], polymer membranes [31], biochar [32], 

and activated carbon materials [33]. Sheep wool fibers are 

proposed for application in water filtrating systems [34] and 

air filters [35]. Therefore, to estimate the applications of the 

locally available source for air filtrating units, it is necessary 

to estimate its sorption behavior. 

In the present work, a locally available [36, 37], 

renewable source, Latvian Darkhead (LD) sheep wool fibers 

are investigated. Fibers are irradiated with 10 MeV 

accelerated electrons and both, non-irradiated and irradiated 

wool, analyzed as potential filtering material for extraction 

of acetone molecules from gaseous flow of inert gas.
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2. EXPERIMENTAL 

Latvian Darkhead (LD) sheep wool fibers, diameter of 

25 ± 3 μm [18, 38], were cleaned and prepared for analysis 

by Sunakstes vilnas nams Ltd., Preparation involves 

washing of the cut wool, drying, and coursing to eliminate 

soil, dust and other impurities. Wool fibers were irradiated 

with 10 MeV accelerated electrons up to 500 kGy absorbed 

dose at room temperature in air at the Institute of Nuclear 

Chemistry and Technology (Warsaw, Poland) [39]. 

Chemical bonds in non-irradiated and electron 

irradiated wool fibers were analyzed by FTIR spectrometry, 

Bruker Vertex 70v spectrometer equipped with attenuated 

total reflection (ATR) module with a diamond crystal, 

± 2cm-1, 400 – 4000 cm-1, 20 scans per spectrum, at least 

10 measurements per sample. 

Non-irradiated LD sheep wool fibers were exploited for 

testing the FTIR based sorption system, where the FTIR 

spectra profiles are used as indicators of the sorption 

analysis. The FTIR based sorption testing system includes 

the filter cartridge, volatile organic compound source and 

measuring cell for gaseous compounds (Bruker Vertex 70v, 

600 – 4000 cm-1, ± 4 cm-1, Liquid Nitrogen-HgCdTe 

detector). A purge gas, nitrogen flow (Linde gas Ltd, 

99.99 %) 150 mL/min guided through the cartridge to the 

spectrometer cell for a certain time (1.5 min), then the flow 

switched through the vapor of interest and FTIR spectra 

registered. Afterwards, the flow again changed to nitrogen. 

In the present work, acetone (Sigma Aldrich) vapor was 

used. The scheme of the measuring system is shown in 

Fig. 1. 

 

Fig. 1. Scheme of FTIR based sorption testing system for gaseous 

organic compounds 

During the whole analysis (background measurement, 

insertion of the sorbing chemical, switching back to the 

background) the FTIR spectra are registered. The estimation 

of the sorption is performed by analyzing the intensity 

profile of the selected bond from the acetone spectrum. For 

the irradiated wool samples, the analysis was performed 

analogously as for non-irradiated. 

3. RESULTS AND DISCUSSION 

Chemical bonds of non-irradiated and electron 

irradiated sheep wool fibers were analyzed by means of 

FTIR-ATR. Afterwards, the fibers were incorporated into 

the FTIR based sorption testing system and tested for the 

sorption of acetone. 

3.1. Analysis of fibers 

Chemical bonds of the LD sheep wool fibers are 

analyzed using FTIR-ATR spectrometry. Since the fibrous 

structure is quite inhomogeneous, the intensities of the 

chemical bonds vary and only after summarizing 

information from several spectra, the overview of the ratios 

and the compositions of chemical bonds can be 

characterized. In Fig. 2, it is shown the variation of the 

spectra within the wool sample of about 1.0 g, where the 

aliquot for each measurement taken at about 0.1 mg and 

placed on ATR crystal. Similar variations in the spectra 

were observed in other samples as well [38]. The main peaks 

occur in the range of 400 – 1700 cm-1 and 2850 – 3300 cm-1. 

The spectra correspond to the keratin-based [40] chemical 

structures, containing amide I and II vibrations around 1530 

and 1640 cm-1 [41]. Sulphur containing bonds are in the 

range of 1020 and 1050 cm-1 [42]. Oxygen containing bonds 

in COH groups occur around 1400 – 1450 cm-1 [43]. 

Stretching vibrations of -CH2 and -CH3 groups are at 2850 

and 2920 cm-1 [44]. Broad peaks around 3200 – 3600 cm-1 

show to presence of primary amines [45]. 

 

Fig. 2. FTIR-ATR spectra of non-irradiated LD wool fibers 

The average spectrum of at least 10 spectra is calculated 

and compared to the electron irradiated wool spectrum. The 

average FTIR spectra on non-irradiated wool and electron 

irradiated wool are shown in Fig. 3. The spectra in Fig. 3 are 

placed on the shifted y axis for better resolution and 

visibility of the bonds. 

 

Fig. 3. Averaged FTIR-ATR spectra of non-irradiated (0 kGy) and 

electron irradiated (500 kGy) LD wool fibers 

As can be seen from the obtained FTIR spectra, 

irradiation with 10 MeV accelerated electrons causes 

changes in some of the bonds and their intensities. In the 

electron irradiated wool fibers, the intensities of C-H bonds 

related signals at 2850 and 2920 cm-1 have been decreased. 

In spectra of non-irradiated wool peaks at 2850 and 

2920 cm-1 are comparably higher than the nearby peaks of 

amine bonds. In irradiated wool intensities of 2850 and 



2920 cm-1 peaks attributed to C-H bonds, have been 

decreased. Meanwhile, a slight increase of the signals at 

1020, 1400 and 1450 cm-1 occurs that may correspond to  

-C-O- stretching and bending vibrations [46 – 48]. The 

changes in the spectra may be due to reorganization of the 

bonds [49], polymerization [50] or ozone [51] caused 

oxidation [52] of the functional groups in fibers. 

Newly formed -CO bonds may act as capture centers for 

acetone molecules. In biochar, the acetone sorption 

mechanisms are based on large surface area and diffusion 

[53]. Surface condensation and hydrogen bond interactions 

are reported among the possible sorption mechanisms [54]. 

3.2. FTIR based sorption testing system for 

estimation of wool sorption properties 

By applying FTIR based sorption testing system, the 

sorption properties of acetone in the non-irradiated and 

electron irradiated sheep wool fibers are evaluated. The 

measuring technique consists of two main stages, first where 

the measurement is performed with an empty filter 

cartridge. Nitrogen gas flow is guided through a cartridge 

and then acetone is introduced into the system. The FTIR 

spectra are recorded over a certain time and then the system 

is switched back to nitrogen flow. An example of 

measurement with acetone and an empty filter cartridge is 

shown in Fig. 4. A vibrational band with the maximal 

intensity for the reference spectrum, at 1753 cm-1, assigned 

to the -C=O group in the ketone [55, 56], specific to the 

introduced reagent, is selected for analyzing the sorption 

efficiency. 

 

Fig. 4. FTIR spectra of acetone test through empty filter cartridge 

The sorption profile of the acetone band at 1753 cm-1 on 

reference test, non-irradiated wool and electron irradiated 

wool is in Fig. 5. 

 

Fig. 5. Absorption profiles of 1753 cm-1 acetone stretching signal 

of acetone in the empty testing system and with the non-

irradiated and electron irradiated sheep wool fibers 

Normalizing the intensities to 1 and integrating the total 

band intensities to 100 %, it can be calculated that non-

irradiated wool sorbs ~ 1 % of acetone molecules, while 

electron irradiated wool already ~33 % of the total amount 

of acetone. Electron irradiation created -C-O bonds, that 

were observed in FTIR-ATR spectra, can undergo 

physisorption interactions with sorbing molecules [57] 

causing the delayed signal in the FTIR spectra. 

Therefore, the modifications of LD sheep wool with 

accelerated electrons can be applied to improve the sorption 

properties of the fibers. The changes in the sorption profile 

correspond to the changes in the chemical bond 

composition. Respectively – irradiation causes oxidation of 

the functional groups of the fiber structure, which further 

works as sorbing sites for -C=O functional groups 

containing molecules. Therefore, electron modified LD 

sheep wool fibers can be used as components in the air 

filtrating systems aimed for use in factories and other places, 

where the presence of acetone vapor is expected. In such a 

way the available, renewable source, LD sheep wool has a 

perspective application in air filtrating systems.  

4. CONCLUSIONS 

An absorbed dose of 500 kGy of accelerated electrons 

induces changes in the chemical bonds of LD sheep wool 

fibers, causing a decrease in intensities of -CH signals and 

the formation of -CO containing sites. Changes in the 

chemical bonds are followed by increased sorption 

capability of acetone molecules that are detected by the 

FTIR method. As result, the FTIR method can be applied as 

a rapid sorption estimation method. As well as determined 

acetone sorption can be further used as a beneficiary effect 

for applying electron irradiated sheep wool fibers as 

components in the air filtrating systems.   
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