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This study employed the rapid chloride ion penetration test and the salt spray erosion method to examine electric flux 

changes in mineral-admixed reactive powder concrete (RPC). Variations in the chloride ion content and diffusion 

coefficient under different erosion durations and depths were also investigated. The impact of mineral admixtures on the 

chloride penetration resistance was explored. Notably, after mixing fly ash (FA) and granulated blast furnace slag 

(GGBS), the electric flux values of RPC of each group were significantly reduced, and the electric flux values of RPC of 

the mixed group were significantly lower than those of the single mixed group and the reference group, in which the 

electric flux of FA10G10 was reduced by 85.2 % compared to the control group; at the same erosion cycle and depth, 

the chloride ion content and diffusion coefficient of the mixed group were significantly lower than the control group. It 

shows that the reasonable compounding of mineral admixtures can better exert the "superposition effect", improve the 

compactness inside the matrix, and effectively reduce the chloride ion penetration rate. Considering comprehensively, 

the FA10G10 group has the best chloride penetration ion resistance effect. 

Keywords: reactive powder concrete, mineral admixture, chloride ion penetration, electric flux, chloride diffusion 

coefficient. 

 

1. INTRODUCTION 

Reinforced concrete structures are widely used in 

construction projects due to their excellent mechanical 

properties. However, because of the complexity of the 

environment in which reinforced concrete is located, 

various durability problems will occur during its use  

[1 – 7]. Especially in the saline and coastal areas of China, 

reinforced concrete structures and infrastructure are often 

threatened by chloride ion erosion [8 – 11]. Chloride ions 

can penetrate the interior of reinforced concrete structures 

and cause corrosion of the reinforcing steel, resulting in 

expansion and cracking of the concrete, which 

significantly weakens the mechanical properties and 

durability of concrete structures [12 – 16]. Chloride ions 

penetrate concrete in two forms: partly by chemical 

reaction with C3A and C4AF to form Friedel’s salt, or by 

adsorption on calcium silicate hydrate (C-S-H), both of 

which are known as bound chloride ions [17]. The other 

part is in the form of free chloride ions that exist inside the 

concrete and gradually penetrate the surface of the steel 

reinforcement, eventually leading to corrosion of the 

reinforcement [18 – 20]. The penetration process of 

chloride ions in concrete is a complex diffusion process, 

the rate of which is influenced by a variety of factors, such 

as the pore structure of concrete, water-cement ratio, 

hydration products, temperature, etc. [17, 21 – 24]. 

Reactive Powder Concrete (RPC) is an advanced 

concrete material with superior properties that offer 
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significant advantages in resisting chloride ion penetration 

[25-29]. RPC has a very dense microstructure and 

excellent impermeability [30], making it difficult for 

chloride ions to penetrate the concrete. Its high strength 

and low W/C ratio design reduce the number and size of 

concrete pores and harmful pores, thus limiting the 

penetration channels for chloride ions [31]. The use of 

mineral admixtures such as fly ash (FA), silica fume (SF), 

and granulated blast furnace slag (GGBS) to replace part of 

the cement in RPC can improve the matrix densification of 

RPC and effectively hinder the diffusion of free chloride 

ions. In addition, mineral dopants can undergo a secondary 

hydration reaction with calcium hydroxide to form C-S-H 

gels, which increases the binding capacity of the matrix for 

chloride ions [32 – 34]. Currently, there have been studies 

on the effect of incorporating mineral admixtures in 

concrete on the performance of chloride penetration 

resistance, Wang [35] delved into the chloride ion 

permeability attributes of concrete modified with FA and 

SF under freeze-thaw circumstances. The findings 

demonstrated the concrete's electrical flux could be 

effectively mitigated by an optimal combination of FA and 

SF. Notably, SF showcased a more pronounced efficacy in 

augmenting the concrete's chloride ion permeability. 

Otieno [36] explored the ramifications of varying w/b 

ratios and substituting slag in terms of concrete's resistance 

against chloride ion penetration by employing distinct 

chemical compositions of slag. The study unearthed a 

noteworthy enhancement in the concrete's ability to fend 

off chloride ion intrusion. This enhancement was closely 

associated with diminished w/b ratios and increased slag 
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substitution levels. However, there is a lack of research on 

the chloride penetration resistance of mineral admixtures 

incorporated in RPC. 

Therefore, the variation rule of RPC's anti-chlorine ion 

penetration performance under different mineral admixture 

substitutions was investigated by using the electric flux 

method and the salt spray erosion method in this study. 

The effects of mineral dopants on the pore structure and 

chloride ion binding properties of RPC were explored, and 

the effects of these factors on the permeability to anti-

chlorine ions were further investigated. By thoroughly 

studying the chloride ion penetration mechanism and the 

interaction of mineral admixtures, it is possible to gain a 

deeper understanding of the effect of mineral admixtures 

on RPC, which in turn improves the durability of concrete 

structures and provides a more reliable theoretical basis for 

the application of RPC in highly erosive environments. 

2. MATERIALS AND METHODS 

2.1. Raw material and mixture proportions 

Cement, SF, FA, GGBS, quartz sand, basalt fibers, 

water reducer, and water are the raw materials for RPC. 

The cement is P·O42.5 Portland cement; silica fume has a 

particle size of less than 2 μm, a specific surface area of 

19 m2/g, and silica content of 82.2 %; FA is Class I fly ash 

with a particle size of less than 29 μm; the GGBS is S95 

grade granulated blast furnace slag powder; quartz sand 

including coarse, medium and fine three grain sizes, the 

coarse sand grain size of 10 – 20 mesh, the medium sand 

grain size of 20 – 40 mesh, the fine sand grain size of  

10 – 20 mesh; water reducing agent for the polycarboxylic 

acid system of high-performance water reducing agent, the 

water reduction rate of 46 %; basalt fibers for the short-cut 

basalt fibers, fiber length of 12 mm, the aspect ratio of 

1000, modulus of elasticity for the 80 – 110 GPa. Specific 

ratios are shown in Table 1. 

2.2. Methods for characterization of chloride ion 

penetration resistance 

2.2.1. Rapid chloride ion penetration test 

The sample was cut and machined to the required size 

for the test. Paraffin wax was melted and evenly applied to 

the cylindrical side ring surfaces, checked for correctness, 

and then moved into the vacuum water retainer. 

Subsequently, the prepared specimens were mounted into 

the test tank and clamped, and the data were recorded 

every 30 min until the end of 6 h of energization, which 

can be used to derive the diffusion of chloride ions in the 

RPC, and then to evaluate the resistance to chloride ion 

permeation of the RPC under different ratios. Rapid 

chloride ion penetration test refers to ASTM C 1202 [37] 

and literature [38]. 

2.2.2. Salt spray corrosion method 

The salt spray corrosion test specimen is a cube 

specimen with a side length of 100 mm, the specimen is 

dried after 28 d of maintenance, and put into the salt spray 

test chamber for the corrosion cycle, as shown in Fig. 1 a. 

     

 

a b 

Fig. 1. Experimental equipment: a – KW-ST-90 salt spray test 

chamber; b – JY-20 quick measuring instrument 

Each cycle time is 24 h, in which the warming process 

is 0.5 h, the salt spray is carried out for 8 h at 35 ℃, and 

then it is dried in an oven at 55 ℃ for 15.5 h. The salt 

spray erosion solution is adopted with a concentration of 

5 % sodium chloride solution. After 30 d, 60 d, and 90 d of 

erosion cycles, the specimens were removed for drying. 

Subsequently, the specimens were split into two halves and 

the powder was drilled layer by layer from 0 – 5 mm,  

5 – 10 mm, 10 – 15 mm, and 15 – 20 mm from the exposed 

surface of the specimens. Each layer was selected from a 

different position, and the samples were ground to be fine 

enough, then sieved through a 0.63 mm mesh sieve, and 

then tested by using a JY-20 type chlorine ion content 

rapid tester for each group of samples. This evaluation 

process is repeated thrice per group to derive an average 

value, as illustrated in Fig. 1 b. 

Quantify the concentrations of chloride ions at distinct 

depths within the specimen, facilitating comparative 

analysis of data variations across each group and depth. 

Furthermore, assess the diffusion coefficient's magnitude, 

determined by fitting Fick's second law, to draw inferences 

about chloride ion resistance. the surface chloride ion 

concentrations can be inferred from the equation  

y = a – b × cx. The chloride ion content at depths of  

5 – 10 mm was calculated by substituting into the formula, 

which is illustrated in Eq. 1: 
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; cz 

represents RPC surface chloride ion concentration; c0 

represents RPC internal chloride ion concentration; cx 

represents RPC chloride ion concentration at depth x mm; 

x is the depth from the surface; t is the chloride ion 

diffusion time. 

3. RESULTS AND DISCUSSION 

3.1. Electric flux 

Fig. 2 shows the current values and their variation 

curves for each group of RPCs at different times. It can be 

observed that as the energization time increases, the 

current values of each group also increase gradually. 

Within 60 minutes of energization, the fluctuation of the 

current value is more obvious and then tends to stabilize. 



235 

 

 

Table 1. Mixture proportions of mineral admixture RPC 

Number 
The amount of each material per cubic meter /kg·m-3 

Cement SF FA GGBS Sand Basalt fibre Water reducer Water 

FA0G0 803.95 200.99 – – 1,306.83 5.5 6.03 177.09 

FA0G30 562.77 200.99 – 241.19 1,306.83 5.5 6.03 177.09 

FA30G0 562.77 200.99 241.19 – 1,306.83 5.5 6.03 177.09 

FA10G10 643.16 200.99 80.40 80.40 1,306.83 5.5 6.03 177.09 

FA30G10 482.37 200.99 241.19 80.40 1,306.83 5.5 6.03 177.09 

FA10G30 482.37 200.99 80.40 241.19 1,306.83 5.5 6.03 177.09 

 

The current value of RPC in the control group was 

significantly higher than in other groups, and the growth 

rate was faster. After 360 minutes of energization, the 

current value of the control group RPC reaches the 

maximum value of 1.35 MA, while the current value of 

each group of mineral admixture RPC is significantly 

lower than the control group, especially the current value 

of the mixed group decreases more significantly. Among 

them, the FA10G10 has the best performance, with a 

current value of only 0.51 MA after 360 min of 

energization. 
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Fig. 2. Changes in current value of mineral admixtures RPC 

Fig. 3 shows the comparison of the electric flux of 

RPC at different substitutions. It can be observed that after 

the single-mixed of FA and GGBS instead of cement, the 

electric flux of RPC decreases significantly, and the values 

of the electric flux of FA0G30 and FA30G0 are 11.867C 

and 13.833C, respectively, which are 42.4 % and 32.8 % 

lower than those of the control group, respectively. This is 

because the addition of GGBS and FA promotes the 

secondary hydration reaction of cement, produces dense 

and stable C-S-H gel, fills the pores and microcracks, and 

makes the concrete more dense internally [39]. It is also 

observed that the value of the electrical flux of single-

mixed GGBS group is lower than that of single-mixed FA 

group, this result is in agreement with previous studies 

[40, 41], where the hydration reactivity of GGBS was 

higher than that of FA, and FA had lower early activity and 

slower secondary hydration reaction, resulting in a slightly 

higher electrical flux than that of single-mixed GGBS. 

The converted flux of the FA10G10 is 3.054C, which 

is 85.2 % and 25.7 % less than that of the control group 

and the single-mixed GGBS group, respectively. This 

indicates that the mixed group greatly fills the pores and 

cracks due to the "superposition effect" of different 

mineral admixtures, which significantly reduces the 

electric flux [9]. Overall, the FA10G10 performed the best 

due to the better secondary hydration reaction of the 

mineral admixtures in this group, which significantly 

improved the overall bonding of the matrix slurry. In 

addition, due to the reasonable compounding to enhance 

the densification of the matrix, effectively reducing the 

initial defective holes, thus reducing the electric flux. The 

6 h electric fluxes of RPC single-mixed groups are less 

than 15C, and the electric fluxes of the mixed groups are 

less than 10C, which shows the excellent resistance to 

chlorine penetration of the mineral admixtures RPC. 
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Fig. 3. RPC electric flux comparison 

From the test results, it can be seen that the electric 

flux and the average current value into a positive 

correlation linear, through the test data, can be fitted to 

derive the relationship between the value of the electric 

flux and the average current value of the relationship 

between the equation and the correlation is better 

(R2 = 0.999), the accuracy is high, the relationship obtained 

by the fitting of the equation as shown in Eq. 2, as shown 

in Fig. 4. 

xy 64665.2009805.0 += , (2) 

where x is the average current, y is the electric flux. 

3.2. Chloride ion diffusion coefficient 

To further investigate the effect of mineral admixtures 

on the resistance of RPC to chloride penetration, the salt 

spray corrosion tests were performed under different 

corrosion cycles, and the measured chloride ion content 

under different salt spray corrosion cycles and different 

depths are shown in Fig. 5. The chloride content in the 

concretes decreases rapidly and stabilizes as the depth of 

measurement increases [42]. In the case of fixing the RPC 
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in the same group and depth, the chloride ion content keeps 

increasing with the increase of the erosion cycle. The 

chloride content of RPC in the same depth of the mixed 

group is smaller than that of the reference group, which 

indicates that the "superposition effect" played by the 

mixing of FA and GGBS effectively improves the 

resistance of RPC to chloride penetration. The FA30G10 

mixture displays diminished resistance against the 

penetration of chloride ions. 
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Fig. 4. Fitting line of electric flux and average current value 
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Fig. 5. Chloride contents under different salt spray corrosion 

cycles 

The findings of Boga [43] indicate that an excessive 

inclusion of FA can impede the hydration reaction of a 

fraction of the FA, thereby resulting in an augmentation of 

concrete permeability. In the case of FA10G10, the 

variation of chloride ion content in different measurement 

depths was small, which showed the best chloride 

penetration resistance effect. 

The values of the chloride diffusion coefficients and 

the curves of diffusion coefficients with time for each 

group under different erosion cycles are shown in Fig. 6. 

The diffusion coefficients of chloride ions decreased 

gradually with erosion. In addition to increasing the 

densification of concrete, researchers generally agree that 

the incorporation of FA and GGBS has a physicochemical 

binding effect on chloride ions [44], and the content of 

bound chloride ions increases gradually with the change of 

erosion time, and the Friedel’s salt generated by the 

chemical reaction can fill the pore space, which can 

effectively impede the penetration process of chloride ions 

and significantly reduce the diffusion coefficient. It was 

observed that a larger amount of FA substitution resulted 

in a smaller decrease in the late diffusion coefficient, while 

a larger amount of GGBS substitution resulted in a larger 

decrease in the late diffusion coefficient, which was due to 

the difference in the time of participation in the hydration 

reaction between FA and GGBS[45 – 47]. 
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Fig. 6. The relationship between chloride diffusion coefficient 

and time 

The diffusion coefficient of the FA10G10 was the 

smallest and had the slowest rate of decrease, which 

indicated that it had the best resistance to chloride erosion. 

4. CONCLUSIONS 

Through the electric flux experiments and salt spray 

erosion experiments, the effects of different FA and GGBS 

mixing methods on the anti-chlorine ion permeation 

performance of RPC were investigated to provide more 

reliable theoretical support for the application of RPC in 

complex erosion environments. The principal findings of 

this study can be summarized as follows: 

1. The addition of FA and GGBS filled the pores of RPC 

and improved the densification of the matrix. 

Compared with the control group, the flux values of 

FA0G30 and FA30G0 in the single-mixed group were 

reduced by 42.4 % and 32.8 %, respectively; the flux 

values of the mixed group were lower than those of 

the single-mixed group and the control group, with the 

lowest flux value of 3.054C for FA10G10. 

2. At the same depth, all three mixing groups had lower 

chloride ion levels than the control group. The higher 

chloride ion content was caused by the fact that some 

FAs in FA30G10 did not participate in the hydration 

reaction. And FA10G10 fully utilized the 

"superposition effect" and showed the best anti-

chlorine ion penetration effect. 

3. The addition of FA and GGBS significantly reduced 

the chloride diffusion coefficient. However, due to the 

different hydration reaction times of GGBS and FA, 

different substitution amounts would result in different 

reductions of the chloride diffusion coefficients at the 

later stage. A reasonable mixing method will 

effectively improve the chlorine ion penetration 

resistance of RPC. 
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