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This study aims to investigate the corrosion resistance of galvanized steel (GS) and AZ31 pipe materials immersed in a 

magnetized water treatment (MWT) applied river water source. The potentiodynamic corrosion test results showed that a 

better corrosion rate is obtained by the AZ31(corr.rate: 0.0442 mm/y) specimen than GS (corr.rate: 0.0764 mm/y) due to 

the passivation efficiency resulting from the calcite and MgO particles on the surface. 
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1. INTRODUCTION1 

In recent years, studies aimed at reducing the hardness 

of water with the magnetized water method have attracted 

attention [1]. In addition, studies on the effects of 

magnetized water with changed properties in different areas 

are increasing [2]. The magnetic water method is preferred 

because it is cheap and chemical-free [3]. Many studies have 

used and examined the magnetic water method to reduce the 

tendency of water to form calcite or to develop more 

efficient products [4]. However, there are very few studies 

on the effects or damage of magnetized water on carrier 

systems. Wenlu Yang et al. investigated the galvanic 

corrosion behavior of AZ91D in distilled water and they 

stated that the galvanic current density increases with 

increasing temperature and soaking time, which can be 

attributed to the damage of the corrosion product film due 

to hydrogen release [5]. Zhen Xu et.al. tested magnesium 

alloy in different media to test the corrosion behavior after 

solution treatment, where they found that Mg corrosion in 

solvents increased in the order: low pH > saline pH > high 

pH and Mg corrosion products are mainly Mg(OH)2 and 

MgO [6]. 

The costs incurred due to corrosion in agricultural 

structures in the USA and China have been reported to be 

around 1.1 billion and 9.89 billion dollars [7, 8]. CaCO3 in 

aragonite formation is stored in micro cathodic regions and 

provides the formation of fewer cathodic regions where iron 

ions cannot reach. CaCO3/interlayer composite coating 

formed in Mg alloy may be suitable to reduce corrosion 

losses in agricultural applications [9]. 

This study tested galvanized steel pipe and AZ31 Mg 

pipe samples for corrosion in magnetized river water. 

Potentiodynamic corrosion test results were compared, and 

corrosion products were examined. 

2. EXPERIMENTAL DETAILS 

Water types and their chemical contents are given in 

Table 1. Inductively coupled plasma-optical emission 
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spectrometry (ICP-OES) determined the chemical 

composition of the water. As to Magnetization Treatment, a 

2 T magnetic field with a magnet speed of 0.45 m/s was 

utilized. The surface morphology of specimens after SEM 

obtained corrosion equipped with EDX analysis.  

Table 1. Chemical analysis of waters.  

Normal river water Magnetized river water 

Element  mg/l Element  mg/l 

Mg 20 Mg 4.5 

Ca 15 Ca 10 

Na 4.7 Na 4.6 

K 0.13 K 0.08 

Cl 10 Cl 4.5 

HCO3 6.5 HCO3 10 

SO4 4.9 SO4 5.7 

pH 7.43 pH 7.52 

The specimens were placed in normal water and 

magnetized water for 192 hours. Replacement of 

magnetized water with new magnetized water was made 

every 24 hours. The potentiostat setup includes a Host 

computer, thermostat, magnetic stirrer, (EmStat 4s, Palm 

Sens, Holland) potentiostat, and galvanostat. The cell is 

(250 ml) capacity made of Pyrex and consists of internal and 

external bowls. The electrochemical corrosion cell has three 

electrodes. Carbon steel as a working electrode is used to 

determine the potential according to the reference electrode, 

an auxiliary electrode is platinum with length (10 cm), and 

the reference electrode is a saturated calomel (Hg/Hg2Cl2 

sat. KCl). The working electrode was immersed in the test 

solution for 15 min to establish steady-state open circuit 

potential, then electrochemical measurements were 

performed in a potential range of ± 200 mV. All tests were 

carried out at 298 K by using a cooling-heating circulating 

water bath.



3. RESULTS AND DISCUSSION 

Table 1 shows a chemical analysis result of MWT-

applied waters. In Fig. 1, the SEM images show the surface 

of corroded steel pipe and AZ31 specimens in normal river 

water and MWT one. As a morphological, the SEM images 

show block-like particles agglomerated on the surface of 

both the steel pipe and AZ31 specimen which was obtained 

after corrosion in MWT water. However, the specimens that 

were exposed to corrosion in non-MWT water had smoother 

surfaces. These equiaxed particles are calcite formed as Ca 

(CO)3 [10]. 

In normal 

water 

  

MWT 

water 

  
 a b 

Fig. 1. SEM images of degradation on the surface of specimens: 

a – galvanized steel; b – AZ31 

Table 2 and Table 3 illustrate the elements on the 

surface of specimens exposed to corrosion in river water and 

MWT-applied river water sources.  

Table 2. Chemical analysis of corroded surfaces of specimens in 

normal river water 

Element  Atomic mass, % Element  Atomic mass, % 

Galvanized steel AZ31 

C 35.8 ± 0.3 C 16.8 ± 0.2 

O 33.0 ± 0.3 O 63.9 ± 0.5 

Mg 1.8 ± 0.1 Mg 1.5 ± 0.0 

Al  –  Al 0.3 ± 0.0 

Si 2.0 ± 0.0 Si 0.9 ± 0.0 

Ca 3.4 ± 0.0 Ca 16.1 ± 0.1 

Fe  –  Fe 0.2 ± 0.0 

Zn  25.1 ± 0.1 Zn 0.3 ± 0.0 

Table 3. Chemical analysis of corroded surfaces of specimens in 

MWT-applied river water 

Element  Atomic mass, % Element  Atomic mass, % 

Galvanized steel AZ31 

C 23.0±0.4 C 15.8±0.1 

O 45.6±0.3 O 64.6±0.5 

Mg 1.8±0.1 Na 0.8±0.0 

Al 2.1±0.1 Mg 2.5±0.0 

Si 7.9±0.1 Si 0.5±0.0 

Cl 0.2±0.0 Ca 15.6±0.1 

Ca 2.4±0.0 Fe 0.2±0.0 

Fe 0.7±0.0   

Ni 0.1±0.0   

Zn  15.9±0.1   

Oxidation occurs on the galvanized steel surface 

containing Ca, C, and O elements forming as Ca (CO)3 

(ΔH = -1206.9 kJ mol⁻¹) [11]. In addition, Zn, Mg, and Al 

are detected, where ZnO (ΔH = -350.5 kJ mol⁻¹) formation 

is lower than MgO (ΔH = -532.61 kJ mol⁻¹) and  

Al2O3 (ΔH = -1620.6 kJ mol⁻¹) [11]. Similarly, the corroded 

surface of the AZ31 specimen is mainly occupied by Ca 

(CO)3 and MgO particles. It is seen that the Ca and Mg 

contents of the corroded AZ31 surface as atomic mass % are 

higher than the corroded surface of galvanized steel. 

Fig. 2 and Fig.3 show Tafel curves obtained from 

potentiodynamic corrosion test results in Normal water 

(NW) of galvanized steel and AZ31 Mg, respectively. 

 

Fig. 2. Tafel curve of galvanized steel specimen in normal water 

 

Fig. 3. Tafel curve of AZ31 specimen in normal water 

It is measured that the corrosion rate of AZ31 is higher 

than galvanized steel. The corrosion rate was measured as 

0.45260 mm/y and 0.07794 mm/y for AZ31 and GS, 

respectively. The higher Zn and Mg content of GS material 

enables the formation of calcite and ZnO and MgO particles 

on the surface, where the polarization resistance may be the 

reason for the better corrosion resistance for GS (see Table 

3). It is said that the lesser Ecorr values indicate higher 

susceptibility. In comparison, higher Ecorr values (toward 

the positive side) indicate inertness toward the corrosive Cl− 

ion medium for ZnO-Mg Coating on AISI 4140 Steel [12]. 
Fig.4 and Fig.5 show Tafel curves obtained from 

potentiodynamic corrosion test results of galvanized steel 

and AZ31 Mg, respectively. It is measured that the corrosion 

rate of AZ31 is lower than galvanized steel.  The corrosion 

rate of AZ31 was lower than the galvanized steel at 

0.04421 mm/y and 0.07642 mm/y, respectively.  

The more Ca and Mg content of AZ31 material enables 

the formation of calcite and MgO particles on the surface, 

where the passivation mechanism could be the reason for 

the better corrosion resistance for AZ31. Moreover, it is 

seen that the PE% (inhibition efficiency %) value of AZ31 



was obtained as 90.23 but the value of galvanized steel is 

1.93 (see Table 4). 

 

Fig. 4. Tafel curve of galvanized steel specimen in MWT applied 

water 

 

Fig. 5. Tafel curve of AZ31 specimen in MWT applied water 

Table 4. Corrosion test results of samples 

  
Ecorr, 

mV 

Icorr, 

mA/cm2 

CR, 

mm/y 

Rp, 

Ω/cm2 
𝑃𝐸% 

GS in 

NW 
986.60 0.006710 0.07794 4197 - 

AZ31 in 

NW 
1220.9 0.038970 0.45260 866.3 - 

GS in 

MWT  
961 0.00658 0.07640 4483 1.93 

AZ31 in 

MWT 
1364 0.00380 0.04420 11080 90.23 

Moreover, it is stated that the low solubility of CaCO3 

promotes the continuous progress of the reaction of  

Ca2+ +CO2
−3→CaCO3, thus leaving increased H+ in the 

solution and a decreased solution pH which was seen in the 

un-MWT solution, where it is observed that the presence of 

Ca2+ promotes the acidification of the solution and 

accelerates the dissolution of the P110 steel [13]. The GS 

corrosion rate in the solution of normal river water was 

obtained lower than in the solution of MWT applied one. 

Fig. 6 presents EDX results obtained from the corroded 

surface of GS and AZ31 in normal water. As seen in Fig. 6, 

the main difference is the Zn particle distribution on the 

surfaces of GS and AZ31 specimens. Almost Zn occupied 

all sections of the surface on GS. Also, the dark region that 

was not occupied by Zn was dominated by Ca. Thus, we can 

say that the mutual effects of Zn and Ca distribution could 

be the reason for the better corrosion rate of galvanized 

steel. 
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Fig. 6. EDX analysis obtained from corroded surfaces of 

specimens immersed in normal water: a – galvanized steel; 

b – AZ31 

Fig. 7 shows EDX results obtained from the corroded 

surface of GS and AZ31. As seen in Fig. 7, The oxidation 

on the surface of AZ31 distributed almost all sections of the 

area, but the GS specimen contains more non-oxidized 

sections as dark islands. Similarly, the spreading of Mg 

particles on the AZ31 surface is homogeneous and consists 

of fewer dark regions than GS. As to, the Ca particles that 

spread over the whole of that region of AZ31, where there 

is a bigger difference when we compare it with GS which 

contains blacker sections. The difference in Zn particle 

distribution is mainly the separately homogeneous 

spreading on AZ31. However, closer Zn particles with each 

other dominate in some sections of GS. The pitting 

corrosion formation that is reported as rare in pH 7.4 

environments due to the MgO-Mg(OH)2 passivation layer 

has better stability, which results in the formation of a 

thicker Mg(OH)2 layer on the surface of the magnesium 

alloy, thus improving the passivation effect of the layer[14]. 

It is seen from Fig.8, that the image of Ca deposited surface 

of AZ31 includes very little pitting corrosion. The Ca (CO)3 

and MgO Pourbaix diagrams were produced based on the 

ion concentrations taken from Table 2 [15] and [16] Fig. 8 

shows Ca(CO)3 Pourbaix diagram where ion concentrations 

of Ca and C are 0.156 and 0.158, respectively. In Fig. 9, the 

Mg ion concentration is 0.025, we can see MgO stability 

after pH 11.70. However, Ca(CO)3 stability is observed after 

pH 4. AZ31 specimen immersed in the river water, 

measured pH value of river water is pH 7.4, has more 

effective passivity of Ca(CO)3 than MgO. 
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Fig. 8. EDX analysis obtained from corroded surfaces of 

specimens immersed in MWT water: a – galvanized steel; 

b – AZ31 

 

Fig. 9. Pourbaix Diagram of Ca(CO)3 drawing for chemical 

analysis of corroded surfaces of AZ31 [15] and [16] 

 

Fig. 10. Pourbaix Diagram of MgO drawing for chemical analysis 

of corroded surfaces of AZ31 [15] and [16] 

Zhen Xu and et.al. tested magnesium alloy in different 

media to test the corrosion behavior after solution treatment, 

where they found that Mg corrosion in solvents increased in 

the order: low pH > saline pH > high pH and Mg corrosion 

products are mainly Mg(OH)2 and MgO [6]. It is known that 

increasing mg ions in carbonate solution transforms the 

single-crystal calcite structure into an aggregate crystal 

structure. It has been said that increasing pH and mg ions 

cause faster nucleation and accumulation of CaCO3. Due to 

increasing immersion time, the CaCO3-covered area on the 

magnesium alloy increased. Finally, a continuous calcite 

CaCO3/interlayer composite coating was formed on the 

surface of the Mg alloy [17]. 

In addition, the outer part of this composite coating 

consists of CaCO3 and the inner part consists of Mg(Al)O 

layer. The coating system has a dense outer CaCO3 layer and 

the inner Mg(Al)O layer shows the best corrosion 

resistance. The outer CaCO3 layer can protect for the inner 

passivation film when embedded in Cl-containing content. 

AZ31 Mg alloy contributes to the corrosion resistance of the 

composite layer due to the Al element it contains. Wang Ye 

et al. An anticorrosive double-layer CaCO3/Mg(Al)O 

coating system was prepared on AZ41 Mg alloy. The outer 

CaCO3 has been shown to play a dual role in anti-corrosion 

and protection of the inner layer. In addition, it has been 

reported that the first layer of Mg(Al)O passivation film can 

survive and regenerate in corrosive environments. A 

"dissolution – repassivation" cycle behavior has been 

described here and has been reported to have an inhibitory 

or reducing effect on corrosion. [18]. 

4. CONCLUSIONS 

The formation of particles such as calcite and oxides of 

Zn, Al, and Mg make an important contribution to the 

corrosion resistance of materials used in agricultural 

systems. AZ31 Mg pipe showed better corrosion resistance 

than galvanized steel pipe due to the passivation behavior of 

Mg and Calcite oxide particles in MWT-applied water.  
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