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Determining the mechanical properties of magnetorheological elastomers (MREs) is fundamental for creating smart 

materials and devices with desired properties and functionalities. While the MREs properties, in shear mode, have been 

extensively researched, the MREs properties with frequency-temperature dependence have been less exploited. In this 

article, we studied the performance of magnetorheological elastomers with frequency-temperature dependence. The elastic 

modulus, loss modulus, and loss factor of magnetorheological elastomers were studied under different temperature values, 

different values of magnetic field, and different values of frequency. The results showed the interest of these active 

materials in different industrial sectors. 
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1. INTRODUCTION 

Polymer composite materials are materials with high 

mechanical performances, which can be shaped as desired 

by the designer and have unlimited potential. Polymer 

composite materials are developing today in practically all 

fields and are at the origin of tremendous challenges in 

various high-tech achievements, among them we 

distinguish Magnetorheological elastomers (MRE) which 

are, generally, prepared by dispersing magnetic particles in 

a non-magnetic elastomeric matrix [1 – 6]. Compared with 

MR fluids, the solid matrix of Magnetorheological 

elastomers can effectively overcome the problem in 

Magnetorheological fluid applications, such as particle 

sedimentation, sealing problems, and environmental 

contamination [7, 8]. Moreover, due to their large changes 

in modulus and fast response time, magnetorheological 

elastomers have attracted wide attention in semi-active 

vibration control [9 – 12], such as vibration isolators 

[13 – 16] and absorbers [17 – 19]. The viscoelastic 

properties of magnetorheological elastomers normally vary 

instantaneously and reversibly due to dipolar interaction in 

the presence of a magnetic field. In most cases, anisotropic 

magnetorheological elastomers appear to be more sensitive 

to the applied magnetic field with a slightly greater 

magnetorheological effect than isotropic 

magnetorheological elastomers [20, 21]. The elastic 

modulus of the material increases with increasing magnetic 

flux intensity up to magnetic saturation. MR elastomer 

matrices are typically a polymer such as silicone rubber 

[22], natural rubber [23 – 25], and polyurethane [26, 27], it 
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is one of the most influential factors affecting the 

performance of polymer materials. Devices based on 

magnetorheological elastomers often operate over a wide 

range of temperatures. Therefore, it is important to study the 

effect of temperature on the mechanical properties of 

magnetorheological elastomers. 

Until now, some research has been carried out on 

magnetorheological elastomer performances as a function 

of temperature. Zhang et al. [28] evaluated the mechanical 

properties of magnetorheological elastomers based on a 

mixed rubber matrix (cis-polybutadiene rubber and natural 

rubber). The results showed that temperature-dependent 

moduli exhibited different characteristics for 

magnetorheological elastomers with different rubber 

matrices. Lejon et al. [29] carried out a measurement to 

study the influence of temperature, dynamic deformation 

amplitude, magnetic field intensity, and frequency on the 

dynamic shear modulus of magneto-sensitive elastomers. 

The measurements indicated that the temperature was the 

most influential on the parameters especially when the 

temperature reached the transition phase of the material. 

Wan et al. [30] found that the transition temperature of 

magnetorheological elastomers appeared at about 50 °C, 

and the storage modulus initially decreased with increasing 

temperature, reaching its minimum value at 50 °C, and then 

began to increase with additional increase in temperature 

[31]. In this work an experimental analysis of the dynamic 

properties of microcomposite magnetorheological 

elastomer (MMRE) by a dynamic mechanical analyzer 

(DMA) was done. Dmitry Borin et al. [32] discussed the 

effect of repetitive quasi-static magnetization of a 
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magnetorheological elastomer on its magnetic response. 

Typical components of this material, namely soft silicone 

rubber and carbonyl iron powder, are used to produce 

magnetically sensitive composite samples. Moreno-Mateos 

et al. [33] proposed a comprehensive study on the influence 

of magnetic boundary conditions and demonstrated the 

importance of considering them in the overall material 

structure modeling strategy. In this work, Zhang et al. [34] 

numerically analyzed the swelling of magnetorheological 

elastomers for sheet metal. The velocity and stress 

distribution of the sheet metal under different magnetic 

intensities were compared and analyzed. In this work, 

Selvaraj [35] studied an alternative vibration damper 

fabricated by magnetorheological elastomer. In this work, 

Gorshkov et al. [36] studied the physical driving 

mechanisms whose control makes it possible to act in real 

time on all the band gaps formed in 3D metamaterials based 

on magnetoelastomers. In this article, Khebli et al. [37] 

studied the phenomenon of instability which is the buckling 

of the beam elaborated of steel (E36-S355), and 

magnetorheological elastomer subject to compression-

flexion solicitation. Settet et al. [38] studied the three-point 

bending of a magnetorheological elastomer beam. 

However, previous studies are focused on the 

performance of magnetorheological elastomers as a 

function of temperature and mainly concern the effect of 

temperature on the properties of the polymer matrix, and 

little attention is paid to the effect of temperature on 

magnetomechanical properties. The change in modulus 

under an external magnetic field is the most distinctive 

rheological property of magnetorheological elastomers [9]. 

In addition, the magnetomechanical properties of 

magnetorheological elastomers are closely related to the 

arrangement of internal particles [20, 39], and its changes 

can directly reflect the differences in the microscopic 

arrangement of internal particles. Q. Wen, et al. [40] studied 

the influence of temperature on magneto-mechanical 

performances, which is useful for their practical application 

and mechanism analysis. Previous studies focus on the 

performance of magnetorheological elastomers as a 

function of temperature for values lower than 60 °C, at 

different values of magnetic field intensity. 

In this work, we studied the performance of 

magnetorheological elastomers with frequency-temperature 

dependence. The elastic modulus, loss modulus, and loss 

factor of the magnetorheological elastomer were studied 

under different temperature values, different values of the 

magnetic field, and different values of the frequency. 

2. MATERIAL AND EXPERIMENTAL 

CHARACTERIZATION 

2.1. Elaboration of the magnetorheological 

elastomer 

The elastomer magnetorheological is prepared 

according to the following steps: 

1. The silicone oil and the RTV141 polymer marketed by 

Rhodia will perceive its good fluidity, which is used for 

the highest infilling rates; its cross linking is ensured by 

heating to 100 °C via a heating resistor connected to a 

0-240 V auto transformer, (Fig. 1 a) these were 

manually mixed in a container for 10 minutes to obtain 

a well-homogenized elastomer gel. 

2. A quantity of this gel obtained by silicone and RTV141 

is mixed for 30 min with a quantity of carbonyl iron 

(CI) particles with an average diameter of 2.5 μm until 

a homogeneous paste is obtained. By this process, 

elastomers filled with 30 % and 40 % ferromagnetic 

particles are produced. 

In our work, the storage modulus, loss modulus, and 

loss factor of the MRE are determined based on the 

magnetic field intensity; temperature, and frequency of 

elastomers loaded in 30 % and 40 %. The constituents in the 

mass fraction of the elastomers produced are given in 

Table 1 and Table 2. The steps for preparing the 

magnetorheological elastomer are given in Fig. 1. 

Table 1. Magnetorheological elastomer constituents with 30% of 

iron particles mass 

msilicone oil, g mRTV(A), g mRTV(B), g mFe, g 

1.064 1.0385 0.104 7.559 

Table 2. Magnetorheological elastomer constituents with 40% of 

iron particles mass 

msilicone oil, g mRTV(A), g mRTV(B), g mFe, g 

0.912  0.890  0.089 10.080 

 

Fig. 1. Preparation steps of anisotropic magnetorheological 

elastomer 

2.2. Experimental characterization 

The dynamic mechanical characterization tests (Fig. 2) 

were carried out on elastomer samples of 30 mm length, 

20 mm width, and 2 mm thickness. The applied test 

magnetic fields were parallel to the thickness direction of 

the sample, i.e., parallel to the chain direction of the 

particles. To determine the viscoelastic properties of 

anisotropic MREs subjected to variable temperatures and 

magnetic fields. The measurements were taken at 25 N 

force. 

 

Fig. 2. Dynamic mechanical analysis of MRE under temperature 
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3. RESULTS AND DISCUSSION 

3.1. Influence of temperature 

Temperature is one of the main factors that change the 

performance of magnetorheological elastomers (MREs). 

Thus, the study of the MREs mechanical behaviour, related 

to their physicochemical properties, varies significantly 

depending on the temperature, in particular in the glass and 

fluid transition zones. 

The results of the DMA tests carried out for samples of 

anisotropic magnetorheological elastomers exposed to 

variable temperatures and magnetic fields are represented 

by Fig. 3 – Fig. 5), the latter represent the dependence on the 

magnetic field of the elasticity modulus in shear G' , the loss 

modulus G'' and the loss factor η (η=G''/G') under different 

temperature values. Fig. 4 represents the temperature 

dependence of the elastic modulus G', Fig. 4 represents the 

temperature dependence of the loss modulus G'' and Fig. 5 

represents the temperature dependence of the loss factor η. 

Fig. 3 and Fig. 4 showed that the moduli G’ and G’’ of 

the magnetorheological elastomer decreased with 

increasing temperature. 

 

a 

 

b 

Fig. 3. Influence of temperature on the storage modulus: a – 30 % 

iron particles; b – 40 % iron particles 

When the temperature was 25 °C, the moduli G’ and 

G’’ were 1.6743 MPa and 0.2788 MPa, respectively. For a 

temperature value of 100 °C, the moduli G' and G'' 

respectively reached the values of 1.3321 MPa and 

0.1117 MPa, i.e. with a reduction of 20 % and 60 % 

respectively. 

We also note that the variation of the moduli G' and G'' 

as a function of the magnetic field intensity becomes linear 

in the range from 0.25 T to 0.5 T with low gradients 

compared to the nonlinear range from 0T to 0.25 T. 

 
a 

 

b 

Fig. 4. Influence of temperature on loss modulus: a – 30 % iron 

particles; b – 40 % iron particles 

Fig. 5 shows the variation of the loss factor as a function 

of the magnetic field intensity with different temperature 

values. 

 
a 

 
b 

Fig. 5. Influence of temperature on the loss factor: a – 30 % iron 

particles; b – 40 % iron particles 

It is observed that the loss factor decreased significantly 

with increasing temperature. For the magnetic field intensity 

value of 0.5 T, the loss factor has a value of 0.275 for a 

temperature of 25 °C and a value of 0.125 for a temperature 

of 100 °C, i.e. a decrease of 50 % approximately. We also 
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notice that the loss factor varies in a non-linear manner for 

low magnetic field intensities (B < 0.2 T), then beyond this 

value the curves converge towards a constant value, this 

means that the magnetic field reached a saturation value and 

the elastomer paste has entered the phase of complete 

crosslinking. 

Experiments show that anisotropic MREs produced 

with iron particles, RTV41 and silicone oil have the best 

characteristics when the mass of ferromagnetic particles is 

around 30%. We note that improvements in the storage 

modulus, loss modulus and loss factor are practically the 

same degree as for the MRE filled with 40% of the iron 

particle mass. The experimental data of the Dynamic 

Mechanical Analysis (DMA) characterization are given in 

Table 3 and Table 4. 

3.2. Influence of temperature-frequency 

Fig. 6 and Fig. 7 show the temperature-frequency 

dependence of the shear elastic modulus G', the loss 

modulus G'' and the loss factor under the influence of 0.5 T 

magnetic field intensity. 

 

a 

 

b 

Fig. 6. Influence of temperature-frequency on the storage 

modulus: a – 30 % iron particles; b – 40 % iron particles 

It can be seen that the storage and loss moduli (Fig. 6 

and Fig. 7) increase with increasing frequency. For a 

temperature of 25 °C, and with frequencies of 20 Hz and 

80 Hz, the storage modulus increases practically by 20 % 

and the loss modulus increases practically by 15 %. 

 

a 

 

b 

Fig. 7. Influence of temperature – frequency on the loss modulus: 

a – 30 % iron particles; b – 40 % iron particles 

On the other hand, for a temperature value of 100 °C, 

we notice a slight increase in the storage modulus, and a 

10 % increase in the loss modulus. 

We note, from Fig. 6 and Fig. 7, that increasing the 

percentage rate of iron particle mass slightly increases the 

mechanical MRE properties. We have a storage modulus of 

2.5 MPa for MRE filled with 30 % of iron particles mass, 

and a storage modulus of 3.3 MPa for MRE filled with 40 % 

of iron particles mass, for a frequency of 80 Hz. We have a 

loss modulus of 0.93 MPa for MRE filled with 30 % of iron 

particles mass, and a loss modulus of 1.25 MPa for MRE 

filled with 40 % of iron particles mass, for a frequency of 

80 Hz. This downward tendency of the G' and G" curves is 

even more pronounced when the MRE samples are 

simultaneously subjected to the magnetic field and high 

temperature. 

Table 3. Variation of elastic modulus, damping modulus and loss factor as a function of magnetic field intensity for different 

temperature values with 30% of iron particles 

  T = 25 °C T = 50 °C T = 75 °C T = 100 °C 

B, T G', MPa G'', MPa η G', MPa G'', MPa η G', MPa G'', MPa η G', MPa G'', MPa η 

0.00 0.8357 0.0585 0.075 0.8225 0.0590 0.072 0.8157 0.0575 0.071 0.7725 0.0493 0.064 

0.10 1.3473 0.1742 0.130 1.1873 0.1309 0.111 1.1646 0.1276 0.110 1.0443 0.0811 0.078 

0.20 1.6137 0.2495 0.155 1.3774 0.1575 0.115 1.2815 0.1459 0.114 1.1813 0.0968 0.082 

0.30 1.6474 0.2673 0.163 1.4447 0.1699 0.118 1.3526 0.1579 0.117 1.2846 0.1075 0.084 

0.40 1.6636 0.2739 0.165 1.4941 0.1773 0.119 1.3752 0.1625 0.118 1.3145 0.1103 0.084 

0.50 1.6743 0.2788 0.167 1.5247 0.1815 0.119 1.3848 0.1634 0.118 1.3321 0.1117 0.084 
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Table 4. Variation of elastic modulus, damping modulus and loss factor as a function of magnetic field intensity for different 

temperature values with 40% of iron particles  

  T = 25 °C T = 50 °C T = 75 °C T = 100 °C 

B, T G', MPa G'', MPa η G', MPa G'', MPa η G', MPa G'', MPa η G', MPa G'', MPa η 

0.00 0.8321 0.0592 0.069 0.7962 0.0634 0.080 0.7934 0.0577 0.073 0.7803 0.0510 0.065 

0.10 1.3502 0.2041 0.151 1.2501 0.1382 0.111 1.1801 0.1428 0.121 1.1345 0.1092 0.096 

0.20 1.6401 0.2536 0.155 1.3782 0.1638 0.119 1.2845 0.1632 0.127 1.2249 0.1397 0.114 

0.30 1.6514 0.2731 0.165 1.4735 0.1732 0.117 1.3741 0.1675 0.122 1.3337 0.1456 0.109 

0.40 1.6628 0.2784 0.167 1.5312 0.1808 0.118 1.3747 0.1701 0.124 1.3543 0.1538 0.114 

0.50 1.6801 0.2819 0.168 1.5333 0.1883 0.123 1.3869 0.1720 0.124 1.3594 0.1541 0.113 

 

It is therefore obvious that temperature has a more 

marked influence on the MRE dynamic moduli in shear in 

the presence of the magnetic field. The continuous decrease 

in the storage modulus can be explained by the temperature-

dependent of the MRE matrix rheological properties. The 

MRE matrix is generally made of a high molecular weight 

polymer, such as natural rubber or silicone rubber, used in 

this experiment. As the temperature increases, the 

increasing thermal movement of the molecular chains in the 

polymer gradually overcomes the interaction between the 

molecules. This results in relative movement between the 

molecular chains, which results in a continuous decrease in 

the overall modulus of the elastomer. 

4. CONCLUSIONS 

Recent magnetorheological elastomer composite 

materials are currently sought-after materials for several 

industries. Their advantages include a combination of light 

weight with efficient use of material leading to improved 

and adjustable mechanical properties by a magnetic field, 

particularly storage modulus, loss modulus and loss factor. 

In addition, other properties, such as rigidity, are very 

important for certain applications. The latter is due to the 

increase in the interaction force between the ferromagnetic 

particles. 

In this study, the influence of temperature as well as the 

frequency-temperature dependence on the mechanical 

properties of the magnetorheological elastomer were 

studied, it was observed that an increase in temperature 

decreases the mechanical properties, such as storage 

modulus, loss modulus and loss factor. On the other hand, 

increasing the frequency increases these latter properties. 

The increase in MREs magnetic field density 

strengthens the inter-particle’s magnetic attraction, which 

results in an increase in the storage modulus. As the applied 

magnetic field increases, particles are magnetized until 

saturation is reached, and at this point; inter-particle 

attractions no longer vary with further increase in magnetic 

field density. This means that the magnetorheological effect 

reaches its maximum. Moreover, energy dissipation in 

MREs mainly occurs at the interface between the matrix and 

the magnetic particles. Higher magnetic field density leads 

to increased internal friction between the magnetic particles 

and the MRE matrix. This increases the material's ability to 

dissipate energy, which results in an increase in loss 

modulus. 
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