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Due to high production costs, the production of activated carbon from waste has attracted a lot of attention recently. In 

this study, gelidium corneum (GC) was carbonized at 800 °C for 90 min. Its carbonization yield, adsorption capacity, and 

physical and chemical properties were investigated. Ultraviolet-visible spectroscopy (UV), X-ray diffraction (XRD), 

Fourier-transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), scanning electron 

microscopy (SEM), proximate analysis and ultimate analysis were performed. According to XRD analysis, the structure 

of GC is semi-crystalline, but the crystalline structure increases after carbonization. The carbonization yield of GC was 

about 39%. According to SEM, UV and XRD analysis, the carbonization process supported crystallinity and the formation 

of micropore/mesopore structures. The crystal violet (CV) removal and adsorption capacity were 96 % and 9.63 mg/g at 

an initial dye concentration of 50 mg/L, 30 °C, adsorbent dosage of 5 g/L, constant stirring speed of 200 rpm and 

equilibration time of 60 min, respectively. The carbonized gelidium corneum (cGC) can be used as a suitable adsorbent 

for the removal of dyes from aqueous solutions. It can also be an alternative product to commercial products because of 

its high adsorption capacity and cost-effectiveness. 
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1. INTRODUCTION 

Industrial wastes contain significant concentrations of 

dye [1]. Many methods, including chemical reduction, 

electrochemical purification, evaporation, chemical 

precipitation and adsorption, reverse osmosis, filtration, and 

ion exchange, are used to remove water contaminants 

[2 – 4]. Most of these are generally limited in their use due 

to their high cost, energy consumption, and the generation 

of large amounts of toxic waste [5]. However, activated 

carbons produced from bio-based wastes eliminate some of 

these disadvantages. Activated carbons, produced from 

many sources such as biomass and waste plastics, have a 

high surface area [6, 7]. Therefore, they are widely used in 

many applications such as separation/purification of gases 

and liquids, production of composite materials, 

catalyst/catalyst support, removal of toxic substances, 

supercapacitors, and electrodes [8 – 13]. The 

physical/chemical activation processes are generally 

applied to increase the surface area and surface activity of 

activated carbons [14]. After the carbonization process, 

numerous micropores, mesopores, and macropores are 

formed within their structures [15, 16]. If the 

physical/chemical activation is not done before/after 

carbonization, micropores may not form significantly 

[17, 18]. While the adsorption capacity of the carbons 

obtained from waste onions is 8.7 mg/g, the adsorption 

capacity of their activation with KOH is 18.6 mg/g [19]. Dil 

et al. [20] found that the CV dye adsorption of a commercial 

activated carbon was 35 mg/g, while zinc (II) oxide nanorod 

loaded on activated carbon (ZnO-NRs-AC) was 81 mg/g. 

Guo et al. suggested that sulfuric acid (H2SO4)-activated 
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carbons are more effective than CO2-activated carbons for 

removing ammonia (NH3). However, this improvement is 

not solely dependent on their surface area [21]. On the other 

hand, these processes could seriously increase production 

costs [22]. To produce an economical adsorbent, cost-

increasing additional processes should be avoided as much 

as possible. Therefore, in this study, waste biomass 

(gelidium corneum) was carbonized directly (only dried in 

the sun) without washing or drying, and no chemical or 

physical activation process was applied. The effect of the 

carbons on the removal of crystal violet (CV) from 

wastewater was then determined. Gelidium corneum (GC) 

is a well-known red seaweed that grows on sea coasts [23]. 

Many commercial products, such as agar, are derived from 

gelidium and are utilized in various industries, particularly 

in cosmetics and food [24, 25]. However, there are no 

available studies on the removal of CV from carbonized 

gelidium corneum (cGC). This study examined the physical 

and chemical properties of cGC and its potential for 

removing CV dye. 

CV is a cationic dye widely used in the industry [26]. 

Cationic dyes may easily interact with cell membrane 

surfaces and may also concentrate in the cytoplasm inside 

the cell, making them more harmful than anionic dyes 

[27, 28]. Additionally, CV is widely used in applications 

such as medicinal solutions and animal feeds [29]. 

However, these applications result in the generation of dye 

effluent, which is discharged into the sea and lakes through 

the sewage system. CV is considered harmful to biological 

life as it is a strong carcinogen and promotes tumor growth 

[30, 31]. Therefore, the removal of CV from wastewater is 

crucial for the environment and biological life. 
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2. MATERIAL AND METHOD 

2.1. Material 

In experimental studies, CV (Carlo Erba, purity: 99 %, 

C.I.:42555, Cas No: 548-62-9), whose molecular weight is 

407.98 g/mol and empirical formula is C25H30N3Cl [32], 

was used as adsorbate. CV solution was prepared by 

dissolving it in 1000 mg/L of distilled water. GC gathered 

on the shores of the Marmara Sea in Istanbul, Turkey. GC 

contains moisture of 6.0 %, ash of 22.4 %, volatile matter of 

68.3 %, and fixed carbon of 3.3 % (Table 1). As seen in the 

ultimate analysis of GC in Table 1, it contains carbon (C) of 

26.6 %, hydrogen (H) of 4.5 %, oxygen (O) of 62.1 %, 

nitrogen (N) of 2.6 %, and sulphur (S) of 4.2 %. The carbon 

content in the material is low but still higher than most 

biomass [33]. In addition, Fig. 1 shows the results of the 

EDX analyses performed on the 10 µm surfaces of the 

samples. 

The GC samples also contain calcium (Ca), potassium 

(K), silicon (Si), aluminum (Al), magnesium (Mg), 

phosphorus (P), chlorine (Cl), and sodium (Na). 

Table 1. Ultimate and proximate analysis 

Proximate analysis, 

wt.% 

Ultimate analysis, 

wt.%, daf 

Carbonization 

yield, % 

Moisture  6.0 Carbon (C)  26.6 

38.60 

Ash 22.4 Hydrogen (H) 4.5 

Volatile matter 68.3 Nitrogen (N) 2.6 

Fixed carbon* 3.3 Sulfur (S) 4.2 

 Oxygen (O*) 62.1 

*Calculated by difference 

2.2. Methods 

2.2.1. Analysis 

The microstructure of the natural gelidium corneum 

(GC) and the carbonized gelidium corneum (cGC) were 

examined by scanning electron microscopy (SEM, LEO 

EVO 40). The quantitative determinations of GC and the 

cGC were made with PerkinElmer Spectrum One FTIR 

(650 – 4000 cm-1, 2 cm-1 resolution and 128 scanning). 

Adsorption experiments were implemented with a UV-

visible spectrophotometer (Shimadzu UV-1700 

Pharmaspec) at 590 nm. 

2.2.2. Experiments 

The experimental procedure is given in Fig. 2. 

 
Fig. 1. EDX spectrum of GC 

 

Fig. 2. Experimental procedure 
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The equilibrium adsorption, qe (mg/g), was calculated 

using Eq. 1, and the percentage of CV removal (%) was 

determined using Eq. 2. 

𝑞𝑒 =
𝐶𝑖−𝐶𝑒

𝑚
. 𝑉; (1) 

𝑅𝑒𝑚𝑜𝑣𝑎𝑙 (%) =
𝐶𝑖−𝐶𝑒

𝐶𝑖
. 100, (2) 

where, qe (mg/g) represents the amount of dye adsorbed per 

unit mass of the cGC. Ci (mg/L) is the initial dye 

concentration of CV, and Ce (mg/L) is the equilibrium 

adsorption of CV, and m (g) stands for the amount of the 

cGC, and V (L) represents the volume of the solution. 

The carbonization yield of GC (Gy) was calculated 

according to Eq. 3. 

Gy (%) =
𝑊𝑎

𝑊𝑏
× 100, (3) 

where, Wb (g) is the dry weight of GC, and Wa (g) is the 

weight of carbonized GC. 

3. RESULTS AND DISCUSSION 

3.1. Characterization of adsorbent 

The carbonization yield of GC was 38.60 % under these 

conditions (Table 1). Duckweed's carbonization yield is 

34 % [32]. Slash pine wood's carbonization yield is 28 % 

[34]. The carbonization yield of rice husk chemically 

activated with sulfuric acid (H2SO4) and zinc chloride 

(ZnCl2) is 36 % and 32 %, respectively [35]. In summary, it 

can be said that the carbonization yield of GC is satisfactory. 

The structure of GC and the cGC were analyzed by 

SEM (LEO-EVO 40). SEM analyses of GC before and after 

carbonization are given in Fig. 3. As seen in Fig. 3 a, there 

were no porous structures in the surface morphology of GC 

before carbonization, while porous structures were observed 

after carbonization (Fig. 3 b). SEM micrograph of the cGC 

showed the presence of pores of different sizes, indicating 

that very rough and heterogeneous textures were formed. 

This is highly beneficial as it provides greater surface 

availability for adsorption, thus increasing the adsorption 

efficiency of CV [36, 37]. Fourier transform infrared 

(FTIR), which is used as a qualitative technique [38], was 

applied to determine the functional groups on the surface of 

gelidium corneum (GC) before and after carbonization. As 

seen in the FTIR spectrum of GC given in Fig. 4, O-H 

stretching at 3265 cm-1 [39], C-H stretching at 2927 cm-1 

[40, 41], C-H bending at 856 cm-1 [42], C=C stretching at 

1635 cm-1 [43], C-C stretching at 1436 cm-1 [44], C-OH 

stretching at 1019 cm-1 [45], and C-O-C symmetrical 

stretching at 1229 cm-1 occurred [46]. Most of these bands 

disappeared after carbonization (cGC). This may have been 

caused by the high carbon content of the cGC. 

As the ratio of elements such as hydrogen (H) and 

oxygen (O) in a substance decreases, their bands in the FTIR 

spectrum disappear [47]. After carbonization of the cGC, 

many of these peaks disappeared, and the hydroxyl group 

peak of 3286 cm-1 shifted to 3773 and 3656 cm-1, and the C-

O stretching peak of 1019 cm-1 shifted to 1107 cm-1, and the 

C-O stretching peak of 1436 cm-1 shifted to 1430 cm-1, and 

the C≡C stretching band of 2347 cm-1 appeared. 

 

a 

 

b 

Fig. 3. SEM image of GC: a – before carbonization; b – after 

carbonization 

 

Fig. 4. FTIR analysis 

The cGC appeared the strong bands at 2347 cm-1 (C≡C 

stretch) and 1107 cm-1 (C-O stretch), and weak bands at 

3780 and 3652 cm-1 (O-H stretch). The cGC showed the 

presence of many functional groups, binding sites 

responsible for CV absorption. 

The prediction of the adsorption mechanism of CV dye 

on the cGC surface is shown in Fig. 5. The positively 

charged groups of CV and the negatively charged groups of 

the cGC surface may contribute to the electrostatic forces 

[48]. 
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Fig. 5. Illustration of the possible interaction between the cGC 

surface and CV (H-bonding, n-π stacking, and electrostatic 

forces) 

H-bonding may occur between the hydrogen on the 

surface of the cGC and the nitrogen atoms in the structure 

of the CV dye [49]. The n-π interaction may have played a 

role in CV adsorption through the interaction between the 

cGC surface and CV aromatic rings [50]. 

The physical properties, chemical composition and 

crystallographic structure of GC and the cGC were 

investigated by X-ray diffraction (XRD) analysis (Fig. 6). 

As can be seen in Fig. 6, in the XRD analysis of GC, a broad 

diffraction peak occurred around 2θ = ~22°, corresponding 

to the diffraction of the (002) planes, which corresponds to 

the typical graphite plane [51]. 

 

Fig. 6. XRD patterns of GC and cGC 

The broadening of the peak indicates the presence of 

amorphous carbon and a low degree of graphitization [52]. 

In addition, distinctive diffraction peaks occurred at 31°, 

45°, 56° and 75°. This may have been caused by the 

presence of many elements (C, O, H, K, Ca, S, Si, P, Mg, 

Al, Cl, Na) in the content of GC (Fig. 1). It can be said that 

GC has a semi-crystalline structure due to the formation of 

a wide diffraction peak at about 22°, and prominent peaks at 

31°, 45°, 56° and 75°. However, carbonization of GC (cGC) 

at 800 °C, 2θ = 22° wide diffraction peaks almost 

disappeared, and 20°, 26°, 28°, 30°, 31°, 39°, 40°, 42°, 44°, 

45°, 50°, 55°, 62° and 74° diffraction peaks occurred. In 

XRD phase analysis, it was indexed to correspond to sylvite 

(KCl) at 28° and 40° [53], and calcium sulfide (CaS) at 31°, 

44°, 55° and 74° [54], and silicon tetrachloride (SiCl4) at 

45° and 50° [55], and silica (SiO2) at 20°, 26°, 30°, 39°, 42° 

[56, 57], and magnesium oxide (MgO) at 62° [58]. The 

presence of these elements was supported by EDX analysis 

(Fig. 1). This shows that the graphite structure is destroyed 

and porous structures are formed [59], which is quite 

compatible with the SEM image given in Fig. 3. 

3.2. Adsorption capacity of adsorbent 

CV dye removal of carbonized GC (cGC) and the 

results obtained in current studies are given in Table 2. 

Adsorption experiments were carried out under specified 

conditions, which were 30 °C, pH:6, adsorbent dosage of 

5 g/L, contact time of 60 min, and initial concentration of 

50 mg/L. The removal (%) and adsorption capacity were 

96 % and 9.63 mg/L, respectively. Activated with NaOH, 

the NAJL achieved 98 % removal with the adsorbent dosage 

of 0.4 g/L, while the cGC was 96 % at the adsorbent dosage 

of 5 g/L (Table 2). Chemical and physical activation can 

improve the pore structure and surface areas of carbons, 

although they increase the cost of adsorbent production 

[60, 61]. The cGC provided more CV removal than the 

cWC. The activated carbon lemon wood/Fe3O4 provides 

98 % removal at the initial concentration of 10 mg/L, while 

the cGC can reach at higher (50 mg/L) initial 

concentrations. Compared to the existing adsorbents used in 

CV removal given in Table 2, it can be said that the 

adsorption capacity of the cGC is satisfactory. 

 

 

 
 

Table 2. Removal of CV 

Sample name 
Chemical/physical 

treatment 

Adsorbent 

dosage, g/L 

Initial 

concentration, mg/L 

Removal,

% 
qe, mg/g  

cWC (Carbonized waste coffee) none 5 50 25 2.52 [62] 

cDW (Carbonized duckweed) none 5 50 96 9.62 [32] 

Activated carbon lemon wood/Fe3O4 commercial 5 10 99 ~2 [63] 

Functionalized multi-walled carbon 

nanotubes (fMWNTs) 
commercial 0.5 50 82 90 [64] 

NaOH-activated aerva javanica leaf (NAJL) NaOH 0.4 50 98 3.7 [65] 

PLAC (Poultry litter activated carbon) ZnCl2 2.5 50 92 70.3 [66] 

cLM/HS (Carbonized hazelnut shell and 

lemna minor) 
none 1 100 88 87.95 [67] 

Fe3O4-MNPs (Magnetic nanoparticles 

modified with NaC12H25SO4) 
NaOH 0.25 10 80 166.67 [68] 

cGC none 5 50 96 9.63 This study 

2 8 14 20 26 32 38 44 50 56 62 68 74 80

In
te

n
si

ty
,

cp
s

2θ, °

GC

cGC



 

564 

 

The adsorption capacity of the cGC can be further 

increased by determining adsorption parameters such as 

absorbent dose, initial dye concentration, contact time, pH, 

and temperature. 

4. CONCLUSIONS AND SUGGESTIONS 

In this study, gelidium corneum (GC) carbonized at 

800 °C for 90 min was characterized and its effectiveness 

was determined by the removal of crystal violet (CV) found 

in industrial wastewater. The obtained results are provided 

below. 

1. Proximate analysis shows that the GC contains 22.4 % 

ash, 6.0 % moisture, 3.3 % fixed carbon, and 68.3 % 

volatile matter. 

2. Ultimate analysis indicates that GC consists of 

26.6 % C, 4.5 % H, 2.6 % N, 4.2 % S, and 62.1 % O. 

3. According to EDX analysis, GC contains various 

elements such as C, K, Ca, S, Si, O, P, Mg, Al, Cl, and 

Na. 

4. The carbonization yield of GC is 38.60 %. 

5. FTIR analysis shows that the peaks of the functional 

groups of GC changed after carbonization. 

6. SEM analysis reveals the formation of numerous 

porous structures after carbonization. 

7. According to XRD analysis, the semi-crystalline 

structure of GC changed significantly to the crystalline 

structure after carbonization. 

8. The cGC absorbent demonstrated a 96 % removal rate 

and an adsorption capacity of 9.63 mg/L for CV dye. 

The cGC absorbent was proven to be both effective and 

inexpensive in the removal of CV dye from wastewater. 

Further research is needed to determine the optimal 

adsorption parameters for the cGC absorbent in CV 

removal. 
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