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In the present work, a ceramic-metal matrix composite coating with the optimization and modelling of mechanical 

properties of Ni added SiC powders was studied on 45 steel by laser cladding. An artificial intelligent approach, which 

uses adaptive network fuzzy inference systems (ANFIS) based on experimental designs, is used to model the tribological 

behaviour of welds. An orthogonal array experiment is used and the effect of the deposition parameters on the welds is 

determined. Based on the average analysis and analysis of variance (ANOVA), four important factors are taken as inputs 

for the fuzzy logic inferences, while the loss of wear was taken as the output of the ANFIS. The welds are analysed using 

scanning electron microscopy (SEM) and wear tests are performed, using a pin-on-disk tribometer. This study identifies a 

group of highly developed needle-like dendrites and finer eutectic crystals, and lower wear volume loss is evident in the 

Ni-SiC welds. The ANFIS model based on Taguchi's design provides a better response pattern which shows extremely 

good fitting. As a result, satisfactory results are obtained between the predicted and experimental values of wear on laser 

coated Ni-added SiC welds, thereby validating the reliability and feasibility of this method. 

Keywords: silicon carbide, ANFIS neural network, wear properties, metal matrix composite and laser cladding. 
 

1. INTRODUCTION 

Available in industrial applications, metal matrix 

composites in the form of coatings for hard surface 

environments with protective powers against high 

temperature, wear, corrosion, impact and fatigue, are of 

much attention, especially in the fields of cutting tools, 

turbine blades, engine valves, and so on. Recently, there has 

been a great deal of interest in the use of ceramic matrix 

composites including carbides, nitrides and borides on steel 

and non-ferrous alloys, because of their integrated 

properties, which have proved to be an excellent protective 

material in additive manufacturing [1, 2]. These carbides 

can effectively improve the wear resistance of metal matrix 

composites. Silicon carbide alloys possess a high melting 

point (2500 °C) and hardness (2700 kgf/mm2), which are of 

importance for sandpaper, grinding wheels and cutting 

tools, which has long been used by manufacturers for 

equipment such as bearings in high-temperature 

environments, heated mechanical parts, automotive brakes 

and even knife-sharpening tools [3 – 6]. In addition, silicon 

carbide possesses a unique combination of properties such 

as excellent oxidation resistance, high- temperature strength 

retention, high wear resistance, high thermal conductivity, 

good thermal shock resistance and, above all, elastic 

resistance at temperatures up to 1650 °C making it very 

versatile, which are commonly used in areas such as electric 

vehicles, solar energy systems and data centres due to their 

low cost, high voltage demands with prowess, abrasion and 

corrosion resistance. Therefore, it is recognised as an 

important structural ceramic material. 

Silicon carbide alloys have high wear and corrosion 
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resistance and are therefore widely used in severe 

environments such as high temperatures, abrasion, 

corrosion, impact, and fatigue [7 – 9]. It has a promising 

potential to be applied in the manufacture of metal-ceramic 

composite coatings by laser cladding. Whereas, it is difficult 

for typical silicon carbide alloys to meet the requirements of 

workpieces in harsh operating environments due to the high 

melting point of silicon carbide alloys, which makes them 

susceptible to porosity or cracking in the liquid state, as well 

as their high hardness and brittleness, which makes them 

difficult to machine. Moreover, a series of drawbacks of 

cemented carbides have been noticed, including diminished 

strengthening, non-uniform distribution, thermal stress 

concentration and crack formation, especially in high 

volume fraction cemented carbide coatings, thereby limiting 

the application of cemented carbides [10 – 13]. Facing some 

of these challenges, various kinds of surface modification 

techniques, including composite coatings with transition 

metals, have been investigated due to their good wettability 

and ductility. There is a requirement to extend some useful 

self-melting alloys to high carbide silicon carbide to 

improve the properties of silicon carbide composites 

through further in-depth exploration. Recently, several 

researchers have worked on developing different methods to 

improve the performance of high carbide coatings [14 – 16]. 

These methods are designed to eliminate some of the defects 

in the weld, such as preheating the base material, 

functionally graded coatings, the addition of self-melting 

alloy and laser-induced hybrid welding. Available 

publications have addressed the use of metal matrix 

composites with self-melting alloys for the manufacture of 

metal-ceramic coatings by laser cladding [17 – 19]. These 
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powders possess a binder phase that protects the carbide 

against oxidation and decomposition [20 – 21]. They are 

usually formed by adding transition metals as binder phase 

materials to brittle carbides to form metal-ceramic 

composites, thus reducing structural defects in highly brittle 

carbides during laser cladding. Based on the above 

literature, many studies have shown that metal matrix 

composites with binder phase additives in highly wear- and 

corrosion-resistant environments have the potential to 

improve the susceptibility problem of ceramic reinforced 

coatings during laser cladding, and these results have been 

successfully applied by industry. However, the laser 

cladding process is a highly nonlinear, multivariate, strongly 

coupled and complex process with a large number of 

stochastic uncertainties, where decisions often need to be 

made based on experience, but without good results [22]. It 

is highly difficult to control the effect of mechanical 

properties of metal-ceramic composite deposits under the 

combination of multiple parameters, using trial and error 

methods. Thus, in order to control the mechanical properties 

of metal-ceramic composites that are made by laser 

cladding, several new attempts are needed. 

Methods such as response surface methodology, 

artificial neural networks, and fuzzy inference systems are 

utilized most popularly for manufacturing process 

modelling. Yet, constructing appropriate fuzzy membership 

functions and fuzzy rules is indeed a difficult and time-

consuming task. Therefore, a method that employs the 

integration of both neural networks and fuzzy logic is 

needed, because of their ability to produce adaptive 

predictions, models complex processes using a small 

amount of data in a short period of time. Although the 

optimisation of metal-ceramic composites applied to the 

welding process has been reported in the literature, the study 

of optimising the performance of nickel-doped silicon 

carbide by laser cladding using adaptive network fuzzy 

inference systems (ANFIS) in Taguchi's method is 

seemingly yet to be reported.  

In this study, an ANFIS neural network algorithm based 

on Taguchi's experiments is established through the 

identification of suitable combinations of control factors 

that improve the wear performance of laser-coated silicon 

carbide welds. A model of the wear performance of laser-

clad Ni/SiC welds by parameter combinations is 

established. This experiment allows us to understand the 

effect of various variables on Ni-SiC welds and to simulate 

the tribological behavior of welds by laser cladding in order 

to obtain better wear quality. It not only evaluates the effect 

of the parameters on the response, but also optimizes the 

parameters so that the tribological properties of the laser-

coated weld can be better understood. 

2. EXPERIMENTAL DESIGN AND ANALYSIS 

2.1. Materials and preparations 

The laser cladding equipment used in this test is 

composed of YLS-3000 fiber laser, a six-axis robotic arm, a 

laser water cooler and a PLC control system as shown in 

Fig. 1 a. In addition, the laser cladding experiments use 

axial nozzles in Fig.1b, which utilizes nitrogen to carry the 

cladding powder from the feeder to the melt pool, thereby 

generating protective welds during the process of deposits. 

It uses an IPG YLS-3000 fiber laser with a maximum power 

of 3000 W and a wavelength of 1.07 μm. Nickel alloy 

powders are applied into silicon carbides that formed metal-

ceramic composite welds in order to improve the properties 

of the highly hardened silicon carbide. The microstructure 

of the nickel-added silicon carbide deposits is examined 

using a scanning electronic microscope and energy 

dispersive spectrometry (Hitachi S-2600H, Tokyo, Japan). 

In the wear test, the surface of the weld material is tested for 

wear resistance by performing a reciprocating wear test 

using a UMT-2 scratcher. The wear volume is calculated by 

measuring the trajectory area of each contact surface with a 

3D surface profiler, which is used in conjunction with a 

scanning electronic microscope that observes the surface. 

  

a b 

Fig. 1. a – laser cladding equipment used in this test; b – a 

schematic picture of the laser cladding process 

2.2. Experimental design and layout 

With laser cladding, a number of controlled variables 

are required to minimize unwanted defects in the weld.  

Therefore, the variables of laser cladding must be 

controlled. Table 1 shows the control factors and the level 

of each factor in the Taguchi design, where six 3-level 

factors containing A, B, C, D, E, and F were allocated to the 

orthogonal arrays. These factors and their alternative levels 

that were used in the experiment are listed in the orthogonal 

array (36). In order to evaluate the influence of factors on the 

response, Taguchi suggests using a special form of response 

transformation called signal-to-noise ratio (S/N), which 

measures quality with emphasis on variation [11]. 
 

 

Table 1. The control factors and levels of the Ni ratios for the SiC mixtures in this study 

Level Ratio of powder, 

% 

Preheat 

temperature, ℃ 

Laser 

power, W 

Carrier gas flowrate, 

mL/min 

Scanning speed, 

mm/s 

Stand-off distance, 

mm 

1 100%SiC+0%Ni 25 1000 1400 2 15 

2 90%SiC+10%Ni 100 1400 1600 4 20 

3 80%SiC+20%Ni 200 1800 1800 6 25 

 

Laser gun 

Substrate 

Bench 

Direction 
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The S/N ratio based on the loss functions is calculated 

from Eq. 1: 

S/N𝑖 = −10Log∑ [(�̅�𝑖 −𝑚)2 + 𝑆𝑖
2]𝑛

𝑖=1 , (1) 

where y̅i is the mean and Si is the standard deviation of the 

ith trial, m is the predefined value of 18 triails, which is 

measured in decibels. The S/N ratio was calculated, and the 

mean and standard deviation of each variable are 

summarized in Fig. 3. Each trial was repeated three times 

for wear volume, which was analyzed for rank order and 

maximal values using mean value analysis with the S/N 

ratio, analysis of variance (ANOVA) was also used again to 

determine the significant factors for each quality 

characteristic. Subsequently, predictions of quality 

characteristics were made using these factors incorporated 

into the ANFIS model. 

2.3. Adaptive network based fuzzy inference 

system 

An adaptive neuro-fuzzy inference system (ANFIS)is a 

hybrid predictive model that uses both neural networks and 

fuzzy logic, which is a method for generating mapping 

relationships between inputs and outputs. The structure of 

the model consists of five layers, where each layer consists 

of several nodes. As with neural networks, the inputs to each 

layer in the ANFIS structure are obtained from the nodes in 

the previous layer. Fig. 2 depicts the architecture of ANFIS. 

It is deduced from Fig. 2 that the network consists of m 

inputs (X1, ..., Xm), where each input is organized by n 

membership functions. In addition, the layer containing R 

fuzzy rules and the output layer are useful at building the 

model. The number of nodes in the first layer can be 

calculated as the product of m (number of inputs) and n 

(number of fuzzy functions) (N = mn). The number of 

nodes in the other layers (layers 2 – 4) is linked to the 

number of fuzzy rules (R). Fig. 2 shows the topology of the 

proposed ANFIS for wear volume loss. For more details on 

the implementation of the ANFIS network, it is referred to 

the literature [13]. ANFIS uses membership functions for 

several sets while employing the linear functions of the 

Sugeno type for the rule output. Various types of 

membership functions (MF) are used, such as triangular, 

trapezoidal, gaussian, and bell functions. The architecture of 

the neuro-fuzzy model consists of five unique adaptive 

layers. Takagi and the Sugeno proposed the T-S fuzzy 

model in 1985. The model was later called Sugeno fuzzy 

model. It is a nonlinear model that expresses the dynamic 

properties of complex systems and is the most commonly 

used fuzzy inference model. An example of a simple fuzzy 

inference system, is a first-order model of fuzzy Sugeno that 

is a typical rule base, which contains two If-then rules can 

be expressed as follows: 

Rule Rij: if x1 is A11, x2 is A12, …, and xn is Anj;  

then yj = f(x1, x2, …, xn) i = 1, 2, …, n; j = 1, 2, …, k, (2) 

where xi is the antecedent input, Aij is themembership 

function and f(x1, x2, …, xn) represents the outputs in the 

consequent part. Typically yj = f(x1, x2, …, xn) is a constant 

or linear. The following is a brief description of the Sugeno 

first-order model with two input variables. 

Layer 1: The input Xi is fuzzified by the membership 

function that is transformed to obtain the membership 

degree of the linguistic type Aij (e.g., large, medium, small) 

in the interval [0,1]. The output, Oij, of this layer can be 

expressed as 

Oi1 = µij(Xi), i = 1, 2, ..., n, j = 1, 2, ..., m, (3) 

where μij is the jth membership function for the input Xi. 

Layer 2: The firing strength of each rule is obtained by 

multiplying the degrees of membership of each rule; 

Layer 3: The trigger strength of each rule obtained by 

the previous layer is normalized to characterize the trigger 

weight of the rule in the whole rule base; 

Layer 4: Calculated results of a linear combination of 

input functions using normalized weights(w); 

Layer 5: The output of the calculation is the sum of the 

results of the linear combination of the normalized weights 

(�̅�𝑖) of each rule.  

Oi5 = ∑ w̅i
n
i=1 fi(x1,x2,… ,xn). (4) 

In this paper, in order to make the training more stable, 

the parameters in the model are divided into the premise and 

consequent parameters, which are learned by a mixture of 

the backpropagation algorithm and the least squares 

method. The least squares estimation of the consequent 

parameter is performed in the forward propagation process, 

whereas only the premise parameter is updated in the 

backpropagation process.  The total number of experimental 

data used to generate the ANFIS model was 36. In this 

study, 21 training data and 15 test data were used. 

 

 

Fig. 2. A framework of ANFIS model with five layers including a fuzzy layer, a rule-based layer, a normalization layer, an inference layer 

and an output layer 
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The Root Mean Square Error (RMSE) function is 

applied to this network to check the performance of the 

trained model. 

It is calculated using the following formula: 

Oi5 = ∑ w̅i
n
i=1 fi(x1,x2,… ,xn) , (5) 

where m is the total number of training sample, di is the 

real output value, and yi is the ANFIS output value in 

training algorithms. 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

3.1. Experimental analysis based on orthogonal array 

Fig. 3 shows the results of the L18 experiments in 

which the wear resistance of the welds with nickel added to 

silicon carbide was evaluated for each experimental test by 

calculating the S/N ratio from the experimental values and 

standard deviations. The experimental results show that 

there is a great difference in wear resistance compared to the 

substrate with an increase of about 4 times, while the wear 

volume loss in the wear test is reduced accordingly, which 

indicates good wear resistance. In trials 4, 5, 14 and 17, wear 

volume exceeded 90 × 10-5mm3, i.e. the lower the S/N ratio, 

the more it indicates heavier wear, while in trials 2, 6, 15 

and 18, wear volume is lower than 40 × 10-5mm3, i.e. the 

higher the S/N ratio, the more it indicates smaller wear. 
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Fig. 3. Comparison of signal-to-noise ratio and wear volume with 

a standard deviation of nickel-added silicon carbide welds 

by laser cladding 

3.2. Microstructure of the weld zone of laser cladding 

The SEM micrographs of the cladding weld are shown 

in Fig. 4, where the microstructures of the Ni added SiC 

grains can be visualised, while the chemical compositions 

of Ni doped SiC welds obtained by EDS are given in 

Table 2. Due to the different contents of nickel in the silicon 

carbide in the molten pool during the laser cladding process, 

different forms of carbides and precipitates are induced in 

the composite coatings. The EDS results for the typical 

regions that were marked with trials 2, 7, 13, and 17 are 

shown in Fig. 4. As shown in the left-upper zone of Fig. 4, 

there is a cladding zone, a heat-affected zone, and a substrate 

in the cross-section of the deposits, respectively. The 

micrographs in Fig. 4 further show that the dendritic 

protrusions melt zone is much coarser near the interface 

between the melt zone and the heat affected zone. In 

addition, it can be observed that the fine dendritic patterns 

are denser near the boundary of the crystalline grains. The 

cladding zone is a grey zone and the heat affected zone is a 

bright grain zone. Fig. 4 a shows that the interface between 

the molten zone and the substrate is found to be well 

adherent and free from defects. There are some grey areas 

in the weld zone containing small dendritic crystals and fine 

microstructures, while the white areas have irregular needle-

like structures, some pits and less crack. Black graphite, 

pores, cracks, roughness and surface irregularities are 

evident in the cross-section cladding zone shown in the left-

upper zone of Fig. 4 b. The thickness of the melt layer is 

about 3 – 5 microns, which is much less than that produced 

by the other fractions. As shown in the magnified view of 

Fig. 4 b, the melting zone of the laser cladding contains 

irregular unmelted SiC particles and a large number of 

eutectic nanocarbides at trial 7. In addition, the white areas 

of the melting zone show blocks of unmelted Si- and C-type 

phases with fine grains growing around them, while the 

light-colored areas show the formation of eutectic crystals 

enriched with Fe, Ni, and O phases. Unfortunately, the 

partial dissolution of SiC on the melt could not be avoided 

in this study. This is due to the difference in the temperature 

gradient of the melt pool between the white and dark zones, 

which affects the subsequent solidification and the 

corresponding structure during the deposition of the 

cladding. By comparing Table 2 and Fig. 4, it can be seen 

that Fig. 4 b contains more Si and C elements while less O 

than Fig. 4 a in the EDX analysis of the laser cladding. This 

can also be observed from the SEM observations that the 

different structures of carbides containing undissolved 

silicon carbide particles, precipitates, dendrites, blocks, 

grains and graphite are almost randomly distributed in the 

melt pool. As shown in Fig. 4 c, the grain growth was 

incomplete, where eutectic grains could be seen along the 

grain boundaries, as shown in the upper part of the SEM 

micrograph. A typical area labelled Test 13 in Fig. 4 c is 

shown in Table 2 with EDS results. The elemental 

distribution of the melting zone by X-ray diffraction shows 

white areas rich in C and Fe while less O, Si and Ni, which 

are dominated by silicon carbides (SiC), iron carbides 

(FeC3) and iron silicides (Fe2Si) [9]. As shown in Fig. 4 d, 

most of the molten zones containing cloud-shaped grey 

clusters of Fe and coarse particles of fused SiC can be 

clearly seen in the cladding layers. The analysis of test 17 

by EDS is shown in Table 2.  

Table 2. The chemical composition of silicon carbide with nickel 

additives by wt.% of atomic concentration as shown by 

EDS surface analysis in Fig. 4 

No. of trials 
Atomic concentration, % 

C O Si Fe Ni 

Trial 2 20.2 37.5 0.41 41.9 0.00 

Trial 6 18.9 35.9 0.09 45.1 0.00 

Trial 13 0.00 82.8 0.70 16.4 0.00 

Trial 17 0.00 28.5 0.13 71.4 0.00 

Coarsened carbides are found in the white areas, while 

Fe, O, and Ni phases are visible in the darker areas. The 

decrease of carbon to 88.655 % and the increase of O and 

Fe by more than a factor of 4 in the molten areas indicate 

that most of the SiC base has melted in the white area. As 

mentioned above, the SiC particles have been fully 

dissolved in the cladding zone, where the initial 

precipitation of carbides is detected in the white areas and 
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many finer Fe- and Si-based phases in darker areas. Uneven 

distribution is observed throughout the melting zone. On the 

other hand, the grains of silicon carbide are completely 

melted without any defects in the SEM micrographs. These 

results are not good for anti-wear. 

 
c d 

Fig. 4. SEM microstructures and coating profiles of various tests 

in the cladding deposits (small image at the top left of the 

SEM) containing the melt zone, the heat affected zone and 

the substrate: a – test 2; b – test 7; c – test 13; d – test 17 

3. 3. Wear properties of Ni mixed SiC deposits 

The results of the tests on the worn volume of various 

coatings are given in Fig. 3, where various patterns and EDS 

analysis of wear can be visualised. The distribution of wear 

volume was 32.65 × 10-5 mm3, 65.43 × 10-5 mm3, 

80.35 × 10-5 mm3 and 117.84 × 10-5 mm3 in Trial 2, Trial 7, 

Trial 13 and Trial 17 respectively, which indicates that they 

are significantly lower than that of the substrate. As can be 

seen in the upper-right plot of Fig. 5, the integral method is 

applied to the areas of wear tracks on each cross-section, 

where wear is more serious in the blue areas while less in 

the red areas. Fig. 5 a shows a three-dimensional 

topographic profile of the wear track of the Test 2 sample, 

as well as a photograph of the two-dimensional profile for 

wear. It has minimal wear volume in the orthogonal array. 

The 2D topography of the corresponding wear scars on the 

wear surface shows deep grooves with smooth, broad 

continuous trajectories, reflecting a wear depth of 1.75um. 

In addition, the EDS analysis shown in Table 3 indicates 

that the wear surface is rich in C, O and Fe as well as a small 

amount of Si. Obviously, hard silicon carbide and its 

tungsten carbide counterpart are easily prone to form wear 

barriers when they wear against each other. This is mainly 

due to the high carbide hardness caused by the abrasion 

mechanism. 

Table 3. The distribution of the EDS spectrum of worn patterns 

with test 2, test 7, test13 and test17 from the track for 

welded joints. 

No. of trials 
Atomic concentration, % 

C O Si Fe Ni 

Trial 2 94.3 0.21 0.01 5.38 0.05 

Trial 7 96.0 0.02 0.16 3.74 0.09 

Trial 13 96.2 0.19 0.18 3.41 0.00 

Trial 17 88.7 0.91 0.01 20.4 0.07 

 

 

  

a b 

  

c d 

Fig. 5. The 3-D topographs of the wear track by wear test with the cross-sectional profile included: a – trial 2; b – trial 7; c – trial 13; 

d – trial 17 for cladding welds 

b a 

25µm 25µm 

25µm 25µm 
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Therefore, these coatings are protected by the carbides 

which are difficult to remove after wear. Similarly, in the 

case of test 6, the wear mechanism of the worn surface is 

close to that of test 7. As shown in Fig. 5 b, the worn surface 

is covered with a number of uneven pits with abrasion marks 

that are 2.75 µm deep. Some of the light green areas showed 

less deformation and fewer transferred fragments, which 

suggested the presence of a wear mechanism. Furthermore, 

the results of the EDS analysis shown in Fig. 5 b are given 

in Table 3. Compared to Fig. 5 a, the wear surfaces have 

lower C and O contents while the Fe content is higher. There 

are several noticeable bands of plastic deformation in the 

area of adhesive. The wear zone is characterized by the 

presence of a higher amount of Fe in the austenitic dendrites. 

This situation leads to several bands of marked plastic 

deformation, which become sensitive to wear. Hence, it is 

hardly expected that the wear resistance in this region can 

be improved. Compared to Fig. 5a, Fig. 5 b shows deeper 

grooves on the wear surface with several smooth, extensive, 

and continuous tracks, reflecting more than four times the 

amount of wear. The wear surface shows greater areas of 

plastic deformation (blue) and very few traces of wear 

debris (red) under test13 as shown in Fig. 5 c. This shows 

significant signs of adhesive wear and severe plastic 

deformation. Similarly, there is also evidence from the EDS 

analysis results shown in Table 3 that the wear surface is 

rich in O and Fe with small amounts of Si. More wear 

damage can be seen in Fig. 5 d. In addition, the results of the 

EDS analysis shown in Table 3 indicate that the wear 

surface is enriched with O and Fe, while Fe is nearly three 

times as much as O atoms. Apparently, the iron fragments 

of the substrate contacted by the corresponding parts were 

carried into the wear track. The blue-colored area shows 

higher Fe content, where metal oxide film is formed during 

the sliding process. The main reason for this phenomenon is 

that the coating is damaged by its high hardness counterpart 

during wear, resulting in the wear surface containing a large 

amount of iron, which proves that the coating is no longer 

able to protect the substrate. The EDS analyses shown in 

Table 3 indicate that the wear surfaces do not contain C and 

Ni. It is clear that the hard surfaces of hard silicon carbide 

and tungsten carbide are unable to form wear barriers when 

they wear against each other. Accordingly, the C and Ni 

bonded carbides are detached from the coatings. That is, 

there is too much iron in Fig. 5 c and d on the worn surface 

that the coating cannot withstand much wear. Consequently, 

wear resistance cannot be improved. However, with the 

increase in wear volume, adhesive wear becomes more 

significant than abrasive wear. The wear resistance of laser 

welded joints is significantly improved due to the high 

amount of carbides in the weld. 

3.4. Effect of Ni additive mixed SiC on wear properties 

The effects of mean values can reflect the importance 

of the relative performance between each of the control 

factorial levels. The S/N was applied according to Eq. 1 in 

Fig. 6, and the average response and ranking of effects in 

the experimental results were evaluated. The ranking of 

factorial effects in Fig. 6 further shows that factors C, D, E 

and F strongly influence wear variability, whereas A and B 

are less influential. As seen in Fig. 6, A3, B1, C3, D2, E1 

and F2 have the largest values with the greatest impact on 

the amount of wear. i.e., they are the optimum values. 

Furthermore, a further analysis of variance was done in 

Table 4 to validate the significance of the control factors in 

Fig. 6. Table 4 shows the mean square of the six control 

factors, which illustrate the relative impact of the factors on 

reducing variation. In this study, Based on AVOVA, we 

chose laser power (C), carrier gas flow rate (D) scanning 

speed (E), and spacing (F) to be of great importance, 

whereas nickel added SiC content (A), and preheating 

temperature (B) were less important, as shown in Table 4. 

We again recognize the most important factors obtained 

from the average factor analysis. They were identified to be 

further incorporated into the predictors of the ANFIS for the 

worn volume losses of the weld by laser cladding. 

Table 4. An ANOVA table for S/N ratios during the worn volume 

losses of welds by laser cladding 

Control 

factors 

Sum of 

squares 

Degrees of 

freedom 

Mean 

square 

A 20.138 2.0 10.069 

B 19.702 2.0 9.851 

C 334.066 2.0 167.033 

D 49.774 2.0 24.887 

E 51.961 2.0 25.981 

F 37.953 2.0 18.977 

Error 356.281 41.0 8.690 

Total 869.876 53.0 16.413 

 

 

Fig. 6. The main effect for S/N ratios during the wear volume of 

welds by laser cladding 

3.5. Factorial effects and their optimization based 

on wear behaviors 

To estimate the optimal performance of the welds used 

in the tests, each test was repeated three times in different 

areas of the worn tracks. Fig. 2 shows the results and S/N 

ratios using formulas that satisfy the smaller-is-better 

property. The optimal setting for the factorial levels is 

A3B1C3D2E1F2. That is, the optimal parameters are 

determined in accordance with the effect of the S/N ratio, so 

the Ni doped SiC welds can be clearly distinguished. The 

optimal parameters for the sputtering process are: a ratio of 

powder of 80%SiC +20%Ni, a preheat temperature of 

25 °C, a laser power of 1800 W, a flowrate of carrier gas of 

1600 mL/min, a scanning speed of 2 mm/s, and a stand-off 

distance of 20 mm. In all 18 sets of orthogonal array 

experiments, we selected 4 sets with well distributed results 

such as sets 2, 7, 13 and 17 in comparison with the optimal 

parameters. The lower the wear resistance, the closer it is to 
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the left side of the graph, as shown in Fig. 7. Using a 

Gaussian plot, the finest bold solid curve shown on the left 

side of Fig. 7 indicates the best test, which produces the 

smallest wear volume loss with only a small deviation. It is 

evident that the optimal settings of the control factors are 

significantly resistance to variability, which indicates good 

reproducibility. 

 

Fig. 7. Comparison of probability density for the five trials in the 

orthogonal table with trial 2, trial 7, trial 13, trial 17 and the 

optimal trial 

3.6. Predictive results of ANFIS models 

To understand the performance of ANFIS, the 

significant parameters such as laser power, the flowrate of 

carrier gas, scanning speed and stand-off distance of Ni 

additive mixed SiC on wear volume loss by laser cladding 

are listed in Table 4, which are allocated to the adaptive 

network based fuzzy system. An adaptive neuro-fuzzy 

inference system was used to forecast the loss of wear 

volume. For this purpose, the MATLAB R2021 software 

package was used. In this paper, first-order TSK-type fuzzy 

rules are used to create predictive models. Different number 

of membership functions were tested using the subtractive 

clustering method to find the most accurate model. 

However, triangular types of membership functions were 

optimally applied. As shown in Fig. 2, the fuzzy logic 

system trained by a neural network has a rule base with 4 

inputs and 1 output. This model can be used to predict the 

wear volume of Ni added SiC welds by laser cladding. For 

example, the four inputs are 1400 W, 1600 mL/min, 4 mm/s 

and 20 mm, respectively, whilst the predicted value is 

38.9 × 10-5 mm3. A fuzzy layer, a rule base layer, a 

normalisation layer, an inference layer and a total output 

layer are optimally yielded. The wear response in the 

training and test datum of the ANFIS model yielded the 

following structure, where the 21 membership functions had 

the RMSE values of 0.061 and 0.063, respectively, using a 

subtractive clustering method. The performance of the 

model is validated by the RMSE. As shown in Fig. 8, the 

distribution points of the outputs of the training algorithms. 

Red dots are predicted values and blue dots are experimental 

data. The predicted and experimental values are very close 

to each other, indicating that the model is reliable. In 

addition, the ANFIS predictor also fits the distribution curve 

of the actual data. The ANFIS predictor fits the distribution 

curve of the actual data, where significant factors are 

incorporated into ANFIS. Many of the validation tests had 

an error of less than 3%, with a maximum error of 9.47 %. 

There is however a stable fluctuation in the distribution of 

prediction errors for ANFIS, with only two of the prediction 

errors exceeding the standard deviation of the experimental 

values by more than 5 %. A comparison of the experimental 

data with the ANFIS predictions is shown in Fig. 9 with 

testing algorithms., where the ANFIS predictor produced an 

average error of 3.98 %. As a result, the developed ANFIS 

model is an effective model for decision makers when 

analysing the tribological properties of nickel doped silicon 

carbide welds. 

 

Fig. 8. The distribution points of the output of the training 

algorithms 

 

Fig. 9. Comparison of ANFIS model predictions with red dots and 

experimental data with black dots with testing algorithms 

4. CONCLUSIONS 

In this study, ceramic-metal based composite coatings 

were investigated on 45 steel by laser cladding which 

optimized the wear properties of nickel additives in silicon 

carbide welds. The difference in wear resistance compared 

to the substrate is significant, increasing by approx. 4 times, 

while the corresponding reduction in the wear volume loss 

during the wear test indicates good wear resistance. The 

microstructure of the melting zone is mostly in the form of 

fine dendrites, with grey areas in the melting zone that are 

more densely populated near the grain boundaries, while 

heat-affected zones are brightly grained. Besides, the results 

of EDS analysis of the worn areas show that the worn 

surfaces have lower C and O contents and higher Fe content. 

There is a more obvious plastic deformation zone in the 

cladding zone. In addition, the relationship between the 

significant parameters and the volume of wear by laser 

cladding was constructed using ANFIS. The wear response 

structure of the ANFIS model training and test data, where 

the 21 membership functions have the RMSE values of 

0.061 and 0.063, respectively. It is clear that in ANFIS, the 

predicted and observed values are very close to each other, 

which indicates that the model has good predictive ability 

within the experimental domain. Overall, ANFIS provides 
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more reliable modelling of the cladding process, which 

verifies that the Ni added SiC welds by laser cladding are 

reliable and feasible.  
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