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The melting temperature serves as a pivotal physical property governing the thermal stability of metallic nanocrystals, 

notably exhibiting substantial variability with respect to size and dimensionality. While several quantitative models exist 

to elucidate how the melting temperature correlates with the size and dimensionality of metallic nanocrystals, these models 

often fall short of capturing the synergistic influence of both factors comprehensively. To address this gap, our study 

employs a novel thermodynamic framework grounded in cohesive energy theory, requiring no arbitrary adjustable 

parameters. We find that, under constant conditions, the melting temperature of metallic nanocrystals diminishes as their 

size decreases. In terms of dimensionality, we establish a hierarchy as follows: nanoparticles > nanowires > thin films. 

Moreover, we reveal a non-linear relationship between the melting temperature and the inverse of dimensionality. Through 

rigorous validation via both simulations and empirical experiments, we corroborate the high accuracy of this 

thermodynamic model in predicting the variations in the melting temperature of metallic nanocrystals due to changes in 

size and dimensionality. The model in this study is primarily applicable to metallic nanocrystals and the potential 

applicability to other types of nanocrystals under certain conditions is briefly mentioned. 
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1. INTRODUCTION 

Metallic nanocrystals (MNCs) have demonstrated 

immense application potential in various fields such as 

physics, biology, and chemistry due to their size-dependent 

properties [1 – 5]. Specifically, nanocrystals have found 

applications in catalysis, where their large surface area and 

tunable surface properties enhance catalytic reactions, 

making them highly effective for processes like hydrogen 

production and environmental remediation [6 – 8]. In 

biology, nanocrystals are used as highly sensitive biosensors 

due to their unique optical properties, enabling the detection 

of biomolecules at low concentrations [9, 10]. Additionally, 

in optoelectronics, nanocrystals contribute to the 

development of advanced light-emitting diodes (LEDs) and 

photovoltaic devices, where their size-dependent bandgap 

can be tuned to optimize performance [11, 12]. These 

specific applications highlight the versatile and 

transformative potential of nanocrystals across multiple 

scientific disciplines. In contrast to macroscopic materials, 

their high surface-to-volume ratio and surface structure 

reconstructions result in energy elevations and energy level 

rearrangements [6 – 11]. The low-dimensional 

characteristics of nanocrystals are especially evident in 

quantum confinement effects, surface states, and interfacial 

phenomena [12 – 22]. Thus, systematic investigation of the 

size-dependent properties of these low-dimensional 

materials at the nanoscale is crucial for understanding and 

developing the fundamental mechanisms of nanotechnology 

across its applications [23 – 30]. 

Among the various properties of MNCs, the melting 

point, Tm, stands out as a key thermodynamic parameter 

reflecting the thermal stability of the material across 
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different sizes. Existing studies have observed that for 

certain metal nanocrystals, such as lead (Pb), tin (Sn), 

bismuth (Bi), and indium (In), the melting point decreases 

with decreasing size [31 – 36]. However, when these 

nanocrystals are embedded into other matrix materials, the 

melting point can exhibit complex dependency behaviors. 

For example, by using differential scanning calorimetry 

(DSC), the heating phenomenon of In and Pb embedded in 

Al matrixes and Pb nanofilms in Al matrixes observed the 

melting point increased with size decreasing [13, 14, 37, 38] 

Furthermore, when Pb nanofilms are sandwiched by Al 

layers, or in nanoparticles embedded in Al matrices, the 

melting temperatures of them are found either increased or 

decreased with the size decreasing [15 – 20, 39, 40]. 

This intricacy largely arises from the interfacial 

interactions between the nano entities and the matrix, as 

well as potential interfacial defects and localized strains. 

These insights not only illustrate the complexity of thermal 

behaviors at the nanoscale but also suggest meticulous 

consideration of multiscale and multi-interface effects in 

designing nanostructured materials and devices. For 

instance, an experimental study by Tong et al. found that the 

diffusion temperature, Tm(D), of nanostructured iron (Fe) 

was only around 573 K [40 – 43], while the corresponding 

bulk iron exhibited a diffusion temperature of 773 K under 

the same external conditions. This result explicitly reveals 

that nanocrystals can exhibit properties similar to their 

macroscopic counterparts at comparatively lower 

temperatures. Yet, data points derived from experiments are 

often discrete, making it challenging to establish 

generalized physical laws or models. Many theoretical 

calculation methods have been applied successfully to 

address this issue [4, 5, 8]. For example, Jesser and his 



colleagues validated through simulations that indium (In) 

nanocrystals start melting at temperatures lower than their 

bulk counterparts [43 – 47]. They attributed this primarily to 

changes in interactions among nearest neighbor atoms at the 

nanoscale [48 – 50]. Although several models have 

attempted to explain these phenomena, most existing 

models are limited to describing behaviors under specific 

conditions and fail to holistically explain the complex 

phenomena observed across different disciplines [51 – 54]. 

Therefore, a deeper integration of experimental and 

theoretical approaches is required to construct a more 

comprehensive and accurate model. 

This study proposes a thermodynamic model describing 

the dependence of the melting point of nanocrystals on size 

and dimensionality from a cohesive energy perspective. 

This model is not only innovative theoretically but also 

validated in terms of accuracy by comparing it with 

available experimental data and simulation outcomes. This 

research enhances our understanding of the properties of 

nanomaterials and their potential applications. While the 

model is primarily developed for metallic nanocrystals, 

studies such as [19, 34] suggest that similar principles may 

apply to semimetal nanocrystals with certain parameter 

adjustments. Further research is needed to fully explore the 

model's applicability to nonmetal nanocrystals. 

2. MODEL  

Based on the cohesive energy of a metallic crystal, the 

relationship between cohesive energy Ec (D) and bond 

energy Ebond (∞) can be written as follows [13]: 
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where Ec (D) is the cohesive energy of metallic nanocrystals 

and Ebond (∞) is the bond energy of bulk, Ebond (D) represents 

the bond energy of a nanocrystal with size D, n represents 

the number of atoms in the nanocrystal, N represents the 

number of atoms in the bulk crystal, D represents the size or 

diameter of the nanocrystal, the number of interior atom 

forms bonds is parameter α. For the relationship between 

Ebond (∞) and Ec (D), explicitly state that this conclusion is 

valid only if Ebond (D) = Ebond (∞) or if Ebond (D) follows a 

particular form. Assuming that Ebond (D) gradually 

approaches Ebond (∞) as D increases, we can derive the 

relationship Ec (D) ∞ Ebond (D). The expression of Ebond (D) 

and Ec (D) can be rewritten as: 
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To account for the nanocrystals, suppose the atoms of 

nanoparticles are ideal spheres, the total number of atoms 

(n) is the ratio of the nanocrystals volume (V) to the volume 

of one atom (Vm), that is: n = V/Vm. The number of the 

surface atom N is the ratio of the nanocrystal surface area 

(Am) to the effective surface area of one atom (Aeff). The 

contribution of one surface atom to the entire surface area is 

Am/4, namely, Aeff = Am/4. As the first order approximation, 

n is larger than N, and D trends to ∞. We are calculating the 

cohesive energy of one atom in bulk materials, where n = 1, 

and have derived the ideal model from Eq. 2 to Eq. 3. The 

cohesive energy of one atom of the bulk materials Ec (∞) 

can be written as:  
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Based on the previous idealized assumption that the 

atoms of the nanocrystals are perfect spheres and that all 

surface atoms contribute equally, this assumption provides 

the foundation for our subsequent derivations. Substituting 

Eq. 3 into Eq. 4, the cohesive energy of one atom can be 

expressed as: 
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According to the relationship between nanocrystals and 

dimensionalities d, A/V can be expressed as A/V = D0/D, D0 

means the critical size at wich all atoms of crystal are 

located on its surface, and D0 = 2(3 – d)h, h means atomic 

diameter [22, 40]. Substituting the relation into Eq. 4,  

Ec(D, d)/Ec (∞) function can be approximated as: 
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where h is bond length and d = 0 for nanoparticles, d = 1 for 

nanowires and d = 2 for thin films [40]. Considering the 

relationship between Tm(∞) and Ec (∞), Tm(∞)can be 

expressed as [41]: 
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Compared with chemisorption energy, Quyang 

declared that the role of elastic energy of deformation on the 

surface energy was rare [46]. So it is reasonable for us to use 

Eq. 6 to discuss the size and dimension dependence of  

Tm(D, d) of metallic nanocrystals in detail. 

3. RESULTS AND DISCUSSION 

In this paper, the relevant data used in the model 

predictions are listed in Table 1 [48]. The effects of size and 

dimensionality on Tm (D, d)/Tm (∞) for Pb nanocrystals are 

exhaustively illustrated in Fig. 1, juxtaposed against 

experimental and theoretical data.  

Table 1. The relevant data used in the model predictions [48] 

h, 

nm 

Pb In Au Al Bi Pd Ag Sn 

0.35 0.31 0.27 0.25 0.46 0.28 0.32 0.29 

We consider three nanocrystalline morphologies: 

nanoparticles (d =0), nanowires (d = 1), and nanofilms 

(d = 2). Evidently, for all forms, as the size D decreases, the 

Tm (D, d)/Tm (∞) value correspondingly diminishes. A 

closer inspection reveals two pronounced regimes: one 

where the value reduces as D < 10 nm and another which 

approximates a plateau for D > 10 nm. This trend can be 

attributed to the surge in the surface-to-volume ratio. For a 

given nanocrystal, while its volume remains constant, its 

surface area increases with its further division, leading to a 

decline in size D and a rise in the surface-to-volume ratio. 
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Fig. 1. The function Tm(D, d)/Tm(∞) of Pb versus D. The solid lines 

mean the model predictions in terms of Eq. 6 

[4, 26, 49, 50]. The symbol [26] and [49], [4], [50] 

are referred to experimental and simulation results for Pb 

nanoparticles, Pb nanowires, and Pb thin films, 

respectively 

Allen delved deep into the characteristics of surface 

atoms, positing that as the size D of the nanocrystal shrinks, 

the energy states of surface atoms exceed those within the 

bulk [12]. This is primarily due to the augmented number of 

broken bonds, thereby amplifying interfacial energy [48]. 

Typically, the physicochemical properties of nanocrystals 

are predominantly governed by their surface strain. In 

macro-crystals, atoms can often achieve full coordination 

with their counterparts. However, on the nanoscale, the lack 

of complete coordination for surface atoms results in surface 

strain. This strain becomes more pronounced with 

diminishing size D. Yet, when the nanoparticle size 

approaches that of individual atoms or molecules, 

adjustments might occur in the inter-atomic distances to 

accommodate the new coordination environment. The 

attenuation of surface strain allows atoms greater freedom, 

leading to an upswing in their thermal vibration amplitude. 

Qi's model elucidated that the Tm(D) and D relationship 

remains linear across a broad size spectrum but begins to 

deviate when D < 10 nm [13, 29]. Relative to this model, 

our simulation data is more congruent with experimental 

findings at smaller scales. 

Considering the effects at the nanoscale, Li derived a 

model that describes the relationship between β(D) and size 

D [22], which, specifically, predicts a linear correlation 

between β(D) and D [39]. Combining equation  

Tm(D)/Tm(∞) = 1 – β/zD and Eq. 6 [11], yields the 

expression for 

3
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However, data in Fig. 2 illustrates a non-linear 

relationship when comparing β (D) with 1/D. Based on these 

observations and analysis, we can assert that the size 

dependency of Tm (D) is primarily influenced by its surface-

to-volume ratio and the variation in surface interfacial 

energy, an effect that is particularly pronounced when D is 

less than 10 nm. The model assumes that within a certain 

size range, particularly when DDD approaches the 

nanoscale, due to the enhancement of surface effects and the 

reduction of volume effects, the relationship between 

Tm(D)/Tm(∞) and 1/D exhibits nonlinear characteristics. 

 

Fig. 2. Tm(D)/ Tm(∞) of Pb nanoparticles as a function of inverse 

D relation with Eq. 7. The insertion diagrams are shape 

factor β(D) function versus D. The symbols [26] and [50] 

come from experimental and theoretical results for Pb NPs 

To delve deeper into size effects at the nanoscale, we 

precisely fit experimental data [49] with simulation data 

[46] in Fig. 2. The blue curve has a slope of -1.15, whereas 

the black curve exhibits a slope of -1.23. Notably, within the 

larger size regime (D > 10 nm), the blue, green, and red 

curves almost overlap, manifesting the high consistency of 

various models with experimental data at this scale. 

Observing the range where D > 10 nm, the trend aligns well 

with the models of Li and Qing [13, 22]. However, in the 

size domain of D < 10 nm, the black curve is insignificant 

alignment with the slope change in our model, further 

corroborating that our model provides a more scientific 

explanation for the relationship between Tm (D) and D at the 

microscale. It's worth emphasizing that although the overall 

trend in slope variations is somewhat analogous across 

models, the rate of slope change in our model is distinctly 

slower than that of Li's or Nanda's models [22, 51]. A 

juxtaposition with Li's model reveals that, on the scale 

where D < 10 nm [22], our model has a notably superior fit 

with experimental data. 

Numerous studies have unambiguously shown that with 

the reduction in nanoscale size, associated slopes also 

progressively decrease. Li's model, while addressing energy 

variations from a Gibbs free energy standpoint, might not 

have adequately considered the influence of broken bonds 

[22]. Further research by Hornyak confirms that as the 

dimension D diminishes, the relative bond length on the 

surface increases, leading to surface atoms possessing 

energy levels surpassing those of inner atoms [54]. This 

results in an amplified vibrational amplitude of surface 

atoms at equivalent temperatures due to the heightened 

energy levels. As size continues to shrink, this effect 

becomes even more pronounced [52]. The surface free 

energy ls is largely regulated by the number of broken 



bonds and serves as a critical metric in assessing the energy 

stability of nanocrystals. Moreover, the characteristics of 

surface atoms might further influence surface energy 

differences, denoted as sv. A deep dive into sv will 

enhance our comprehension of the alterations in temperature 

gradient ΔT(D) and the underlying melting behaviors. As 

pointed out by Quyang’s team, sv of nanoparticle is 

affected by two main factors: structural differences caused 

by surface strain and chemical changes due to broken bonds 

[47]. Within smaller scales, the trend in ΔT (D) becomes 

more prominent and directly correlates with the A/V ratio. 

The surface strain further precipitates a decline in melting 

point. From an integrative analysis, it can be deduced that 

on smaller scales, changes in ΔT (D) induced by surface 

strain are even more significant than variations in the A/V 

ratio. 

Additionally, as illustrated in Fig. 3, we have evaluated 

size and dimensional effects across different nanocrystals to 

ascertain the broad applicability of Eq. 6. The outcomes 

reveal that whether it's Au, Al, Bi, Ag, Sn, or In 

nanoparticles, our simulation results align remarkably well 

with either experimental or theoretical data. In conjunction 

with Fig. 1, this high level of consistency further 

substantiates the accuracy and universality of Eq. 6 in 

depicting the relationship between Tm(D)/Tm(∞) and 

nanoscale dimensions. 

4. CONCLUSIONS 

In the field of nanomaterials research, we have 

proposed a novel thermodynamic model aimed at exploring 

in-depth the relationship between the melting point of 

nanocrystals and their size and dimensions. Through a 

comprehensive assessment of various materials such as Au, 

Al, Bi, Ag, Sn, and In, our model's predicted results align 

closely with existing experimental data and theoretical 

simulations, thus validating the reliability and accuracy of 

the model. Within larger size scales, we observe that the 

relationship between melting point and particle size is 

generally linear, but when the size decreases below 10 nm, 

this relationship begins to exhibit a non-linear trend, 

emphasizing the significance of size effects at the nanoscale. 

More importantly, our study reveals that as the size of 

nanoparticles decreases, the dependence of melting point on 

size further intensifies, closely associated with the changing 

energy of surface atoms. This finding provides valuable 

insights into understanding the unique melting point 

characteristics of nanomaterials. It not only deepens our 

understanding of the mechanisms behind the variation in 

melting points of nanomaterials but also offers valuable 

information for the design of future electronic devices and 

other high-tech applications. In summary, our research lays 

a solid foundation for the field of nanomaterials science and 

opens up new perspectives and possibilities for materials 

design and optimization. 

Acknowledgments 

The Major Foundation of Educational Commission of 

Anhui Province (2022AH040068); Horizontal scientific 

research project of Huaibei Normal University 

(No.22100281); The Natural Science Foundation of 

Education Committee of Anhui Province (No. 

2024AH051673). 

 
a 

 
b 

 
c 

 
d 

 
e 

 
f 

Fig. 3. Tm(D)/T(∞) of Au, Al, Bi, Ag, Sn, In nanoparticles in 

relations with Eq. 7 [23, 24, 26, 32, 49, 51 – 53], The 
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experimental data and [52], [53], [49] [32] related 

with theoretical simulation results 
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