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The Metal Die Support Incremental Sheet Forming (MDS-ISF) enhances the dimensional accuracy of produced items in 

many industrial applications. However, the procedure limits metal sheet formability due to the strain between the tool and 

mandrel. As a result, selecting the best MDS-ISF technique to improve formability is a critical problem in the manufacture 

of complicated components. This study aims at optimising the forming parameters of MDS-ISF by forming single-walled 

cones of fixed wall angle and forming height by using Taguchi Grey Relational Analysis. The forming parameters selected 

for experimentation are step depth, spindle speed, and feed rate at three different levels. The responses, such as average 

surface roughness and average thickness, were selected for multi-objective optimisation and ANOVA was also conducted 

to study the influence of each forming parameter on the output responses. Additionally, the wall angle, and thickness of 

the components were also measured. From ANOVA, step depth had the uppermost influence on the surface finish and 

thickness trailed by feed rate and spindle speed. 
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1. INTRODUCTION 

 The traditional metal forming process has increased due 

to mass production. However, during the last decade due to 

market demand, lesser manufacturing time, and low 

flexibility the existing incremental forming process could 

not be supported, and it was not feasible to operate to meet 

the industrial needs. To extend the flexibility of incremental 

forming, many techniques have been developed to reduce 

the geometrical errors, and spring back effects and to get 

near net shape which can be achieved. [1]. Incremental to 

forming is used in batch production and is essentially a 

scientific procedure, where machines are specifically 

developed forming the required shapes. Simple tools like a 

fixture to clamp the sheet and a hemispherical tool to deform 

the sheet into the desired shape may be used to 

incrementally build symmetrical and asymmetrical forms 

[2]. In general, TPIF will be different from SPIF. It will have 

a partial or full die, and the blank that holds the workpiece 

will be angled in the direction of forming. [3]. TPIF is an 

improvement to SPIF that makes the limits for dimensions 

better. When TPIF is used, a full or partial die is used to 

shape the sheet metal in steps between two set points [4]. 

The parts made by TPIF were more accurate in terms of 

geometry than those made by SPIF because SPIF parts had 

less elastic rebound after being loaded [5]. 

Mohanraj Murugesan et al. [6] performed incremental 

sheet forming by varying forming parameters such as radius 

of the forming tool, spindle speed, step down, and feed rate. 

Taguchi L16 orthogonal array and Response Surface 

Methodology was used to optimise the surface finish of the 

formed components. The most influential parameter 

contributing to the improved surface finish was identified 

using ANOVA. The surface roughness was found to be 
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decreasing when the step depth was decreased with 

increased feed rate. There was a significant reduction in 

surface roughness when the forming was performed at a 

decreased vertical step down and an increase in the feed rate 

and radius of the forming tool. The most influencing 

parameter on surface roughness was step down trailed by 

feed rate and radius of forming tool. H Zhu et al. [7] 

performed a simulation on positive and negative two points 

incremental forming. The simulated results such as 

thickness, profile curve, and equivalent strain of both 

methods were compared. The research indicates that the 

thickness, equivalent strain, and contour accuracy of the 

positive two-point incremental forming are superior to those 

of the negative two-point incremental forming process. 

Results showed that the positive two-point incremental 

forming exhibits superior forming quality when compared 

to negative incremental forming. The strain from the 

positive two-point incremental forming is spread out more 

evenly than the strain from the negative two-point 

incremental forming. The accuracy in measuring contours 

of the positive two-point incremental forming is better than 

that of the negative two-point incremental forming. M. 

Safari [8] performed incremental forming by varying 

process parameters such as, step depth and the tool's 

rotational speed affect the suggested specimen's highest 

possible outer and inner heights. By reducing the step depth 

and increasing the rotational speed of the tool, the maximum 

attainable outer and inner heights of the specimen were 

increased. However, the most significant impact was 

observed on the maximum achievable outer height. The 

highest attainable inner height of the specimen was most 

affected by the negative/positive variant of the sequence of 

positive and negative formation processes. In order to 
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achieve the highest possible outer and inner heights, the S/N 

ratio analysis was used to determine the optimal 

combination of parameters. 

Hani Mostafanezhad et al. [9] conducted TPIF of 

aluminum 1050 by varying forming parameters like die 

angle, the radius of the forming tool, the thickness of the 

sheet, and step down. The Box Bhenken experimental 

design was used to study and optimise the influence of the 

forming parameters on the ratio of thinning and maximum 

resultant force. The hierarchy of the highest contributing 

parameter was identified by ANOVA method. The angle of 

the die was the most influencing parameter on the thinning 

ratio on the other hand the thickness of the sheet considered 

had the maximum influence on the forces developed during 

the process. The thickness was found to be reduced at the 

wall regions of the components formed. Adham E. Ragab 

[10] performed a test on TPIF of A1050-H14 commercial 

aluminum sheets and studied the accuracy of the formed 

components. The parameters that were considered for 

optimisation are the diameter of the forming tool, rate of 

feed, step depth, and thickness of the formed sheets. The 

significance of each parameter on the accuracy of the 

formed components was studied using ANOVA. The higher 

the thickness of the sheet selected yielded better profile 

accuracy, and a lower feed rate improves the waviness at the 

walls of the formed components. The forming depth 

achieved was accurate for a lower feed rate of 500 mm/min 

and for having a better side wall angle a tool of diameter 

15 mm is suggested. The overall accuracy of the process 

was found to be highly influenced by the thickness of the 

sheet selected for the forming process. Xiaoqiang Li et al. 

[11] performed TPIF on aluminum AA5052 to form a square 

cone and analysed the influence of tool-path strategy on 

thickness distribution. Four different forming strategies 

were employed and the best forming strategy was selected 

by comparing the thickness and change in strain of the 

formed components. The variable angle straight lines tool-

path gave a higher thickness distribution when compared to 

the other suggested forming strategies. In the parallel linear 

tool-path strategy, the flange area of the final shape has been 

reduced in the first stage to make the slope of the specimen 

thicker at the wall region. However, as the stage number 

goes up, the thickness of the formed slope wall still goes 

down within a certain range because of the tension of the 

forming area. 

M. Esmailian [12] et al. performed TPIF and generated 

an equation for the prediction of forming forces applied to 

the forming tool. Forming parameters such as coefficient of 

friction, dimensions of a sheet, a diameter of the tool, sheet 

thickness, sheet material, and the values of the yield stress 

of the sheet, friction coefficient, tool radius, and thickness 

of the sheet were selected as output responses. When the 

wall angle of the forming component is increased the local 

strain increases and the thickness variation increases, 

therefore the force applied to the forming tool is improved. 

Costel Catalin Coman [13] et al. studied the variations in 

forming forces, thinning effect, geometrical accuracy, and 

surface roughness of TPIF Al 3003 for a pyramidal trunk 

shape.  The hardening process increases the forces generated 

and the TiN coated tool produced considerably lesser 

forming forces during forming. 

The forming process creates deviations from the 

drawing, including shape deviations, as indicated by the 

radius of curvature of the side wall, the radius of connection 

between the wall and bottom, and dimensional deviations 

expressed by forming depth variation. The surface quality 

of the formed components was increased while the forming 

was performed using TiN coated tools. Umit Onal et al. [14] 

performed multistage TPIF on a DC04 sheet with a 

thickness of 0.98 mm by varying step depth, feed rate, 

clamping pressure, and angle increment. The target of the 

component to be formed was axially symmetrical with a 90° 

wall angle. The thickness of the wall angle was best when 

the angle of increment was kept at an interval of 100 

between each pass. The clamping pressure when kept at 

5.5 bar gave better thickness at the wall region. The thinning 

effect was highly experienced at the nose region of the 

components formed. The minimum thickness attained with 

the selected forming strategy and forming process was 

0.34 mm. 

Na Xue et al. [15] investigated the surface roughness, 

thickness, microstructure, and adhesion of Cooer graphite 

and copper coatings deposited on AZ31B and 6061 T6 

magnesium and aluminium alloy under different spraying 

conditions were studied. The adhesion of the coatings 

applied on the AZ31B magnesium alloy substrate is 

generally greater than that on the 6061 T6 aluminum alloy 

substrate when the same spraying parameters are used. As 

the particle velocity increases, the Ra of the coatings 

sprayed on both soft and hard substrates decreases, whereas 

the thickness and adhesion of the coatings sprayed on both 

substrates increase. Ling Shao et al. [16] optimised the 

process parameters of cold-sprayed coatings by measuring 

responses such as surface roughness, thickness and 

adhesion. The surface roughness (Ra) of the cold-sprayed 

coatings gradually decreases as the gas pressure, and 

temperature increase. The thickness of the deposited 

coatings increases significantly as the gas pressure and 

temperature increase. 

Yuhong Zhao et al. [17] studied the morphological 

evolution, volume fraction, elastic strain energy effect, 

composition distribution, enthalpy of formation, interface 

energy and electron localization function, and the stability 

or instability of various metastable of various phase 

boundaries in the selected material. The formation enthalpy 

and interfacial energy show that all four PBs are stable, with 

A/B2 having lower energy than A/B1, driving the 

transformation. A/CD is the most stable, and interface 

stability decreases in the order: 

A/B1 > A/B2 > A/E > A/CD. Sunwu Xu et al. [18] explored 

the use of composite solder joints, specifically a novel 

combination of SAC (Sn-3Ag-0.5Cu) and Sn-Pb (Sn-37Pb), 

to enhance the mechanical reliability of Package-on-

Package (PoP) technology, which supports Moore's Law. 

The formation and phase distribution of the composite joint 

depends on reflow temperature, with optimal results 

observed at 200 °C and 60 seconds dwell time when 

10 wt.% Sn-Pb is used. Finite element simulations showed 

a 29 % reduction in maximum stress compared to full SAC 

joints. Jinhong Liu et al. [19] conducted an in-situ TEM 

study of a micro-Cu/ENIG/Sn solder joint under an 

isothermal aging test. During ultrasonic bonding, η-Cu6Sn5 

intermetallic compounds (IMCs) formed in the solder joint 



164 

due to copper diffusion from the electrode. As the joint was 

heated to 100 °C, Sn enriched regions diffused and reacted 

with elements to form (NixCu1-x)3Sn4, AuSn4, and 

Cu6Sn5, while Cu6Sn5 developed a scallop-like 

morphology. A phase transition between η and η' phases of 

Cu6Sn5 occurred near 186 – 189 °C, which involved a 

three-stage process, potentially causing cracks due to 

volume changes. 

Tang Yu et al. [20] proposed an improved CNN for 

detecting forging defects, using EfficientNet, Feature 

Pyramid Network (FPN), and Particle Swarm Optimization 

(PSO). The high-level semantic features are incorporated 

into the FPN fusion layer, effectively enhancing the model's 

multi-scale object detection capabilities. The model 

achieved high accuracy with a 95.69 % mean Average 

Precision (mAP) and 0.94 F1 score, outperforming other 

models in efficiency and defect detection. Wei Zhang et al. 

[21] proposed a simple, accurate method for calibrating 

measurement sensitivity in a phase-shifting shadow moire 

system. By adjusting the illumination angle and analyzing 

fringe pattern variations, the system's sensitivity is 

calibrated. Validation experiments showed a reliable 

measurement accuracy with a standard deviation of 

0.698 µm and 0.7 % error at 98.21 µm sensitivity. 

Zili Wang et al. [22] proposed a six-axis free-bending 

(FB) processing and springback prediction in spiral tubes, 

crucial for aerospace fluid transport systems. It introduces a 

novel FB method and a physics-informed neural network 

(PINN)-based model that integrates an improved theoretical 

approach. The PINN model, comprising three sub-networks, 

outperforms traditional methods in five evaluation metrics 

(ED, DTW, LCSS, FD, MD) and accurately predicts 

curvature and torsion, enhancing theoretical predictions. 

Gangqiang Kong et al. [23] investigated the dynamic 

behavior of ballastless track XCC pile-raft foundations 

subjected to varying axle loads through an experimental 

study. The focus is on the dynamic soil stresses and velocity 

responses under vertical cyclic loading. Key findings 

include that the dynamic soil stresses on the subgrade 

surface form an "ω" shape, while those on the subsoil 

surface form a "U" shape. 

Jie Li et al. [24] presented a novel diameter-adjustable 

mandrel (DAM) designed to improve the metal tube 

bending process by adapting to tubes of varying diameters, 

addressing issues such as high costs, long design cycles, and 

low reuse rates associated with traditional mandrels. 

Featuring a multi-point contact design, the DAM can cause 

irregular cross-section deformation, which is evaluated 

using the cross-sectional full profile radial error (FP-RE) 

model. Experiments with AISI 304L tubes (40 – 56 mm 

inner diameter) showed a maximum FP-RE error of 0.11 % 

compared to FEA results. The DAM, with a minimum 

effective diameter of 40 mm and six support blocks, proved 

effective for tubes with inner diameters of 40 to 56 mm, 

maintaining acceptable forming quality. 

Yongzhe Xiang et al. [25] performed Rotary Draw 

Bending using a tangential variable boosting (TVB) to 

analyse the defects during the process. To assess the effects 

of TVB, a parameter-weight-adaptive convolutional neural 

network (PWA-CNN) was developed to predict cross-

sectional defects. The prediction model was trained using a 

dataset generated from numerical simulations of aluminum-

alloy tubes, and its performance was compared with other 

CNNs and weight assignment methods. Results showed that 

the PWA-CNN outperformed other methods in predicting 

tube cross-sectional distortion. 

Lin Hua et al. [26] investigated the mechanism of void 

healing in cold-rolled aeroengine M50 bearing steel 

subjected to electroshocking treatment (EST) through 

experimental and simulation approaches. Using three-

dimensional X-ray microscopy (3D-XRM), it was observed 

that the porosity of the cold-rolled samples decreased from 

0.26 % to 0.09 % after EST, with smaller voids healing more 

effectively than larger ones. Simulations revealed that an 

inhomogeneous physical field generates high local thermal 

compressive stress, up to 2565.9 MPa, around ellipsoidal 

voids, driving the healing process. Qimeng Zhu et al. [27] 

analyzed the impact of microstructures on the velocity and 

stress coefficient (K) of longitudinal critically refracted 

(LCR) waves for measuring welding residual stress, 

enhancing the traditional LCR wave method. The proposed 

LCR-AV (attenuation velocity) method was tested on 

A7N01 welded joints, considering grain size variations from 

heat treatments. Findings show that voltage amplitude 

changes linearly with velocity and stress coefficient, 

independent of precipitation effects. 

Qiang Gong et al. [28] examined the impact of abrasive 

particles on the workpiece load during machining, focusing 

on stress tensor, yield performance, and third invariant. The 

results showed that while grinding parameter variations 

have minimal impact on the stress applied by a single 

abrasive grain, they significantly affect the stress load range, 

concentrating stress at the removal endpoint. The front end 

of abrasive grains shows yield deformation, and the bottom 

shows tensile deformation. The Element diffusion at high 

temperatures and strain rates increases subsurface 

microhardness by about 15 μm. 

In this study MDS-ISF was performed on SS 316L 

sheets of uniform thickness by varying forming parameters 

such as step depth, spindle speed and feed rate. The target 

geometry was a single wall angle cone of 66° with a forming 

height of 60 mm. Taguchi GRA was selected for optimising 

the process parameters to get better thickness and surface 

roughness. The geometry of the formed components was 

measured using CMM and the comparison was made for 

different step depths. 

2. EXPERIMENTAL WORK 

A single wall angle cone having a fixed wall angle of 

66 and a constant forming height of 60 mm has been taken 

as the target shape and was designed using SolidWorks 

2018. The MDS-ISF experiments were performed in a 3 axis 

multi–CNC Vertimach Tal V-510 milling machine. 316L 

stainless steel (SS 316L) is the most frequently used 

chromium-nickel stainless steel grade and has a broad 

variety of industrial applications, including chemical 

equipment, cooling coils, nuclear vessels, components etc. 

[29]. SS 316L stainless sheets were prepared for a 

dimension of 280 mm  280 mm. Fig. 1 shows the 

fabricated MDS-ISF fixture used for holding the workpiece 

during the forming process. For the forming process, a 

carbide tool with a 12 mm diameter and a 150 mm shank 

length was chosen. The forming parameters and their levels 

are given in Table 1. 
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a 

 

b 

Fig. 1. a – MDS-ISF fixture; b – forming tool 

Table 1. Forming parameters and their levels 

Forming 

parameter 
Symbol Units Level 1 Level 2 Level 3 

Step depth SD mm 0.2 0.3 0.4 

Spindle speed SS rpm 100 200 300 

Feed rate FR mm/min 500 1000 1500 

Table 2. Experimental layout and the response variables using L9 

OA 

Exp No. SD SS FR 
Avg Ra  

(Raavg) 

Avg Th 

(Thavg) 

1 0.2 100 500 0.594 0.516 

2 0.2 200 1000 0.623 0.524 

3 0.2 300 1500 0.534 0.536 

4 0.3 100 1000 0.615 0.561 

5 0.3 200 1500 0.556 0.537 

6 0.3 300 500 0.646 0.556 

7 0.4 100 1500 0.545 0.542 

8 0.4 200 500 0.564 0.525 

9 0.4 300 1000 0.572 0.531 

3. RESULTS AND DISCUSSION 

3.1. Grey relational analysis 

Taguchi's Grey relational analysis effectively optimizes 

the input parameters, thereby reducing the number of 

orthogonal array tests required [30]. Grey relational analysis 

is a very effective statistical analysis approach used to 

address situations with intricate relationships and various 

elements and variables. Integrating all the contributing 

attributes into one single combined attribute is an idea of the 

solution. The Taguchi L9 orthogonal array was designed to 

conduct the experiments, and the sample of the formed 

components is shown in Fig. 2. The responses considered 

for optimization were average surface roughness and 

average thickness of the formed components. The 

experimental layout and the obtained results are shown in 

Table 2. The first stage is to calculate the S/N ration and 

normalize the multiple responses or attributes considered 

into one single attribute. The next step is to calculate the 

Grey Relation Coefficient (GRC), and finally the Grey 

Relational Grade (GRG). 

  

0.2 mm step depth 0.3 mm step depth 

 

0.4 mm step depth 

a 

  

0.2 mm step depth 0.3 mm step depth 

 

0.4 mm step depth 

b 

Fig. 2. Sample of MDS-ISF components at different step depths: 

a – top view; b – front view 

In general, larger GRG values indicate better output 

qualities [31]. The validation experiments were performed 

by using the optimum process parameter combination 

obtained and the results were measured. 

3.2. S/N ratio normalizing the results 

Grey relational analysis makes appropriate use of the 

normalized raw data acquired from experiments. The signal-

to-noise ratio quantifies the extent to which the response 

deviates from the nominal or target value in the presence of 

various noise conditions. The roughness of the surface was 

considered as smaller the better and the thickness was 

considered as larger the better criterion. The S/N ratio of the 

output responses are calculated using Eq. 1 and Eq. 2 

respectively and shown in Table 3. 

Smaller the better, ijA = 
210

1

1
10log ( )

n

ij
i

b
n =

 
−  

 
 ; (1) 
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Larger the better, ijA = 
210

1

1
10log (1/ )

n

ij
i

b
n =

 
−  

 
 , (2) 

where n represents the number of replications and Aij is the 

response of the respective experiments. 

To produce a single objective function, it is necessary 

to normalize the objective functions. This is because the 

multiple objectives might be combined with different units. 

The obtained results of incrementally formed sheets were 

linearly normalised so that they fit in between 0 and 1. 

The normalisation for output responses is calculated 

using Eq. 3 and Eq. 4 respectively. The normalised values 

of average surface roughness and average thickness are 

shown in Table 3. 

Smaller the better, ( )

( )

ij ij

ij

ij ij

MaxA A
N

Max A Min A

−
=

−

; (3) 

Larger the better, ( )

( )

ij ij

ij

ij ij

A MinA
N

Max A Min A

−
=

−

. (4) 

Table 3. S/N ratio, normalised S/N ratio of MDS-ISF 

components 

Exp No. 
S/N ratio Normalised S/N ratio 

Ra avg Th avg Ra avg Th avg 

1 4.519 –5.747 0.5622 0.0000 

2 4.106 –5.613 0.8124 0.1853 

3 5.449 –5.417 0.0000 0.4581 

4 4.227 –5.026 0.7389 1.0000 

5 5.099 –5.401 0.2120 0.4805 

6 3.795 –5.099 1.0000 0.8993 

7 5.267 –5.325 0.1103 0.5847 

8 4.974 –5.591 0.2871 0.2159 

9 4.852 –5.493 0.3610 0.3527 

3.3. Grey relational coefficient 

The difference between the normalised and the ideal 

results can be obtained by calculating the value of GRC by 

using Eq. 5 and shown in Table 4. The normalized values 

are closer to the ideal result when the value of the 

corresponding GRC is higher. The aim of the differentiating 

coefficient is to modify the range of the GRC, allowing for 

adjustment according to specific requirements. The rank of 

all the GRC derived using distinguishing coefficients would 

not change even if various distinguishing coefficients would 

provide different results. 

For GRC, min max

max

ij

ij

N N

N N






+
=

+
, (5) 

where is the distinguishing coefficient, (0 ≤   ≤ 1), in 

the current case it is taken as 0.5. 

3.4. Grey relational grade 

The GRG is calculated by averaging the coefficients for 

each measured output response. The GRG is calculated by 

using Eq. 6 and the values are shown in Table 4. 

1

1 m

i ijj
GRG

m


=
=  . (6) 

The GRG evaluates the importance of each 

performance feature on the experiment's result. 

Furthermore, this would provide us with valuable 

information on the optimal level of the performance 

characteristics in order to get the highest potential output.  

The higher the GRG number, the more influential the 

process parameter becomes [32]. The optimum process 

parameter combination as shown in Table 5 for getting 

higher thickness and lower surface roughness is step depth 

(SD – 0.3 mm), spindle speed (SS – 300 rpm) and feed rate 

(1000 mm/min). i.e SD2SS3FR2.The step depth was found to 

be the most influential parameter for obtaining better 

thickness and surface roughness. 

Table 4. GRC, GRG and of MDS-ISF components 

Exp No. 
GRC 

GRG Rank 
Ra avg Th avg 

1 0.533 0.333 0.433 7 

2 0.727 0.380 0.554 3 

3 0.333 0.480 0.407 8 

4 0.657 1.000 0.828 2 

5 0.388 0.490 0.439 5 

6 1.000 0.832 0.916 1 

7 0.360 0.546 0.453 4 

8 0.412 0.389 0.401 9 

9 0.439 0.436 0.437 6 

Table 5. Average GRG for each process parameter combination 

Forming parameters 
Average GRG 

L 1 L 2 L3 Delta Rank 

SD 0.465 0.728 0.43 0.298 1 

SS 0.572 0.465 0.587 0.122 3 

FR 0.583 0.607 0.433 0.174 2 

3.5. Validation of experiments 

The optimal level of machining parameters that were 

obtained in the previous phase is crucial for predicting and 

verifying the enhancement of the performance 

characteristics. The predicted GRG can be obtained from 

Eq. 7. 

( )i n iY Y Y Y= + − , (7) 

where Yi is the mean GRG; Yn is the mean GRG at optimal 

condition. 

Table 6 shows the average surface roughness (Raavg) 

has significantly reduced from 0.594 µm to 0.512 µm and 

the average thickness (Thavg) has considerably increased 

from 0.516 mm to 0.535 mm. The predicted result is 

experimentally validated and deviation was found to be 

within the acceptable range. 

Table 6. Comparison results of the initial and optimum 

combination of process parameters 

List of forming 

parameters 

Initial machining 

parameters 

Optimum machining 

parameters 

Predicted Optimum 

Raavg, µm 0.594 0.583 0.512 

Thavg, mm 0.516 0.591 0.535 

GRG 0.433 0.548 0.641 
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3.6. Analysis of variance 

The most influencing forming parameter on the output 

responses can be identified using Analysis of Variance 

(ANOVA) as shown in Fig. 3. Table 7 shows the ANOVA 

for GRG where step depth (SD) had the uppermost 

contribution of 52.74 % trailed by feed rate (FR) of 17.66 % 

and spindle speed (SS) of 8.81 %. 

Table 7. ANOVA for weighted GRG 

Source DF 
Sum of 

square 

Mean sum 

of square 
Contribution 

SD 2 0.15913 0.07956 52.74 % 

SS 2 0.02658 0.01329 8.81 % 

FR 2 0.05328 0.02664 17.66 % 

Error 2 0.06271 0.03136 20.79 % 

Total 8 0.30170 – 100.00 % 

 

Fig. 3. ANOVA for average GRG 

3.7. Geometrical study 

Geometrical accuracy is found by comparing the profile 

of the formed sheet against the original CAD geometry. 

Fig. 4 shows the CAD vs Experimental plots for different 

step depths. The mean square error (MSE) calculated using 

Eq. 8 is used to quantify the accuracy of the formed sheet 

and the values obtained are given in Table 8 and same has 

been shown in Fig.5. 

2

1

1
( )

n

i i

i

MSE y y
n =

= −
, (8) 

where n is the number of data points; yi observed values; ŷi 

are the CAD values. 

3.8. Thickness distribution 

To determine the thickness of the formed sheets, they 

were cut using wire-cut EDM. The initial thickness of the 

sheet before forming was 0.8 mm. Table 9 shows the 

thickness of the sheet measured using a digital micrometer 

after forming. The final thickness distribution of the formed 

sheets for different step depth is shown in Fig. 6. The 

minimum thickness of 0.224 mm was obtained for a Step 

depth of 0.2 mm, Tool rotational speed of 100 rpm ad feed 

rate of 500 mm/min (Experiment 1). 

 

a 

 
b 

 
c 

Fig. 4. a – profile plot for 0.2 mm step depth; b – profile plot for 0.3 mm 

step depth; c – profile plot for 0.4 mm step depth 

 

Fig. 5. Mean square value for profile accuracy of MDS-ISF 

components 
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Table 8. MSE values of EXP vs CAD each experimental combination 

EXP vs CAD 

Exp no. 1 2 3 4 5 6 7 8 9 

MSE 0.6608 0.66101 0.98550 1.72738 1.95152 1.78299 2.13361 2.22747 2.74978 

 

Fig. 6. Thickness at different locations on the formed sheet of MDS-ISF 

components 

4. CONCLUSIONS 

The effects of forming parameters on the surface 

roughness, geometrical accuracy and average thickness of 

MDS-ISF parts have been studied experimentally on SS 

316L sheets of uniform thickness. Then, the process 

parameters were examined and optimized using the Taguchi 

technique considering the L9 orthogonal array average 

surface roughness and average thickness on SS 316L sheets 

of uniform thickness. The results of the current work are as 

follows: 

1. The initial results showed that a better average surface 

roughness of 0.534 µm was achieved for a step depth of 

0.2 mm, spindle speed of 300 rpm, and feed rate of 

1500 mm/min. Similarly, a better average thickness of 

0.561 mm was achieved at a step depth of 0.3 mm, 

spindle speed of 100 rpm, and feed rate of 

1000 mm/min. 

2. Taguchi L9 orthogonal array revealed that the optimum 

forming inputs for better surface finish and thickness 

were at a step depth of 0.3 mm, spindle speed of 

300 rpm, and feed rate of 1000 mm/min. 

3. The ANOVA results showed that step depth (SD) had 

the uppermost contribution of 52.74 % trailed by feed 

rate (FR) of 17.66 % and spindle speed (SS) of 8.81 %. 

4. The accuracy of the formed components was better at 

lower step depths when compared to forming the 

components at higher forming step depths. 

5. Validation tests were conducted at the optimum setting 

of forming parameter and there was a significant 

improvement in the obtained results, and hence Taguchi 

method proves a better way in optimising the process 

parameters of MDS-ISF of SS 316L with uniform 

thickness. 

The present work is performed with a single wall angle 

die which shall be changed for a double varying wall angle 

die for future works. The FEA of the metal die support 

incremental sheet forming shall be carried out and the FEA 

vs Exp comparison on thickness and profile plots shall 

studied. The number of experiments shall be increased and 

different diameters of tools and their influence on the 

forming responses shall be studied. 
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