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This study seeks to develop a sustainable, eco-friendly, self-compacting concrete (SCC) distinguished by its thermal 

insulation and durability, as these attributes have become essential for modern construction. For this purpose, four self-

compacting concrete mixtures were prepared, made with four types of gravel where (natural gravel 100 % NA, recycled 

concrete gravel 100 % RA, and natural pozzolan gravel 100 % PZA, in addition to mixing 50 % PZA + 50 % RA) were 

adopted. This paper evaluated the capillary absorption, porosity, thermal conductivity, thermal diffusion capacity and 

durability of self-compacting concrete. Given the significance of examining the endurance of SCC in hostile settings, the 

mass loss following immersion in 5% hydrochloric acid and 5% sulfuric acid was also analyzed. The findings suggest the 

feasibility of utilizing 100 % PZA and a combination of 50% PZA with 50% RA to manufacture self-compacting concrete 

with thermal insulation and durability in hostile situations. The values of thermal conductivity reduction were 36.4 % and 

16.4 %, respectively, and the mass loss reduction of the two mixtures towards chloric acid was 49.6 % and 36.8 %, and 

sulfuric acid was 83 % and 38.3 %, respectively. 

Keywords: friendly self-compacting concrete, pozzolan aggregate, recycled concrete aggregate, thermal insulation, 

durability. 
 

1. INTRODUCTION 

In recent years, there has been growing concern about 

the environmental threats posed by the large quantities of 

waste resulting from building demolition operations, given 

the associated ecological impacts [1 – 3]. 

Thermal conductivity measurement is the best test to 

characterize the thermal conductivity capacity of a material 

[4, 5]. Other researchers found that thermal conductivity 

strongly affects conductive heat transfer through concrete 

[6]. However, replacing natural fine sand with fine 

aggregates enhances mortars' thermal properties [7]. The 

integration of nano-silica produces a decrease in heat 

conductivity, and the use of recycled lightweight particles 

improves the ultrasonic propagation speed of concrete 

[8, 9]. Thermal insulation properties are significantly 

improved by adding lightweight aggregates into 

cementitious mixtures [10 – 12]. 

Considering the significance of researching the 

durability of self-compacting concrete (SCC) in harsh 

conditions. According to [13], the addition of silica fume 

and metakaolin greatly reduces the chloride permeability of 

self-compacting concrete. Mixes prepared with cement 

containing high-volume fly ash were more resistant to 

chloride ion migration than control mixes [14]. According 

to [15], the presence of limestone fillers in SCC mixtures 

causes significant degradation during Mg2SO4 attack, 

particularly in the 30 MPa class. The combination of natural 

pozzolan, cement kiln dust, limestone powder, and crushed 
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steel slag increases the strength of SCC [16]. However, fine 

aggregates FA could be replaced by recycled fine 

aggregates RFA, as long as the qualities of recycled 

aggregates RCA are considered in the mix design [17]. 

Other researchers discovered that using natural pozzolan PZ 

reduces the workability of SCC based on natural and 

recycled aggregates [18]. 

RCA harms the absorption during the manufacture of 

vibrated concrete [19]. A slight elevation in the water 

absorption of SCC was found when using a low amount of 

bonded mortar with coarse RCA [20]. At the same time, [21] 

confirms a direct proportionality between the amount of 

mortars and water absorption. Study mention that the 

number of multiple recycling of concrete increases the water 

absorption of SCC [22]. The results of [23] and [24] indicate 

that adding RCA was favorable for non-hydrophilic cement, 

creating microstructural barriers affecting permeability, 

water penetration, and sulfate attack. Concrete containing 

higher amounts of RCA and natural pozzolan demonstrated 

good results regarding chloride ion penetration and recorded 

lower apparent diffusion coefficient of chloride ions, and at 

the same time, SCC with PZ addition showed the lowest 

mass loss compared to the control concrete, which implies 

the beneficial use of RCA and PZ against H2SO4 attack [25]. 

Several researchers [26 – 29] concerning the effect of RCA 

on the physical properties of SCC, such as water absorption 

and permeability, show that RCA improves the behavior of 

SCC very remarkably. The joint use of fine RCA and 

metakaolin reduced the initial water absorption rate [30]. 



[31] found that the addition of RCA lowers the electrical 

resistivity of SCC. The use of fine RCA increases the water 

absorption of concrete [32]. The higher percentage of 

substitution of RCA and fine aggregates in SCC increases 

carbonation depth [27, 31]. Authors [33] show that the 

existence of fibers in concrete mixtures does not affect the 

water absorption results. On the other hand, the increase in 

RCA with fibers decreases the resistance to the penetration 

of chloride ions in the concrete. They [34] highlighted the 

enhanced properties of SCC with the addition of M-sand, 

[35] discussed the cost reduction and improved durability of 

SCC with mineral additions, [36] demonstrated the 

effectiveness of high-performance SCC with electric arc 

furnace slag aggregates and cupola slag powder, which 

resulted in high-strength, low-permeability concretes. 

This study seeks to assess the outcomes of an 

experimental investigation into the thermal and durability 

properties of SCC derived from diverse aggregate types. 

The objective is to address the significant depletion of 

natural resources, safeguard the environment from concrete 

waste, and simultaneously augment the value of well-

bonded local materials, such as natural pozzolan aggregates. 

2. MATERIALS AND MIXTURES  

2.1. Cement 

The cement used in all tests is CEM II/A-L42.5 Cement, 

whose chemical composition is illustrated in Table 1. 

Table 1. Chemical composition of cement and pozzolan 

Compound  SiO2 CaO Al2O3 Fe2O3 SO3 LOI* MgO 

Cement 20.4 61.7 5.4 3 2.2 5 1.8 

Pozzolan 43.5 10.5 17.2 9.5 0.9 2.6 2.98 

*Loss of ignition 

2.2. Fine and coarse aggregates 

Fig. 1 shows the appearance of the different aggregates: 

river sand (A), natural aggregates (B), recycled aggregates 

(C), and natural pozzolan (D). Table 2 summarizes the 

physical characteristics of the different aggregates. The 

chemical composition of natural pozzolan is summarized in 

Table 1. 

Table 2. Physical and mechanical properties of aggregates 

SiO2 Sand NA RCA PZA 

Specific weight, kg/m3 2.63 2.65 2.44 2.02 

Bulk density, kg/m3 1.54 1.3 1.22 0.86 

Water absorption, % 3.1 1.6 6.7 13.95 

Sand equivalent 89  –   –   –  

2.3. Superplasticizer 

The superplasticizer is "MEDAFLOW 30," derived 

from ether polycarboxylates and compliant with the 

EN 934-2 standard. It is a third-generation superplasticizer. 

2.4. Mix proportion 

The formulation we have adopted is based on the 

formulation proposed by the Japanese OKAMURA and 

called the general method, with some modifications 

concerning the selection of the quantity of sand in the 

mortar, the water/binder and the superplasticizer/binder 

ratio. Four (04) concrete mixes were prepared while keeping 

the water/cement ratio constant at 0.4. The concrete mix 

proportions are summarized in Table 3. 

 

a 

 

b 

 

c 

 

d 

Fig. 1. Appearance of different aggregates 

2.5. Experimental programs 

After 28 days and according to ASTM D 5930 [37], 

thermal conductivity is the amount of heat that passes 



through a material of unit area and unit thickness in unit time 

when its two faces are different by unit temperature. 

Table 3. Concrete mixture proportioning in 1m3 

Mix description 
100 % 

NA 

100 % 

RCA 

100 % 

PZA 

50 % RCA + 

50 %PZA 

Cement, kg 475 467 449 463 

Sand, kg 886 871 837 864 

NA 3/8, kg 277  –   –   –  

NA 8/15, kg 553  –   –   –  

RCA 3/8, kg  –  275  –  117 

RCA 8/15, kg  –  550  –  253 

PZA 3/8, kg  –   –  277 160 

PZA 8/15, kg  –   –  553 300 

SP, L 4.27 3.74 4.04 4.17 

W/C, % 0.4 0.4 0.4 0.4 

The corresponding heat transfer mode is thermal 

conduction Fig. 2. 

 

Fig. 2. Thermal conductivity meter 

Sorptivity measurement characterizes the absorption 

kinetics of materials. Sorptivity is expressed by the 

sorptivity coefficient (A) after 28 days, which was 

calculated according to equation (1): 

 𝐴 =  [
𝑉

𝑆
] /√𝑡,  (1) 

where A is the sorptivity coefficient in cm/sec0.5; V is the 

volume of water absorbed in cm3; S is the surface in contact 

with water in cm2; t is the elapsed time in seconds. 

The specimens are preconditioned following the 

AFREM AFPC procedure (97) before the sorptivity 

measurements. 

The calculation of open porosity established by 

equation (2): 

𝑃(%)  =  [
𝑉𝑣

𝑉𝑡
] ∗ 100 = (

∆𝑀

𝑆

𝛾𝜔∗𝐿
) ∗ 100, (2) 

where P is the open porosity, %; ∆M/S is the amount of 

water absorbed per unit surface, kg /m2.h0.5; γω is the density 

of water is equivalent to 1000 kg/m3; L is the frontal height 

of capillary imbibition (5 cm/ h0.5= 0.050 m /h0.5). 

A measurement of the open porosity was taken at 28. 

After immersion in 5 % sulfuric acid (H2SO4) and 

hydrochloric acid (HCl) solutions, mass loss was measured 

at 1, 7, 14, 21, 28, 35 and 42 days of immersion following 

Eq. 3 according to ASTM C 267 [38], the acid solution is 

renewed according to the pH values ASTM C 192 [39]. 

∆𝐶 =  [
𝐶0−𝐶𝑖

𝐶0
] ∗ 100, (3) 

where ∆C is the change in mass, %; C0 is the weight of the 

sample just before acid treatment, g; Ci is the mass after (i) 

days post-attack (g) where i ranges from 1 to 42. 

Digital photographs were taken for visual examination. 

3. RESULTS AND DISCUSSION 

3.1. Physical properties 

3.1.1. Capillary absorption (sorptivity) 

From Fig. 3, it is clear that the smallest value of the 

sorptivity coefficient is 5.73 × 10-4 cm/sec0.5, corresponding 

to the mixture (100 % NA), and the largest value 

corresponds to (100 % PZA) of value 9.65 × 10-4 cm/sec0.5 

this phenomenon can be attributed to the elevated porosity 

of the natural pozzolan aggregates. Conversely, the findings 

indicate that (100 % RA) and (50 % RA + 50 % PZA) 

exhibit superior sorptivity values compared to (100 % NA), 

attributable to the cement paste enveloping the recycled 

aggregates and the elevated porosity of PZA; these results 

were found by [23, 24, 40]. On the other hand, there was 

more water uptake when more RCA was added [26]. 

 

Fig. 3. Effect of different types of aggregates on the sorptivity 

coefficient 

3.1.2. Open porosity 

From Fig. 4, it is clear that the porosity has the same 

tendency as the sorptivity coefficient. 

 

Fig. 4. Effect of different types of aggregates on the open porosity 
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In numbers, we have the following porosity results: 

10.5, 14.4, 19.1 and 17.2 % for the mixtures 100 % NA, 

100 % RA, 100 % PZA and 50 % PZA + 50 % RA, 

respectively. This is due to the high porosity of RA and 

PZA, as already explained in the absorption section above. 

3.2. Thermal study 

3.2.1. Thermal conductivity 

The thermal conductivity is shown at the age of 28 days 

in Fig. 5. It can be concluded that the 100 % PZA mix 

records the lowest value of thermal conductivity 

(1.4 W/mK), followed by 1.84 W/mK, 2.2 W/mK and 

2.47 W/mK for the 50 % PZA + 50 % RA, 100 % NA and 

100 % RA mixes respectively. by comparing with the 

control concrete mix 100 % NA.  

 
Fig. 5. Effect of different types of aggregates on the thermal 

conductivity 

The 100 % PZA and 50 % PZA + 50 % RA mixes have 

undergone a reduction in the thermal conductivity of 36.4 % 

and 16.4 %, respectively, and this is due to the strong 

presence of pores, which play a great role in decreasing the 

thermal conductivity, which is consistent with [41], 

determined that thermal conductivity decreases by 

approximately 0.6 % for each 1 % increase in total porosity; 

this is logical since the pozzolan aggregates record a very 

high porosity compared to the other types of aggregates 

Fig. 4; this is consistent with the result of [40], and [42] who 

said that porosity is a key factor that affects heat 

conductivity. 

3.2.2. Heat capacity 

Fig. 6 indicates that the 100 % PZA mixture gives a 

better thermal insulation property than the control mixture, 

and its thermal property is connected to the capacity to 

absorb thermal energy. This finding enables us to infer that 

natural pozzolanic aggregates enhance the energy efficacy 

of concrete. This finding follows the findings of the research 

[6], which demonstrated that thermal conductivity 

substantially impacts conductive heat transfer in concrete. 

On the other hand, the same result was observed with the 

50 % PZA + 50 % RA mixture, which also has an 

environmental satisfaction. 

3.3. Durability study  

3.3.1. Resistance to HCl attack 

From the first day, mass loss begins for all self-placing 

concretes Fig. 7. This is explained by the high solubility of 

hydrochloric acid in water, which reacts quickly with 

calcium hydroxide Ca(OH)2 according to the equation: 

Ca(OH)2 + 2HCl → CaCl2 + 2H2O. (4) 

 

Fig. 6. Effect of different types of aggregates on the specific heat 

 

Fig. 7. Change in mass of mixtures versus the immersion duration 

for 5 % HCl 

The highest mass loss is recorded for self-placing 

concrete based on 100 % NA, with a value of 9.34 % at 42 

days, and the lowest mass loss recorded is that of self-

placing concrete based on 100 % PZA with a value of 4.7 % 

at 42 days. For the mixture of 50 % PZA + 50 % RA, a mass 

loss of 5.9 % at 42 days is recorded. However, mineral 

additives to SCC can reduce costs and increase durability, 

as mentioned in [5]. This indicates the positive effect of 

using natural pozzolan aggregates and recycled aggregates 

against the attack of HCl acid with a rate of 49.6 % and 

36.8 % for 100 % PZA and 50 % PZA + 50 % RA, 

respectively. 

3.3.2. Resistance to H2SO4 attack 

Mass loss was monitored during 6 weeks of immersion 

in a 5 % H2SO4 solution. The H2SO4 attack was performed 

according to the equation. 

Ca(OH)2 + H2SO4 → CaSO4 + 2H2O. (5) 
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From Fig. 8, we notice that all the mixtures have 

undergone an increase in mass loss with the duration of 

immersion. On the 1st day, the mixtures have undergone a 

small mass loss because sulfuric acid has a very low 

solubility in water, so it is relatively harmless. 

 
Fig. 8. Change in mass of mixtures versus the immersion duration 

for 5 % H2SO4 

However, it is the sulfate ions that play, in this case, a 

harmful role. Exception: the 100 % PZA mixture recorded a 

slight gain in mass due to the low content of CaO in the 

pozzolan aggregates Table 1. The comparison between the 

mixtures at 42 days of immersion shows that the mass loss 

of 100 % PZA is less than 83 % compared to the control 

mixture (100 % NA), while [43], the total weight loss in 

OPC mortar was 75 % following 180 days of 3 % H2SO4 

exposures. Reducing the overall weight loss in OPC is 

useless when the replacement amount of cement is thirty 

percent of natural pozzolana. On the other hand, the mass 

loss of the 50 % PZA + 50 % RA mixture is also less than 

38.3 % compared to the 100 % NA mixture. 

3.3.3. Visual examination 

Fig. 9 and Fig. 10 depict the deterioration of the 

samples as a result of attack by hydrochloric acid and 

sulfuric acid, respectively, while Fig. 11 clearly compares 

the extent of damage to the samples as a result of their 

exposure to the two acids, confirming what was concluded 

in Fig. 7 and Fig. 8. 

4. CONCLUSIONS 

According to the experimental program, we can 

conclude, based on the results obtained: 

1. The 100 % PZA and 50 % PZA + 50 % RA mixtures 

have the most significant absorption coefficient and 

open porosity values. 

2. The 100 % PZA and 50 % PZA + 50 % RA mixtures 

record the lowest values of thermal conductivity 1.4 

W/mK and 1.84 W/mK respectively. This indicates that 

they have good thermal insulation properties, which 

qualifies them for use in thermal insulation. 

 

100 % RA 

 

50 % RA + 

50 % PZA 

100%PZA 

100% NA 

Specimens 1 2 3 

Fig. 9. Sample degradation of mixtures after 42 days of immersion 

in hydrochloric acid solution 

100 % RA 

 

50 % RA + 

50 % PZA 

100 %PZA 
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Specimens 1 2 3 

Fig. 10. Sample degradation of mixtures after 42 days of 

immersion in sulfuric acid solution 

3. The incorporation of natural pozzolan aggregates and 

recycled aggregates favors resistance to assault by 

hydrochloric acid (HCl) and sulfuric acid H2SO4. The 

comparison between the different mixtures confirms 

that the mass loss decreases by 49.6 % and 36.8 % 

against the HCl attack and 83 % and 38.3 % against the 

H2SO4 attack for 100 % PZA and 

50 % PZA + 50 % RA, respectively. 
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Fig. 11. Comparison of sample degradation of mixtures in 

hydrochloric and sulfuric acid solution 

The primary objective of this research was to produce 

self-compacting concrete that is sustainable, insulating, and 

environmentally friendly. This has been achieved using 

100 % natural pozzolanic aggregate or 50 % pozzolanic 

aggregate with 50 % recycled concrete aggregate. This has 

the potential to be applied in a variety of construction fields 

and to improve energy conservation. These mixtures can be 

used to build agricultural buildings like cold rooms for 

storing farm goods. When making walls, it's important to 

make sure they are insulated to keep heat from escaping. It 

is also suggested for use in the foundations of houses in 

aggressive environments. 
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