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This study explores the effects of solution treatment, tempering, and forging on the microstructure and tribological
properties of 0.30 % Ti-alloyed nickel-aluminum bronze. The modified NAB alloy exhibited a refined microstructure
comprising a copper-rich a-phase, martensitic B-phase, and various intermetallic k (kappa) phases. Titanium addition
enhanced nucleation during solidification, reduced dendritic arm spacing, and promoted the formation of discrete k phases,
thereby improving grain refinement and phase uniformity. Notably, tempering the B-phase facilitated its partial
decomposition into o and ki, with further precipitation of kv and ki phases. Forging significantly altered the alloy's
morphology, fragmenting dendritic arms into near-spherical forms and increasing the formation of secondary kv phases
while preserving the fundamental o, B, and k phases. Hardness analysis revealed that Ti addition markedly improved
hardness, with NAB-0.30 %Ti achieving 239.53 HB and 254.06 HB after heat treatment and forging, respectively.
Enhanced hardness and improved wear resistance have been attributed to the presence of intermetallic k phases, increased
dislocation density, and grain refinement. Tribological testing confirmed that the forged NAB-0.30 %Ti alloy
demonstrated the lowest friction coefficient (0.097), minimal weight loss (0.0035g), and the best wear rate
(1.17 x 10®* g/N'm) over 10,000 meters of sliding distance. The findings highlight titanium’s role in refining
microstructure and enhancing both hardness and tribological performance of NAB, making it a promising candidate for

applications demanding superior wear resistance.
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1. INTRODUCTION

The creation of nickel aluminium bronze (NAB) alloys
is a multifaceted process that necessitates the meticulous
selection of alloying elements, casting methods, and thermal
treatments. NAB is predominantly sourced from a binary
copper-aluminium system, supplemented with nickel and
iron to improve its mechanical characteristics and corrosion
resistance. NAB alloys generally comprise 9-12 %
aluminium, with variable quantities of nickel (up to 6 %)
and iron, which enhance the alloy’s performance in
maritime applications [1-8]. The standard as-cast
microstructure comprises a ductile, copper-rich a phase, a
rigid martensitic f (beta) phase, and several intermetallic k
(kappa) phases, collectively endowing the alloy with its
advantageous mechanical properties [5,9-13]. The
solidification temperature of NAB is approximately
1070 °C, and the cooling pace can considerably influence
the resultant microstructure and, subsequently, the
mechanical properties of the alloy [13, 14]. Moreover, the
incorporation of nickel and iron not only augments
corrosion resistance but also improves the mechanical
strength and tribological characteristics of the alloy,
rendering it appropriate for high-stress applications
[12,15-18]. These treatments can produce a tempered
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martensitic or bainitic microstructure, hence improving the
alloy's strength and ductility [5, 13].

Modifying the microstructure via thermal treatments is
crucial for attaining the optimal combination of strength and
corrosion resistance, especially in demanding maritime
settings [4, 19]. The wear characteristics of NAB are
markedly affected by its microstructural phases, comprising
o (alpha), B, and several intermetallic phases. The intricate
interaction of these phases dictates the mechanical
properties and wear resistance of the alloy, rendering it
essential to comprehend their influence on wear
performance. The 3 phase, particularly the retained ' phase,
is a tougher, martensitic structure that improves the alloy's
wear resistance. The mechanical characteristics and
abrasive behaviour of NAB are significantly influenced by
their microstructure, with the hard f phase enhancing
strength and wear resistance [12, 20]. Research indicates
that the existence of this phase markedly enhances
mechanical qualities, such as tensile strength and hardness,
rendering it more appropriate for applications where wear
resistance is essential [5, 11, 12, 21, 22]. Elevated nickel
levels correlate with a decrease in the proportion of § and y»
phases, facilitating the emergence of k phases that enhance
the alloy's hardness and wear resistance [9, 20]. The «
phases are generally more resilient than the o phase and can



enhance the alloy's performance under abrasive conditions
[9, 12].

Heat treatment procedures, including quenching and
aging, can alter the microstructure, thereby increasing the
hardness and strength of the alloy, while potentially
diminishing ductility [13,20]. The microstructural
evolution during these treatments can result in the
development of a tempered martensitic structure,
recognized for enhancing wear resistance [13]. The
microstructural attributes of NAB alloys, affected by heat
treatment and processing techniques, are crucial in
influencing their wear performance [4, 10, 23]. Heat
treatment techniques can enhance the microstructure, hence
increasing the wear properties of NAB alloys during sliding
contact with other materials [5, 24]. The existence of several
phases inside the alloy enhances its strength and toughness,
which are crucial for applications demanding high
performance under mechanical stress [11,22]. The
mechanical strength of NAB alloys can be augmented using
diverse processing techniques, such as heat treatment and
friction stir processing, which refine the microstructure and
enhance hardness and tensile strength [20, 22].
Furthermore, the tribological properties of NAB alloys
demonstrate that they sustain their performance despite
exposure to corrosive conditions, rendering them suitable
for underwater applications [15, 25—230].

The incorporation of titanium into nickel-aluminium
bronze markedly improves its microstructural properties
and wear resistance. The enhancement of the
microstructure, stabilization of advantageous phases, and
augmentation of mechanical properties jointly enhance the
alloy’s performance in wear-intensive applications. The
selection of 0.3 % titanium (Ti) in materials studies has
likely been informed by various factors, including the
formation of solid solutions, enhancements in mechanical
properties, and the microstructural implications associated
with different concentrations of Ti. The initial introduction
of Ti into a tungsten (W) matrix, as noted by Sun et al., [31]
suggests that the replacement of W atoms by larger Ti atoms
results in significant lattice distortion, contributing to
enhanced hardness through the generation of elastic strain
fields. Ti’s ability to strengthen thin films through such
mechanisms forms a foundational understanding for why
specific percentages, such as 0.3 %, may have been chosen;
this concentration could facilitate a balance between
enhanced mechanical performance and modifiable
microstructural properties.

2. MATERIALS AND METHODS

Sample manufacturing casting trials were done at
Saglam Metal Industry and Trade's R&D Centre.
Manufacturing criteria were followed to purchase a nickel
aluminium bronze ingot for casting trials. Industrial ingots
were the main material, but laboratory-specific materials
were produced. The casting testing ingot was made from
pure copper scrap, aluminium, iron, and nickel utilizing
permanent mold casting. The melting process used a 300-
kilogram induction furnace. The prefabricated nickel
aluminium bronze ingot was sectioned and melted. The
CuLi permalloy removed oxygen from the liquid metal,
whereas the 30 % copper titanium permalloy added
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titanium. Copper lithium pre-alloy removes gases after
melting nickel aluminium bronze. Two charges were
generated: one titanium-free and one titanium-0.30 %.
Before casting, a 30 % copper titanium permalloy was
added to the molten metal during the last melting phase.
Castings were done at 1230 °C. Table 1 shows the chemical
makeup of NAB and NAB-0.30 % Ti alloys. The industrial
ingot's chemical composition was measured with an Oxford
optical emission spectrometer at the casting site. Japan's
Rigaku Ultima IV X-ray diffraction instrument revealed the
alloy's phases. The scanning range was 10—90 degrees at 3
degrees per minute. The casting samples were heat treated
after solution treatment (S.T.) at 875°C for 90 minutes and
tempering (T.) at 650 °C for 2 hours.

Table 1. Alloy weight percentages

Alloy Chemical cqmposition, Wt.%

Al Fe Ni Mn | Ti Cu
NAB 1019 | 301 | 441 | 0.31 | — | Bal
NAB-0.30 % Ti 9.95 | 299 | 4.28 | 0.30 {0.30| Bal.

Open-die forging was performed using a ram, rotating
the alloy around its axis with an industrial hammer. The
temperature was controlled with a laser thermocouple.
According to the literature, optimum strength values were
achieved at 870 °C [8], and 80 % deformation [7]. To
accomplish this, cylindrical metal rods with a diameter of
68 mm were forged to produce rods with a square cross-
sectional area of 27 x 27 mm.

After heat treatment and forging processes, NAB and
NAB-0.30 % Ti samples were cut into 10 x 20 x 10 mm
pieces using a water-cooled band saw. The samples were
sanded and polished with Microtext automated equipment
after cutting. The sanding process used 320, 400, 600, 800,
1000, and 2500 grits. After sanding, a 3 um Alx03 liquid
solution was used for polishing. The etching process used
5 grams FeCls, 50 millilitres HCI, and 100 millilitres of
clean water. An LOM-Carl Zeiss light optical microscope
was used to study phase structure grain changes. To find
secondary phases, the SEM-Carl Zeiss Ultra Plus scanning
electron microscope and EDX were used. The hardness of
NAB and NAB-0.30% Ti alloys was measured on the
Brinell Hardness tester by applying a load of 187.5 N with
2.5 mm steel balls. Hardness measurements were performed
by taking at least five consecutive successful measurements,
and the mean and standard deviation of these measurements
were calculated.

Tribological testing was done at ambient temperature
with the loading axis parallel to the rolling direction. Wear
testing wused rectangular prism samples measuring
18 mm x 14 mm x 10 mm. Before abrasion tests, the
surfaces were polished with 1200 um sandpaper. After
ethanol cleaning, the samples were weighed using a Precise
scale with 0.1 mg accuracy. The reciprocating wear testing
device was used to deliver a 20 N force, 0.1 m/s sliding
velocity, and 10,000 m of abrasion tests in dry conditions.
High-hardness AISI 52100 steel balls are used as abrasive
tips. At 200 m intervals, ethanol cleaned the sample surface
of worn debris. Before being reattached to the back-and-
forth abrasion tester, each sample was cleaned with ethanol
and weighed using calibrated scales. The beginning weight
was subtracted from the final weight using this data to



determine the weight loss with distance. For every sample,
the mean and standard deviation of the abrasion findings
from a minimum of three tests were computed. Eq.1
converted mass loss data into wear rate:

Wear Rate Per Unit Force (g/(N *m) =

¢ Mass Loss Due to Wear (g)
Force Applied (N)=Displacement(m))”

@)

The coefficient of friction was measured using a load
cell on the tribometer arm and recorded in real time on the
computer. SEM and EDX were used to assess alloy element
concentration and applied stress during the wear test.

3. RESULTS AND DISCUSSION

3.1. XRD patterns

XRD analysis is crucial in materials research because it
provides information on crystallographic structure, phase
composition, and microstructure. Materials
characterisation, industrial quality control, and material
development all benefit from XRD. Materials having
complex compositions can be identified by XRD. The NAB
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alloy has improved wear resistance and ductility due to the
inclusion of k phases [32]. Fig. 1 XRD analyses indicated
the existence of copper-rich AlCus and a-Cu phases at the
highest peak. Furthermore, the a-Cu phase was observed in
the terminal peaks of all alloys. Fig. 1 demonstrates that the
NAB alloy has AINi and AlFe; phases at an angle of 30.95°.
The NAB-0.30 %Ti alloy demonstrated the presence of the
AlTi phase at an angle of 21.90°, signifying the existence of
titanium. Consequently, the AlFe; phase was observed at an
angle of 27.25°. According to the NAB phase equilibrium
diagram [33], 10 % Al content in NAB alloy led to the
formation of k phase containing Fe and Ni.

3.2. Microstructure

LOM pictures of NAB and NAB-0.30 % Ti alloys after
solution treatment and tempering post-casting are shown in
Fig. 2 shows post-forging LOM pictures of the investigated
alloys. The addition of grain-refining elements such as Ti to
the alloy increases the grain formation rate before the
proliferation of nuclei, which contributes to grain
refinement.
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Fig. 1. X-ray diffraction patterns: a— NAB; b—NAB with 0.30 % titanium
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A higher number of nucleation sites per unit volume
leads to the formation of smaller grains [34]. Titanium
increases nucleation sites, resulting in smaller grains, which
refines grain structure. In several studies on nickel-bearing
aluminium  bronze, the heat-treated NAB alloy
microstructure in Fig. 2 a is typical. NAB has proven the
occurrence of copper-rich o solid solution phase, martensitic
p phase, and several intermetallic k phases, such as leaf-
shaped kj, thin Kk, and black globular kv [35—39]. Fig. 2 b
shows that adding 0.30 % titanium to NAB alloys reduces
dendritic arm thickness and increases k phase abundance.
Additionally, the tempered S phase showed significant kv
and «j precipitation. Tempering g may decompose
martensitic £ into small « and ;i clumps. Fig. 2 shows that
forging NAB and NAB-0.30%Ti alloys reduced
microstructure thickness. After forging, the alloys
maintained the same a, B, and « phases (Fig. 2 ¢ and d).
Forging fractured and shaped dendritic arms into
approximately spherical forms. The forging process added
Kiv steps. The addition of 0.30 %Ti to NAB alloys resulted
in the formation of k; and k; phases.

Fig. 3 a and b shows SEM images of NAB and NAB-
0.30 %Ti alloys after solution treatment (S.T.) and
tempering (T) post-casting. In contrast, Fig. 3 ¢ and d shows
SEM pictures of the identical alloys after forging. Table 2
shows the second phase EDX analysis findings, which show
diverse morphologies (1-8) in Fig. 3. The SEM pictures
reveal the alloys' microstructure, including o, P, and

c
Fig. 2. LOM images after S.T. + T.: a— NAB; b—NAB-0.30 %Ti; c— NAB after F; d—NAB-0.30 %Ti after F
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intermetallic k phases. The a phase has a high copper
content, whereas the retained B phase has a tempered
structure and concentrated AINi precipitates.

Table 2. EDX weight percentages of the marked numbers in Fig. 3

Points Al Ti Mn Fe Ni Cu
1 5.35 - 047 1114 570 77.35
a 2 4.79 - 0.88 1.08 417 89.08
= 3 5.91 - 0.25 058 4.84 8842
S 4 6.11 - 0.87 0.80 522 87.01
™ 5 527 957 061 1896 6.47 59.14
'.? 6 292 519 037 1211 551 73.93
7 16.16 413 041 0.09 475 74.46
8 6.89 395 045 0.26 495 83.49
1 8.27 - 010 0.81 560 8522
= 2 7.30 - 0.03 072 501 86.95
= 3 4.37 - - 032 541 8991
© 4 6.65 - 043 022 577 8693
™ 5 145 2612 040 11.33 4.83 5588
=2 6 9.79 6.66 - 1270 913 6172
. 7 699 831 011 051 641 7767
8 6.81 5.16 - 114 6.37 8053

Three separate k phases have diverse morphologies and
distributions. The «; phase, with significant iron
concentration, is located within the o phase matrix, which
has a rosette-shaped morphology. The kv phase, located at
the a-f boundary, has a spherical shape. The «v phase is far
more advanced than the k; phase.

XKV
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Fig. 3. SEM images after S.T. + T.: a— NAB; b—NAB-0.30 %Ti; c— NAB after F; d —NAB-0.30 %Ti after F

The lamellar ki phase, with high nickel content, is
formed at the « and g inter-faces via eutectoid
transformation of the f phase at low temperatures. The kv
phase, with higher iron content, is a refined precipitate
within the a phase [39-41].

3.3. Hardness test results

Fig. 4 compares NAB and NAB-0.30 %Ti alloy
hardness. The study includes post-solution treatment (S.T.)
and tempering (T.) data for casting and forging.
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Fig. 4. Comparison of hardness between NAB and NAB-0.30 %Ti
alloys

Forging increased the hardness of both alloys, but the
NAB alloy without titanium had a lower hardness. After
solution treatment (S.T.) and tempering (T) after casting and
forging (F.), the NAB-0.30 %Ti alloy had the higher
hardness values of 239.53HB and 254.06 HB,
respectively.Nickel-aluminium bronze's hardness comes
from the complex interplay of its microstructure phases o,
p, and k. The martensitic features of the f phase increase
hardness, whereas the intermetallic qualities of the k phases
increase strength. The k phase, including intermetallic
compounds after solidification, is essential for increasing
NAB's hardness. The inclusion of k phases can improve
wear resistance and strength by creating a more complex
microstructure [9, 12]. The « phases' intermetallic
properties increase the alloy's hardness, as they are harder
than the a and S phases. The distribution and shape of «
phases can be influenced by alloying elements [6, 42].
Forging influences material hardness through grain
refinement, phase transitions, and temperature changes
during deformation. Heat treatment and forging have
improved NAB's mechanical and tribological qualities such
hardness, yield strength, and tensile strength. Nickel-
aluminium bronze vyield strength and tensile strength
increase with hot forging at 850 °C, whereas elongation
decreases. This is because microstructural refinement
during forging increases dislocation density and grain
structure, increasing hardness [43]. Alloying materials also
impact NAB hardness [44]. Research shows that alloying
compositions affect mechanical qualities like hardness [45].
Without titanium, NAB alloy hardness was lower than other
alloys. Grain refinement is essential for alloy hardness.
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Titanium grain refining reduces grain size and increases
dislocation density, increasing hardness [46]. Grain refiners
like titanium add solid particles to the alloy, increasing its
hardness [46].

3.4. Tribological (wear) test results

Fig. 5 shows NAB and NAB-0.30 % Ti alloy weight
decreases after solution treatment (S.T.) + tempering (T.)
and forging (F.) while sliding at 0.1 m/s over 10,000 m.
Fig. 6 a shows the determined wear rates of the aluminium
alloys after this wear.
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Fig. 5. Weight loss with wear of NAB and NAB-0.30 %Ti alloys
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Fig. 6 b shows wear-related friction coefficients. In
solution treatment (S.T.), tempering (T), and forging (F), the
alloy with 0.30 % Ti had the best wear resistance. After
forging (F.), the NAB-0.30 %Ti alloy showed 0.0035 g
weight loss, 1.17 x 10 g/N-m wear rate, and 0.0970 friction
coefficient after 10,000 m. Titanium makes NAB more
resistant. Hardness and wear performance are important
because tougher materials wear better and last longer under
tough situations [49]. The presence and characteristics of
nickel-aluminium bronze (NAB) k phases significantly
impact its wear behaviour. The « phases, intermetallic
compounds formed during alloying, significantly impact
NAB's mechanical properties and wear resistance [19, 42].
The selective corrosion behaviour of x phases may
safeguard against wear in certain settings, extending the
service life of NAB components. Heat treatment affects
NAB's mechanical properties, particularly wear resistance.
Heat treatments can alter the k phase distribution and shape,
impacting alloy hardness and wear resistance [10, 11, 20].
The interaction between the «, a, and £ phases can improve
the wear characteristics of NAB, making it a popular
material for ship propellers and valves. The hardness of
NAB depends on microstructural changes produced by
forging and heat treatments. Heat treatment can produce
phase changes that increase alloy mechanical properties.
Equal channel angular pressing and isothermal heat
treatment can refine NAB's lamellar structure, increasing
hardness [48, 49]. Forging increases hardness, which
improves wear resistance for abrasive components [50].
Abrasion resistance is closely connected to hardness.
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Studies show that harder materials withstand wear better.
Studies that indicate wear loss and wear rate decrease with
hardness [51 —53] demonstrate this association.
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Fig. 6. a—wear rates; b—coefficient of friction of NAB and NAB-
0.30%Ti alloys after wear tests

The robust intermetallic compound AlFe; amplifies
these phenomena by providing a durable microstructure that
resists abrasive wear processes. The size and distribution of
hard phases like AlFes significantly impact the material's
abrasive wear [51]. Material phase composition might also
affect wear processes. AlFes can change wear from abrasive
to sticky depending on loading and counter surface contact
[54]. Mechanical features of the AINi inter-metallic phase
include excellent hardness and wear resistance [55]. Wear
and friction characteristics have improved using AINi
intermetallic phases [56]. Microstructural development of
AINi phase alloys can significantly affect tribological
performance. The coarsening of AINi precipitates after heat
treatment reduces wear resistance, underscoring the
importance of microstructural control in mechanical
property preservation [57]. Intermetallic phase hardness,
especially in high entropy alloys, determines wear
behaviour [58]. Materials with the AlCus phase are hard
because of strengthening processes caused by intermetallic
compounds formed during solidification and heat
treatments. Hard phases like AlCus can block dislocation



migration, making the alloy harder. This is important for
wear resistance, as harder materials wear less in hostile
situations. Phase composition and production methods
affect these alloys' hardness, which affects wear
performance [47]. Multiple methods can increase the wear
resistance of AICus phase aluminium alloys. Anti-wear
intermetallic phases reduce material loss during tribological
interactions. Adding a hard phase to the matrix protects
against abrasive wear, increasing wear resistance. Titanium
improves nickel-aluminium bronze (NAB) alloy hardness
and wear resistance, which are crucial for marine and other
harsh settings. Titanium is an alloying agent that refines
NAB's microstructure and mechanics. Also addressed is the
microstructural development of NAB alloys with titanium
additions. Titanium helps optimize the microstructure by
uniformizing phase distribution, enhancing mechanical
properties such as hardness and wear resistance [5, 11].
Through careful alloying material and processing
procedures such as heat treatment and deformation, NAB's
mechanical characteristics may be greatly improved
[11, 59]. Titanium's ability to form intermetallic compounds
with aluminium, such AITi, increases NAB's hardness and
strength. Titanium increases alloy hardness and wear
resistance. Research shows that titanium refines
microstructure, improving mechanical characteristics [12].
The AITi phase makes many materials harder and more
wear-resistant, notably aluminium alloys and coatings. The
AlITi phase reduced friction, a key wear resistance factor
[60]. Hardness reduces wear, underlining the AlTi phase's
role in enhancing these properties [52, 61, 62].

Nickel aluminium bronze (NAB) alloys' tribological
performance depends on their coefficient of friction (COF),
especially in marine applications where wear resistance and
endurance are vital. The coefficient of friction impacts
material wear and mechanical system performance.
Numerous studies have demonstrated that surface
treatments, load conditions, and environmental factors
affect NAB coefficient of friction (COF) [21]. Increasing
the wear resistance and coefficient of friction of nickel-
containing aluminium bronzes shows how alloy
composition affects tribological parameters [12]. Titanium
in nickel aluminium bronze (NAB) significantly impacts its
tribological properties, especially its friction coefficient.
Titanium's high strength-to-weight ratio and corrosion
resistance can improve bronze alloy performance in various
applications, especially in marine environments where NAB
is used due to its corrosion and wear resistance [19].
Titanium in NAB may change the microstructure and
friction coefficient, according to research. Titanium
improves bronze grain structure, increasing hardness and
wear resistance [63]. As smaller grains distribute stress
more uniformly across contact surfaces, this refinement may
reduce the friction coefficient due to increased surface area
and load distribution. Titanium's mechanical properties,
such as its ability to withstand heavy loads without
deformation, may also improve friction coefficient stability
under various operational conditions [64]. Friction stir
processing increases titanium dispersion in the bronze
matrix, improving wear resistance and lowering friction
coefficients [25].
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Fig. 7 a and b shows the SEM images of NAB and
NAB-0.30% Ti alloys after solution treatment (S.T.) and
tempering (T) after casting, while Fig. 7 ¢ and d shows the
SEM images after forging. Table 3 shows the EDX analysis
at the points defined by the morphologies (1-6) in Fig. 7.
SEM micrographs exhibit abrasive and adhesive wear
mechanisms. Wear micrographs show that plastic
deformation causes debris transfer to the surface and wear
grooves of different intensities. In addition, two- and three-
body interactions caused wear. NAB and NAB-0.30 % Ti
alloys after forging (Fig. 7 ¢ and d) generally have debris
transfer to the material surface due to adhesive wear. In
addition, grooves formed on the wear surface caused the
adhesive layer to break and detach.

Table 3. EDX weight percentages of the marked numbers on

Fig. 7

Points [C |O |[Al [Ti [(Mn [Fe [Ni |[Cu
a 1 3.63 B.59 [7.12 | — [0.12 [2.77 |6.45 [76.33
= 2 3.91 .24 [6.46 | — |0.66 [2.43 |5.68 [75.62
o 3 4.26 4.00 6.92 | — [0.01 [1.40 [6.23 [77.20
~ 4 5.07 [0.96 [8.66 [3.26 | — — |7.17 [74.89
.‘L_Lm 5 5.30 5.40 [6.69 [5.45 | — |0.97 [6.06 [70.13

6 5.32 4.87 [7.09 |4.70 |0.39 |1.68 |5.92 [70.04
- 1 439 [1.41 [764 | — [0.32 [1.09 [6.96 [78.22
= 2 4.44 5.01 [7.26 | — [0.59 [1.62 [6.57 [74.52
S 3 4.34 4.94 6.78 | — — |1.02 |6.38 [76.57
~ 4 3.86 |1.47 [7.51 |7.17 |0.71 [2.60 |6.51 [70.18
.LEL’ 5 5.18 5.66 [6.87 |7.07 |0.37 |1.71 |5.99 K7.20

6 4.99 [1.65 [7.41 [5.45 |[0.56 [3.06 [6.17 [70.71

NAB alloy wear scars are deep post solution treatment
(S.T.) and tempering (T) following casting and forging. The
wear scars show a transformation from abrasive to adhesive
character as titanium is added. During solution treatment
(S.T.) and tempering (T) in aged NAB alloy, mechanical
actions at point 1 in Fig. 7 a cause wear debris to adhere to
the wear scars. Point 2 shows that they wear separates
particles and create grooves on the surface of the material.
In point 3, there are burr-like fragments and wear scars that
are not sharper than point 2. In point 4 in Fig. 7 b, small
circular fragments adhere to the wear scars at medium depth
in aged NAB-0.30 %Ti alloy after solution treatment (S.T.)
and tempering (T). In point 5, the scenario is similar to point
1. In point 6, wear scars at medium depth show shell-like
and small triangular fragments adhered to the matrix. In
Fig. 7 c, asmall elliptical fragment separated from the worn
NAB alloy after forging is adhered to the surface within the
obvious wear scar. In point 2, coarse debris adheres to the
matrix. At point 3, there are small spherical fragments in and
around the deep channels. In Fig. 7 d, the NAB-0.30 %Ti
alloy worn after forging has short, line-like fragments
adhering to the extremely fine wear scars at point 4. At
point 5, small debris clusters adhere to the matrix. At
point 6, small fragments and shells adhere to the moss-like
surface. EDX analyses of the worn surface of NAB with
0.3 %Ti addition (points 4, 5 and 6 in Table 3) showed
partly some oxide formation. Partially oxygen-rich surface
formation, increase in Ti content and increase in hardness
led to a decrease in wear rate (Fig. 4).



Fig. 7. SEM images of the worn surfaces: after S.T. + T.: a—NAB; b—NAB-0.30 %Ti; c— NAB after F; d—NAB-0.30%Ti after F

4. CONCLUSIONS

After casting, solution treatment and tempering and

forging were examined on the tribological characteristics of
0.30 %Ti added NAB. The results are:

1.

Heat-treated NAB contains a copper-rich o solid
solution phase, martensitic B phase, and intermetallic «
phases. The addition of 0.30 %Ti to NAB led to a more
refined and homogeneous grain structure by increasing
the number of nucleation sites during solidification.
Heat treatment processes, including solution treatment
and tempering, facilitated partial decomposition of the
martensitic  phase into o and intermetallic phases,
further improving microstructural balance. Forging
enhanced the microstructure by breaking down
dendritic arms into nearly spherical forms and
increasing the precipitation of intermetallic k phases.
Hardness of NAB is influenced by microstructural
phases: o, B, and x. Titanium promoted the formation
of intermetallic k phases, which contributed to the
stability and increase in hardness. After solution
treatment (S.T.) and tempering (T) post-casting and
forging (F.), the NAB-0.30 %Ti alloy had the greatest
hardness values of 23953 HB and 254.06 HB,
respectively.

The combination of titanium alloying improved the
hardness and wear resistance of the alloy by enhancing
dislocation density, grain boundary strength, and phase
uniformity. Overall, the NAB-0.30 %Ti alloy exhibited
supe-rior  structural integrity and tribological
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performance compared to the titanium-free NAB alloy,
making it a promising candidate for applications
requiring high wear resistance. After forging (F.), the
NAB-0.30 %Ti alloy showed 0.0035 g weight loss,
1.17 x 10® g/N-m wear rate, and 0.097 friction
coefficient after 10,000 m of sliding distance.
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