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This paper presents a novel method for the identification of surface damage, in particular corrosion, in ferrous metals based 

on generative artificial intelligence (GenAI), showing how to automate damage identification and corrosion recognition. 

The methodology involved using optical microscopy to capture electrochemical corrosion patterns, followed by image 

preprocessing and classification using AI algorithms implemented in Python. High-quality microscopic images have been 

recorded, based on selected ferrous metals. Python code lines were generated using ChatGPTTM based on queries created 

by the authors, and this method was applied to the corrosion analysis. Quantitative evaluation confirmed Python code 

parameters-dependent detection accuracy and repeatability, demonstrating the robustness of the proposed technique. The 

results were discussed in terms of possible industrial applications. In addition, the limitations of the results obtained, which 

sometimes fall short of the claims inspector's expectations, were discussed. Compared to traditional corrosion detection 

methods such as visual inspection and non-destructive testing, AI-based methods are a faster and more cost-effective 

solution that can process large volumes of images in real time and produce consistent results. Further research directions 

are also suggested, including the analysis of other types of damage and improving the accuracy of the model. In addition 

to technical efficiencies, the broader impact of these studies is that they can contribute to predictive maintenance, reduce 

downtime and improve safety in industries with high ferrous metal use. 
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1. INTRODUCTION 

The surfaces of steel products have to meet the design-

related requirements for specific functional properties, such 

as tribological properties, leak tightness, good adhesion of 

coatings, external appearance, etc. The exploitation of 

machines and steel products leads to wear of untreated or 

coated surfaces due to normal wear processes (e.g., abrasion 

caused by friction between interoperating machine parts or 

contact with operating media) and impact of external factors 

which are difficult to predict during the design process (e.g., 

environmental impact such as electrochemical corrosion 

caused by unexpected exposure to water or chemical 

substances, mechanical impacts, exposure to high 

temperature, etc.). Identification of such damages linked to 

normal exploitation is crucial to plan maintenance tasks or 

even part repair. It also corresponds to quality assurance 

tasks. Literature underlines the importance of approaches 

that help to analyse the damages. The main method, which 

has been utilized for decades, is based on microscopic 

observations that often depend on human experience, which 

can lead to inconsistency and subjectivity. 

For instance, Wdowik and Świrad [1] analysed selected 

tools of the software using a microscope, coupled with focus 

variation technology. It enabled them to analyse selected 

features of ceramic chips. Xing F. et al. [2] presented a 

machine learning-based tool for microscopic image 

analysis. Cross S. in his review [3] discusses the advantages 

and problems of fractal geometric analysis and its current 
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applications in the field of microscopy. In the paper of Long 

F. et al. [4] the authors present basic methods for visualizing 

typical 3D images and related multi-scale, multi-timepoint, 

multi-color data sets. Merchant F. and Castleman K. [5] 

present investigations regarding image processing and 

analysis with the tools to improve the visual quality of 

images and extract quantitative information. Developments 

in microscopy, such as light sheet microscopy, digital 

microscopy, and the use of deep learning techniques for 

image segmentation and analysis with big data image 

informatics and management, were discussed in the 

abovementioned work too. Li W. and co-authors [6] 

developed an automated defect recognition tool in electron 

microscopy based on a computer vision approach. Object 

detector, convolutional neural network, and local image 

analysis methods are applied. Their proposed approach 

works for images of varying contrast, brightness, and 

magnification. In another paper [7], the authors present 

several popular machine learning techniques and their 

applications in microscopic image analysis. Machine 

learning can effectively and efficiently deal with the 

complexity and diversity of microscopic images and plays 

an important role in image-based computer-aided diagnosis. 

Connolly C. in his paper [8] investigates technologies that 

improve image quality in microscopy. A new technique for 

high‐content analysis is described. The abovementioned 

paper describes a 3D visualisation package, hardware, and 

software for viewing of high‐resolution microscopic images 

online. In the work of Sanaei N. et al. [9] the number of 



defects content in metal additive manufacturing (AM) 

specimens and the correlations between the defect 

characteristics (size, sphericity/circularity, aspect ratio) 

were investigated using 2D and 3D defect characterisation 

methods. They analyse the location-based distributions of 

defect characteristics in AM samples and study the 

variations of defect characteristics in these samples. 

Satorres Martínez S. and co-authors [10] present a machine 

vision system to reveal, detect, and characterise defects on 

non-planar transparent surfaces. The cornerstone of this 

machine’s vision is an innovative lighting system. A new 

adaptive threshold selection algorithm is proposed. The 

lighting system is compared with other commercial lighting 

systems. The performance of the system is evaluated 

through a series of tests using a commercial headlamp lens 

model [10]. Garcia-Perez A. et al. [11] present a tool wear 

monitoring system using computer vision that analyses tool 

inserts after the machining process is completed. They 

perform research by installing a camera and a tool cleaning 

device in the robot magazine room to remove chips and 

cooling residue, allowing for a neat image of the tool. Xie 

X. in the paper [12] presents a review of methods of surface 

inspection using computer vision and image processing 

techniques. The same work mentioned above focuses on 

visual surface inspection as a texture analysis problem to 

distinguish features extracted from normal and defective 

regions. Liu Z. et al. [13] and Chen Y. et al. [14] present a 

review of the applications of deep learning algorithms in 

microscopy image analysis and surface defect detection, 

which is a key part of quality inspection of industrial 

products. The latest and traditional methods are compared 

and the common problems and their solutions on industrial 

surfaces defect detection are summarized. Wang M. and co-

authors in the paper [15] focus on the detection of rail 

surface defects. The authors of this paper propose a novel 

model for detection rail surface defects. The mechanism 

includes a sharpening filter for defects on railway tracks to 

enhance the details of the underlying features of fine 

defects. Their second aim is to collect data from real rail 

images to train an object detection network and use it as 

open-source. Giorgio Cavaliere’s doctoral dissertation [16] 

focuses on the use of advanced vision systems for surface 

defect detection, applying vision systems and artificial 

intelligence. Automated inspection systems utilize high-

speed cameras, image processing algorithms, architectural 

neuronal networks, and artificial intelligence (AI). The 

results reveal that automated inspection systems offer 

improved quality assurance processes and the integration of 

2D/3D technologies in industrial applications [16]. 

The microscopic studies play a crucial role in damage 

analysis, and due to the intensive progress of cheap and 

accessible AI-based tools, the authors believe it is important 

to test the potential applications of this novel and cheap 

(from user’s perspective) technology, also taking into 

account well-known data acquisition methods such as 

optical microscopy. In this context, the analysis presented in 

the study is performed to investigate potential applications 

of the generative artificial intelligence along with the 

Python language to support the detection of damages of 

ferrous-metal parts. In the case of the presented study, the 

authors focus mainly on corrosion detection and the 

calculation of selected quantitative indicators using AI. The 

goal of this study is to develop a reliable system capable of 

automatically and accurately detecting corrosion, which 

could eventually be integrated into real-time monitoring 

systems for industrial applications. 

2. EXPERIMENTAL DETAILS 

Experiments presented in the study are based on the 

analysis of corrosion on ferrous-metal products. Corrosion 

can be recorded in photographs (images) taken by the use of 

USB microscope produced by DinoLite company (Fig. 1). 

The colour of corroded areas must be clearly different than 

colour of other areas. In the case of ferrous products 

corroded areas are usually red (rusty) while not damaged 

surfaces (without corrosion) are silver in colour. Data 

recording software installed on a PC by Dino and the 

Generative Pre-trained Transformer (GPT) (ChatGPTTM) by 

OpenAI company were used to support the analysis of the 

efficiency of detecting and calculating damaged surfaces of 

ferrous-metal products. Moreover, Visual Studio CodeTM 

was used to compile the Python code in the programming 

environment and the LibreCAD software was utilized too. 

LibreCAD software was used to verify the correctness of 

calculations performed by using GPT-based approach. 

 

Fig. 1. Image recording test stand configuration: USB microscope 

and PC-software set 

The details of the developed research procedure that 

was utilized by authors is presented in Fig. 2. It should be 

emphasized that this procedure utilizes software, hardware, 

AI assistance and human design of subsequent steps, 

prompts design and further analysis of obtained results. 

 

Fig. 2. Experimental procedure 



Before presenting the results in this study, the authors 

also tested other types of damage recognition with AI-

assistance, such as scratches on metal parts and temperature 

damage of tool holders, and decided to focus on corrosion 

at this stage of development. The following areas of 

investigation were selected for the aims of the study: 

1. Measurements of corroded (rusted) area. 

2. Automation of corrosion recognition. 

3. RESULTS 

This chapter presents research that lead to a damage 

detection. The authors selected three different microscopic 

images of ferrous-metal parts and tested a filtering 

methodology based on the use of artificial intelligence. 

3.1. Corrosion detection 

The electrochemical corrosion detection is presented 

below. The image captured by the microscope was linked to 

the Python code (based on the hard drive source indication) 

that enables marking the areas which are supposed to be 

corroded. The original images of corroded surfaces are 

presented in Fig. 3, Fig. 4 and Fig. 5. A ruler is added to all 

images presented in the study. The comparison of the 

original photo and a new photo generated based on the 

Python code (see Table 1) shows that the corroded areas are 

marked according to the code statements. The Visual Studio 

CodeTM software was utilized within the code run, however, 

libraries required by the code and presented in the first lines 

(cv2, numpy, matplotlib) had to be installed. To recognize 

corroded areas authors tested different area marking 

approaches. The first approach was based on outlining the 

area with a red line (see Fig. 6, Fig. 7 and Fig. 8). The 

authors also tested hatching the corroded areas. 

The final result was displayed in the Visual Studio 

CodeTM as a comparison of the original image and labelled 

image. It can be noted that in the case of corrosion outlining, 

the areas damaged cannot be easily recognized if the 

original image is removed and outlines are left (please see 

an example which is presented in Fig. 8). The better result 

shall be reached if the corroded area is filled out with 

hatches (filled in) as it is presented in Fig. 10, Fig. 11, and 

Fig. 12. 

Table 1. Exemplary prompt and exemplary Python code 

generated by the ChatGPTTM based on authors’ 

prompting 

Prompt: Please generate the code in the Python language that 

will mark in red the areas of the surface which are susceptible to 

electrochemical corrosion. 

Code 

import cv2 

import numpy as np 

import matplotlib.pyplot as plt 

def highlight_corrosion(image_path): 

    # Load the image 

    image = cv2.imread(image_path) 

    image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) 

    # Convert to HSV for better color segmentation 

    hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) 

    # Define a range for corroded areas (e.g., rusty brown/orange) 

    lower_rust = np.array([5, 50, 50])  # Adjust based on sample 

images 

    upper_rust = np.array([25, 255, 255]) 

    # Create a mask to detect rusty areas 

    mask = cv2.inRange(hsv, lower_rust, upper_rust) 

    # Apply morphological operations to refine the mask 

    kernel = np.ones((3, 3), np.uint8) 

    mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, 

kernel, iterations=2) 

    # Find contours of the detected corroded areas 

    contours, _ = cv2.findContours(mask, 

cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) 

    # Draw the contours on the original image in red 

    result = image_rgb.copy() 

    cv2.drawContours(result, contours, -1, (255, 0, 0), 2)  # Red 

color marking 

    # Display the original and processed images 

    fig, ax = plt.subplots(1, 2, figsize=(12, 6)) 

    ax[0].imshow(image_rgb) 

    ax[0].set_title("Original Image") 

    ax[0].axis("off") 

    ax[1].imshow(result) 

    ax[1].set_title("Highlighted Corrosion Areas") 

    ax[1].axis("off") 

    plt.show() 

# Example usage 

image_path = "corroded_surface.jpg"  # Replace with your image 

path 

highlight_corrosion(image_path) 

 

 

Fig. 3. Original image of the first corroded surface (distance 

between vertical lines is ~1 mm) 

 

 

Fig. 4. Original image of the second corroded surface (distance 

between vertical lines is ~1 mm) 



 

 

Fig. 5. Original image of the third corroded surface (distance 

between vertical lines is ~1 mm) 

 

 

Fig. 6. Outlined corroded areas of the first corroded surface 

(distance between vertical lines is ~1 mm) 

 

 

Fig. 7. Outlined corroded areas of the second corroded surface 

surface (distance between vertical lines is ~1 mm) 

 

 

Fig. 8. Outlines of the corroded surface presented in Fig. 3 

(distance between vertical lines is ~1 mm) 

 

 

Fig. 9. Outlined corroded areas of the third corroded surface 

(distance between vertical lines is ~1 mm) 

However, during the detection authors noticed that if 

the distance between the corrosion-damaged areas is 

greater, it makes them easier to be recognized after 

outlining. The approach which is based on filling areas in, 

enables easier recognition of corroded areas regardless of 

the distance between them. The initial analysis of the result 

(simple comparison) indicates that defined variation of 

colour (defined in the Python code) leads to the detection of 

corrosion-damaged areas, however, the change of settings in 

the code (i.e. lower_rust = np.array ([5, 50, 50])  and    

upper_rust = np.array([25, 255, 255]) changes the displayed 

result. This algorithm behaviour is presented in Fig. 13 

where the parameters are as follow: lower_rust = 

np.array([1, 1, 50]);    upper_rust = np.array([25, 255, 255]). 

As mentioned above, a ruler was added under each 

analysed image and the distance between the vertical lines 

of the ruler equals approximate 1 mm (the width of vertical 

lines and copying process have slight impact on the 

accuracy). The ruler was recorded under the same photo 

shot of the original image and copied to the analysed image. 



 

 

Fig. 10. Hatched corroded areas of the first corroded surface 

(distance between vertical lines is ~1 mm) 

 

 

Fig. 11. Hatched corroded areas of the second corroded surface 

(distance between vertical lines is ~1 mm) 

 

 

Fig. 12. Hatched corroded areas of the third corroded surface 

(distance between vertical lines is ~1 mm) 

 

 

Fig. 13. Hatched corroded areas of the third corroded surface 

(distance between vertical lines is ~1 mm) – changed 

hatching parameters in the Python code 

3.2. Quantitative analysis 

In the next stage, the possibilities of corrosion-damaged 

area calculation were verified. The procedure used is 

presented in Fig. 14. The prompt developed by the authors 

requested to calculate the area damaged by corrosion as a 

percentage of the entire image area. This approach can be 

presented by the following equation: 

𝐴𝑐𝑠% =
𝐴𝑐𝑠

𝐴𝑒𝑠
𝑥 100%, (1) 

where Acs is the corroded area; Aes is the area of entire image. 

 

Fig. 14. Basic steps regarding quantitative analysis 

Table 2 presents the prompts created by authors and 

the Python code generated by the ChatGPTTM. 

Table 2. Exemplary prompt, correcting prompts and exemplary 

Python code generated by the ChatGPTTM used for 

hatched area calculations 

Prompt 1 

Please generate the code in the Python language that will mark 

in red the areas of the surface which are susceptible to 

electrochemical corrosion. 

Correcting prompt 1 

change the code to hatch the corroded area! 

Correcting prompt 2  

update a code to calculate the hatched area 

Correcting prompt 3 

please calculate it as a percentage of the total area of the 

image  

Code 

import cv2 

import numpy as np 

import matplotlib.pyplot as plt 

def apply_hatching(image, mask, spacing=10): 

    """ 

Microscopic 
image 
recording 
and data 
storage

Image 
processing 
“Python”

Quantitative 
analysis 
regarding 
corrosion



    Applies a diagonal hatching effect on the given image in 

areas defined by the mask 

    and calculates the hatched area in pixels. 

    """ 

    # Create a copy of the original image 

    hatched_image = image.copy() 

    # Get contours of the mask to fill the detected regions 

    contours, _ = cv2.findContours(mask, 

cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) 

    # Create a blank mask for drawing hatching lines 

    hatching = np.zeros_like(image, dtype=np.uint8) 

    # Calculate the total hatched area (sum of nonzero pixels in 

mask) 

    hatched_area = np.count_nonzero(mask) 

    # Loop through each detected corrosion area 

    for contour in contours: 

        x, y, w, h = cv2.boundingRect(contour) 

        # Create diagonal hatching lines within the detected 

region 

        for i in range(0, w + h, spacing): 

            start_point = (x + i, y) 

            end_point = (x, y + i) 

            cv2.line(hatching, start_point, end_point, (255, 0, 0), 

1)  # Blue hatching 

        # Fill the detected area with hatching 

        cv2.drawContours(hatching, [contour], -1, (255, 0, 0), 

thickness=cv2.FILLED) 

    # Combine hatching with the original image using a bitwise 

operation 

    hatched_image = cv2.addWeighted(hatched_image, 1, 

hatching, 0.5, 0) 

    return hatched_image, hatched_area 

def highlight_corrosion_with_hatching(image_path): 

    # Load the image 

    image = cv2.imread(image_path) 

    image_rgb = cv2.cvtColor(image, 

cv2.COLOR_BGR2RGB) 

    # Convert to HSV for better color segmentation 

    hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) 

    # Define a range for corroded areas (e.g., rusty 

brown/orange) 

    lower_rust = np.array([5, 50, 50])  # Adjust based on 

sample images 

    upper_rust = np.array([25, 255, 255]) 

    # Create a mask to detect rusty areas 

    mask = cv2.inRange(hsv, lower_rust, upper_rust) 

    # Apply morphological operations to refine the mask 

    kernel = np.ones((3, 3), np.uint8) 

    mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, 

kernel, iterations=2) 

    # Apply hatching effect and calculate the hatched area 

    hatched_image, hatched_area = apply_hatching(image_rgb, 

mask) 

    # Calculate total image area 

    total_area = image.shape[0] * image.shape[1] 

    # Calculate corrosion percentage 

    hatched_percentage = (hatched_area / total_area) * 100 

    # Display the original and processed images 

    fig, ax = plt.subplots(1, 2, figsize=(12, 6)) 

    ax[0].imshow(image_rgb) 

    ax[0].set_title("Original Image") 

    ax[0].axis("off") 

    ax[1].imshow(hatched_image) 

    ax[1].set_title(f"Hatched Corrosion Areas\n{hatched_area} 

pixels ({hatched_percentage:.2f}%) of total area") 

    ax[1].axis("off") 

    plt.show() 

    # Print the total hatched area in pixels and percentage 

    print(f"Total hatched corrosion area: {hatched_area} 

pixels") 

    print(f"Percentage of image affected by corrosion: 

{hatched_percentage:.2f}%") 

# Example usage 

image_path = "corroded_surface.jpg"  # Replace with your 

image path 

highlight_corrosion_with_hatching(image_path) 

The change of the lower_rust and upper_rust values 

change the calculation results. 

Table 3 presents the result obtained after the generated 

Python code run. 

Table 3. Exemplary results of Acs% parameter measurements in the 

Python-based environment on the basis of Python code 

generated by the ChatGPTTM 

Figure number Aca% parameter, % 

Fig. 10 21.48 

Fig. 11 0.55 

Fig. 12 17.89 

Fig. 15 presents the area measurement technique in the 

LibreCAD software. It utilizes polygonal area measurement 

tool. The clear area outlined in pink colour was calculated 

and other three areas (two outlined in blue and one outlined 

in green) were subtracted from it. The Aca% parameter was 

calculated in the next step as the ratio of the value obtained 

based on the abovementioned calculation to the measured 

area of the entire image (according to Eq. 1). The result of 

Aca% is 60,89 % and this value differs from the results 

presented in Table 3. Recognition results strongly depend 

on inspector’s approach to the outlined area such as 

outlining precision and proper recognition of colours 

indicating corrosion. The results may also depend on 

LibreCAD tools characteristics, precision-related computer 

mouse/pen mouse characteristics, etc. The presented values 

clearly demonstrate that in the case of Python-based 

calculation the results depend on code settings linked to the 

filtered colour corresponding to corrosion, however, in the 

case of manual outlining in the LibreCAD software they 

depend on the abovementioned factors. 

 

 

Fig. 15. Approximate calculation of the area by the use of the 

LibreCAD software tool for area measurement  



3.3. Capabilities regarding automated damage 

detection 

Automated recognition of damages enables to find 

features of microscopic images that indicate a specific 

damage. If photos are copied to a folder, the algorithm 

created as the result of prompting can help to filter them and 

copy the images characterized by existing evidence of the 

damage to another folder. The script created in Python 

language shall indicate both folders and it ought to describe 

the parameters of damages. Fig. 16 presents the 

abovementioned automated detection in which corroded 

surfaces are filtered from the set of surfaces recorded under 

a microscope by using colour settings defined in the code 

which are specific for corroded areas. The script recognizes 

images that present corroded surfaces and also surfaces 

without corrosion. Initial experiments indicate that this low-

cost technique enables to separate images by less 

experienced Python users and it may be very useful in 

authors opinion to automate damage recognition in existing 

manufacturing environments. 

 

Fig. 16. Automated classification of corroded surfaces 

4. DISCUSSION 

Traditional inspection techniques usually do not require 

any damage recognition automation. Microscopic images or 

the results from other examination methods (e.g. penetrant, 

chemical, ultrasonic, etc.) are the basis for analysis and 

drawing final conclusions. For the scope of this study, the 

proposed low-cost techniques of damage analysis can 

simplify and automate final analysis even for corrosion-

related image-based data sets. 

Based on the authors' experience with generative 

artificial intelligence conversations, it can be tentatively 

stated that prompting is a key area that needs deeper 

understanding to obtain good results generated by the 

conversation. Chat responses are in fact, unpredictable. At 

this stage of development, corrosion recognition still 

requires access to high-quality microscopes or cameras and 

a PC (hardware), and the verification of the final results of 

the Python code, which is run by experienced users. 

However, the examples provided show that the detection 

was performed, and calculations of quantitative indicators 

are also possible. Moreover, the final result depends on the 

code construction and specific values that are used for e.g. 

colour definition. In the case of manual outlining in the 

LibreCAD software they depend on characteristics of the 

measurement process linked to inspector’s indications and 

software-hardware parameters. 

The results of the presented tests may also be 

supplemented by the inspection of other mechanical surface 

damage. The authors performed several tests on the use of 

AI-assistance in the case of mechanical scratches, but the 

generated Python algorithm did not produce satisfactory 

results (e.g. scratches were not properly labelled). 

According to the authors, automatic corrosion 

recognition is a very promising and low-cost technique that 

can help filter large data sets and help classify damages to 

make further decisions regarding part usage. However, 

based on existing experience with scratch recognition and 

the unpredictable character of chat response, authors 

suggest the user to verify the results generated by the chat 

and make the final human decisions at this stage of AI 

development.  

5. CONCLUSIONS 

The study concerned the potential application of 

selected AI, and Python techniques to analyse microscopic 

images of damages of ferrous-metals products. The results 

show that artificial intelligence-based methods can 

significantly improve the speed of damage detection, with 

applications across a variety of industries. Despite some 

challenges, including limitations related to image quality 

and code adaptation, this method is a promising and low-

cost solution for increasing the efficiency of corrosion 

monitoring systems. The appropriate procedures have been 

presented and validated for electrochemical corrosion that 

can be captured using optical microscopy.  

Beyond the technical improvements, the broader 

implications of this research are noteworthy. The integration 

of AI into corrosion detection systems may contribute to 

more efficient predictive maintenance strategies, reduced 

operational downtime, and improved safety in industries 

that rely on ferrous-metal components. With the 

advancement of artificial intelligence (AI) and machine 

learning, automated corrosion detection has become a 

promising alternative, offering consistent, fast, and scalable 

solutions. These findings suggest that AI-based methods 

could significantly transform traditional approaches to 

materials diagnostics in various industrial contexts. 

Further research into expanding the application of 

artificial intelligence may be focused on surface geometry 

analysis, further scratches analysis, etc. As AI technologies 

continue to develop, additional applications may include 

real-time corrosion assessment and integration with 

industrial Internet of Things (IIoT) platforms for continuous 

monitoring. 
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