
ISSN 1392-1320 MATERIALS SCIENCE (MEDŽIAGOTYRA). Vol. XX, No. X. 2025

Surface Corrosion Detection for Ferrous-metal Parts: Application of Artificial

Intelligence, Python and Microscopic Images

Roman WDOWIK 1 , Artur BEŁZO 1, Regita BENDIKIENE 2

1 Rzeszów University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
2 Kaunas University of Technology, Studentu st. 56, 51424, Kaunas, Lithuania

http://doi.org/10.5755/j02.ms.41377

Received 2 May 2025; accepted 19 June 2025

This paper presents a novel method for the identification of surface damage, in particular corrosion, in ferrous metals based

on generative artificial intelligence (GenAI), showing how to automate damage identification and corrosion recognition.

The methodology involved using optical microscopy to capture electrochemical corrosion patterns, followed by image

preprocessing and classification using AI algorithms implemented in Python. High-quality microscopic images have been

recorded, based on selected ferrous metals. Python code lines were generated using ChatGPTTM based on queries created

by the authors, and this method was applied to the corrosion analysis. Quantitative evaluation confirmed Python code

parameters-dependent detection accuracy and repeatability, demonstrating the robustness of the proposed technique. The

results were discussed in terms of possible industrial applications. In addition, the limitations of the results obtained, which

sometimes fall short of the claims inspector's expectations, were discussed. Compared to traditional corrosion detection

methods such as visual inspection and non-destructive testing, AI-based methods are a faster and more cost-effective

solution that can process large volumes of images in real time and produce consistent results. Further research directions

are also suggested, including the analysis of other types of damage and improving the accuracy of the model. In addition

to technical efficiencies, the broader impact of these studies is that they can contribute to predictive maintenance, reduce

downtime and improve safety in industries with high ferrous metal use.

Keywords: damage identification, corrosion, surface, steel, artificial intelligence.

1. INTRODUCTION

The surfaces of steel products have to meet the design-

related requirements for specific functional properties, such

as tribological properties, leak tightness, good adhesion of

coatings, external appearance, etc. The exploitation of

machines and steel products leads to wear of untreated or

coated surfaces due to normal wear processes (e.g., abrasion

caused by friction between interoperating machine parts or

contact with operating media) and impact of external factors

which are difficult to predict during the design process (e.g.,

environmental impact such as electrochemical corrosion

caused by unexpected exposure to water or chemical

substances, mechanical impacts, exposure to high

temperature, etc.). Identification of such damages linked to

normal exploitation is crucial to plan maintenance tasks or

even part repair. It also corresponds to quality assurance

tasks. Literature underlines the importance of approaches

that help to analyse the damages. The main method, which

has been utilized for decades, is based on microscopic

observations that often depend on human experience, which

can lead to inconsistency and subjectivity.

For instance, Wdowik and Świrad [1] analysed selected

tools of the software using a microscope, coupled with focus

variation technology. It enabled them to analyse selected

features of ceramic chips. Xing F. et al. [2] presented a

machine learning-based tool for microscopic image

analysis. Cross S. in his review [3] discusses the advantages

and problems of fractal geometric analysis and its current

 Corresponding author: R. Wdowik

E-mail: rwdowik@prz.edu.pl

applications in the field of microscopy. In the paper of Long

F. et al. [4] the authors present basic methods for visualizing

typical 3D images and related multi-scale, multi-timepoint,

multi-color data sets. Merchant F. and Castleman K. [5]

present investigations regarding image processing and

analysis with the tools to improve the visual quality of

images and extract quantitative information. Developments

in microscopy, such as light sheet microscopy, digital

microscopy, and the use of deep learning techniques for

image segmentation and analysis with big data image

informatics and management, were discussed in the

abovementioned work too. Li W. and co-authors [6]

developed an automated defect recognition tool in electron

microscopy based on a computer vision approach. Object

detector, convolutional neural network, and local image

analysis methods are applied. Their proposed approach

works for images of varying contrast, brightness, and

magnification. In another paper [7], the authors present

several popular machine learning techniques and their

applications in microscopic image analysis. Machine

learning can effectively and efficiently deal with the

complexity and diversity of microscopic images and plays

an important role in image-based computer-aided diagnosis.

Connolly C. in his paper [8] investigates technologies that

improve image quality in microscopy. A new technique for

high‐content analysis is described. The abovementioned

paper describes a 3D visualisation package, hardware, and

software for viewing of high‐resolution microscopic images

online. In the work of Sanaei N. et al. [9] the number of

defects content in metal additive manufacturing (AM)

specimens and the correlations between the defect

characteristics (size, sphericity/circularity, aspect ratio)

were investigated using 2D and 3D defect characterisation

methods. They analyse the location-based distributions of

defect characteristics in AM samples and study the

variations of defect characteristics in these samples.

Satorres Martínez S. and co-authors [10] present a machine

vision system to reveal, detect, and characterise defects on

non-planar transparent surfaces. The cornerstone of this

machine’s vision is an innovative lighting system. A new

adaptive threshold selection algorithm is proposed. The

lighting system is compared with other commercial lighting

systems. The performance of the system is evaluated

through a series of tests using a commercial headlamp lens

model [10]. Garcia-Perez A. et al. [11] present a tool wear

monitoring system using computer vision that analyses tool

inserts after the machining process is completed. They

perform research by installing a camera and a tool cleaning

device in the robot magazine room to remove chips and

cooling residue, allowing for a neat image of the tool. Xie

X. in the paper [12] presents a review of methods of surface

inspection using computer vision and image processing

techniques. The same work mentioned above focuses on

visual surface inspection as a texture analysis problem to

distinguish features extracted from normal and defective

regions. Liu Z. et al. [13] and Chen Y. et al. [14] present a

review of the applications of deep learning algorithms in

microscopy image analysis and surface defect detection,

which is a key part of quality inspection of industrial

products. The latest and traditional methods are compared

and the common problems and their solutions on industrial

surfaces defect detection are summarized. Wang M. and co-

authors in the paper [15] focus on the detection of rail

surface defects. The authors of this paper propose a novel

model for detection rail surface defects. The mechanism

includes a sharpening filter for defects on railway tracks to

enhance the details of the underlying features of fine

defects. Their second aim is to collect data from real rail

images to train an object detection network and use it as

open-source. Giorgio Cavaliere’s doctoral dissertation [16]

focuses on the use of advanced vision systems for surface

defect detection, applying vision systems and artificial

intelligence. Automated inspection systems utilize high-

speed cameras, image processing algorithms, architectural

neuronal networks, and artificial intelligence (AI). The

results reveal that automated inspection systems offer

improved quality assurance processes and the integration of

2D/3D technologies in industrial applications [16].

The microscopic studies play a crucial role in damage

analysis, and due to the intensive progress of cheap and

accessible AI-based tools, the authors believe it is important

to test the potential applications of this novel and cheap

(from user’s perspective) technology, also taking into

account well-known data acquisition methods such as

optical microscopy. In this context, the analysis presented in

the study is performed to investigate potential applications

of the generative artificial intelligence along with the

Python language to support the detection of damages of

ferrous-metal parts. In the case of the presented study, the

authors focus mainly on corrosion detection and the

calculation of selected quantitative indicators using AI. The

goal of this study is to develop a reliable system capable of

automatically and accurately detecting corrosion, which

could eventually be integrated into real-time monitoring

systems for industrial applications.

2. EXPERIMENTAL DETAILS

Experiments presented in the study are based on the

analysis of corrosion on ferrous-metal products. Corrosion

can be recorded in photographs (images) taken by the use of

USB microscope produced by DinoLite company (Fig. 1).

The colour of corroded areas must be clearly different than

colour of other areas. In the case of ferrous products

corroded areas are usually red (rusty) while not damaged

surfaces (without corrosion) are silver in colour. Data

recording software installed on a PC by Dino and the

Generative Pre-trained Transformer (GPT) (ChatGPTTM) by

OpenAI company were used to support the analysis of the

efficiency of detecting and calculating damaged surfaces of

ferrous-metal products. Moreover, Visual Studio CodeTM

was used to compile the Python code in the programming

environment and the LibreCAD software was utilized too.

LibreCAD software was used to verify the correctness of

calculations performed by using GPT-based approach.

Fig. 1. Image recording test stand configuration: USB microscope

and PC-software set

The details of the developed research procedure that

was utilized by authors is presented in Fig. 2. It should be

emphasized that this procedure utilizes software, hardware,

AI assistance and human design of subsequent steps,

prompts design and further analysis of obtained results.

Fig. 2. Experimental procedure

Before presenting the results in this study, the authors

also tested other types of damage recognition with AI-

assistance, such as scratches on metal parts and temperature

damage of tool holders, and decided to focus on corrosion

at this stage of development. The following areas of

investigation were selected for the aims of the study:

1. Measurements of corroded (rusted) area.

2. Automation of corrosion recognition.

3. RESULTS

This chapter presents research that lead to a damage

detection. The authors selected three different microscopic

images of ferrous-metal parts and tested a filtering

methodology based on the use of artificial intelligence.

3.1. Corrosion detection

The electrochemical corrosion detection is presented

below. The image captured by the microscope was linked to

the Python code (based on the hard drive source indication)

that enables marking the areas which are supposed to be

corroded. The original images of corroded surfaces are

presented in Fig. 3, Fig. 4 and Fig. 5. A ruler is added to all

images presented in the study. The comparison of the

original photo and a new photo generated based on the

Python code (see Table 1) shows that the corroded areas are

marked according to the code statements. The Visual Studio

CodeTM software was utilized within the code run, however,

libraries required by the code and presented in the first lines

(cv2, numpy, matplotlib) had to be installed. To recognize

corroded areas authors tested different area marking

approaches. The first approach was based on outlining the

area with a red line (see Fig. 6, Fig. 7 and Fig. 8). The

authors also tested hatching the corroded areas.

The final result was displayed in the Visual Studio

CodeTM as a comparison of the original image and labelled

image. It can be noted that in the case of corrosion outlining,

the areas damaged cannot be easily recognized if the

original image is removed and outlines are left (please see

an example which is presented in Fig. 8). The better result

shall be reached if the corroded area is filled out with

hatches (filled in) as it is presented in Fig. 10, Fig. 11, and

Fig. 12.

Table 1. Exemplary prompt and exemplary Python code

generated by the ChatGPTTM based on authors’

prompting

Prompt: Please generate the code in the Python language that

will mark in red the areas of the surface which are susceptible to

electrochemical corrosion.

Code

import cv2

import numpy as np

import matplotlib.pyplot as plt

def highlight_corrosion(image_path):

 # Load the image

 image = cv2.imread(image_path)

 image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

 # Convert to HSV for better color segmentation

 hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

 # Define a range for corroded areas (e.g., rusty brown/orange)

 lower_rust = np.array([5, 50, 50]) # Adjust based on sample

images

 upper_rust = np.array([25, 255, 255])

 # Create a mask to detect rusty areas

 mask = cv2.inRange(hsv, lower_rust, upper_rust)

 # Apply morphological operations to refine the mask

 kernel = np.ones((3, 3), np.uint8)

 mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE,

kernel, iterations=2)

 # Find contours of the detected corroded areas

 contours, _ = cv2.findContours(mask,

cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

 # Draw the contours on the original image in red

 result = image_rgb.copy()

 cv2.drawContours(result, contours, -1, (255, 0, 0), 2) # Red

color marking

 # Display the original and processed images

 fig, ax = plt.subplots(1, 2, figsize=(12, 6))

 ax[0].imshow(image_rgb)

 ax[0].set_title("Original Image")

 ax[0].axis("off")

 ax[1].imshow(result)

 ax[1].set_title("Highlighted Corrosion Areas")

 ax[1].axis("off")

 plt.show()

Example usage

image_path = "corroded_surface.jpg" # Replace with your image

path

highlight_corrosion(image_path)

Fig. 3. Original image of the first corroded surface (distance

between vertical lines is ~1 mm)

Fig. 4. Original image of the second corroded surface (distance

between vertical lines is ~1 mm)

Fig. 5. Original image of the third corroded surface (distance

between vertical lines is ~1 mm)

Fig. 6. Outlined corroded areas of the first corroded surface

(distance between vertical lines is ~1 mm)

Fig. 7. Outlined corroded areas of the second corroded surface

surface (distance between vertical lines is ~1 mm)

Fig. 8. Outlines of the corroded surface presented in Fig. 3

(distance between vertical lines is ~1 mm)

Fig. 9. Outlined corroded areas of the third corroded surface

(distance between vertical lines is ~1 mm)

However, during the detection authors noticed that if

the distance between the corrosion-damaged areas is

greater, it makes them easier to be recognized after

outlining. The approach which is based on filling areas in,

enables easier recognition of corroded areas regardless of

the distance between them. The initial analysis of the result

(simple comparison) indicates that defined variation of

colour (defined in the Python code) leads to the detection of

corrosion-damaged areas, however, the change of settings in

the code (i.e. lower_rust = np.array ([5, 50, 50]) and

upper_rust = np.array([25, 255, 255]) changes the displayed

result. This algorithm behaviour is presented in Fig. 13

where the parameters are as follow: lower_rust =

np.array([1, 1, 50]); upper_rust = np.array([25, 255, 255]).

As mentioned above, a ruler was added under each

analysed image and the distance between the vertical lines

of the ruler equals approximate 1 mm (the width of vertical

lines and copying process have slight impact on the

accuracy). The ruler was recorded under the same photo

shot of the original image and copied to the analysed image.

Fig. 10. Hatched corroded areas of the first corroded surface

(distance between vertical lines is ~1 mm)

Fig. 11. Hatched corroded areas of the second corroded surface

(distance between vertical lines is ~1 mm)

Fig. 12. Hatched corroded areas of the third corroded surface

(distance between vertical lines is ~1 mm)

Fig. 13. Hatched corroded areas of the third corroded surface

(distance between vertical lines is ~1 mm) – changed

hatching parameters in the Python code

3.2. Quantitative analysis

In the next stage, the possibilities of corrosion-damaged

area calculation were verified. The procedure used is

presented in Fig. 14. The prompt developed by the authors

requested to calculate the area damaged by corrosion as a

percentage of the entire image area. This approach can be

presented by the following equation:

𝐴𝑐𝑠% =
𝐴𝑐𝑠

𝐴𝑒𝑠
𝑥 100%, (1)

where Acs is the corroded area; Aes is the area of entire image.

Fig. 14. Basic steps regarding quantitative analysis

Table 2 presents the prompts created by authors and

the Python code generated by the ChatGPTTM.

Table 2. Exemplary prompt, correcting prompts and exemplary

Python code generated by the ChatGPTTM used for

hatched area calculations

Prompt 1

Please generate the code in the Python language that will mark

in red the areas of the surface which are susceptible to

electrochemical corrosion.

Correcting prompt 1

change the code to hatch the corroded area!

Correcting prompt 2

update a code to calculate the hatched area

Correcting prompt 3

please calculate it as a percentage of the total area of the

image

Code

import cv2

import numpy as np

import matplotlib.pyplot as plt

def apply_hatching(image, mask, spacing=10):

 """

Microscopic
image
recording
and data
storage

Image
processing
“Python”

Quantitative
analysis
regarding
corrosion

 Applies a diagonal hatching effect on the given image in

areas defined by the mask

 and calculates the hatched area in pixels.

 """

 # Create a copy of the original image

 hatched_image = image.copy()

 # Get contours of the mask to fill the detected regions

 contours, _ = cv2.findContours(mask,

cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

 # Create a blank mask for drawing hatching lines

 hatching = np.zeros_like(image, dtype=np.uint8)

 # Calculate the total hatched area (sum of nonzero pixels in

mask)

 hatched_area = np.count_nonzero(mask)

 # Loop through each detected corrosion area

 for contour in contours:

 x, y, w, h = cv2.boundingRect(contour)

 # Create diagonal hatching lines within the detected

region

 for i in range(0, w + h, spacing):

 start_point = (x + i, y)

 end_point = (x, y + i)

 cv2.line(hatching, start_point, end_point, (255, 0, 0),

1) # Blue hatching

 # Fill the detected area with hatching

 cv2.drawContours(hatching, [contour], -1, (255, 0, 0),

thickness=cv2.FILLED)

 # Combine hatching with the original image using a bitwise

operation

 hatched_image = cv2.addWeighted(hatched_image, 1,

hatching, 0.5, 0)

 return hatched_image, hatched_area

def highlight_corrosion_with_hatching(image_path):

 # Load the image

 image = cv2.imread(image_path)

 image_rgb = cv2.cvtColor(image,

cv2.COLOR_BGR2RGB)

 # Convert to HSV for better color segmentation

 hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

 # Define a range for corroded areas (e.g., rusty

brown/orange)

 lower_rust = np.array([5, 50, 50]) # Adjust based on

sample images

 upper_rust = np.array([25, 255, 255])

 # Create a mask to detect rusty areas

 mask = cv2.inRange(hsv, lower_rust, upper_rust)

 # Apply morphological operations to refine the mask

 kernel = np.ones((3, 3), np.uint8)

 mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE,

kernel, iterations=2)

 # Apply hatching effect and calculate the hatched area

 hatched_image, hatched_area = apply_hatching(image_rgb,

mask)

 # Calculate total image area

 total_area = image.shape[0] * image.shape[1]

 # Calculate corrosion percentage

 hatched_percentage = (hatched_area / total_area) * 100

 # Display the original and processed images

 fig, ax = plt.subplots(1, 2, figsize=(12, 6))

 ax[0].imshow(image_rgb)

 ax[0].set_title("Original Image")

 ax[0].axis("off")

 ax[1].imshow(hatched_image)

 ax[1].set_title(f"Hatched Corrosion Areas\n{hatched_area}

pixels ({hatched_percentage:.2f}%) of total area")

 ax[1].axis("off")

 plt.show()

 # Print the total hatched area in pixels and percentage

 print(f"Total hatched corrosion area: {hatched_area}

pixels")

 print(f"Percentage of image affected by corrosion:

{hatched_percentage:.2f}%")

Example usage

image_path = "corroded_surface.jpg" # Replace with your

image path

highlight_corrosion_with_hatching(image_path)

The change of the lower_rust and upper_rust values

change the calculation results.

Table 3 presents the result obtained after the generated

Python code run.

Table 3. Exemplary results of Acs% parameter measurements in the

Python-based environment on the basis of Python code

generated by the ChatGPTTM

Figure number Aca% parameter, %

Fig. 10 21.48

Fig. 11 0.55

Fig. 12 17.89

Fig. 15 presents the area measurement technique in the

LibreCAD software. It utilizes polygonal area measurement

tool. The clear area outlined in pink colour was calculated

and other three areas (two outlined in blue and one outlined

in green) were subtracted from it. The Aca% parameter was

calculated in the next step as the ratio of the value obtained

based on the abovementioned calculation to the measured

area of the entire image (according to Eq. 1). The result of

Aca% is 60,89 % and this value differs from the results

presented in Table 3. Recognition results strongly depend

on inspector’s approach to the outlined area such as

outlining precision and proper recognition of colours

indicating corrosion. The results may also depend on

LibreCAD tools characteristics, precision-related computer

mouse/pen mouse characteristics, etc. The presented values

clearly demonstrate that in the case of Python-based

calculation the results depend on code settings linked to the

filtered colour corresponding to corrosion, however, in the

case of manual outlining in the LibreCAD software they

depend on the abovementioned factors.

Fig. 15. Approximate calculation of the area by the use of the

LibreCAD software tool for area measurement

3.3. Capabilities regarding automated damage

detection

Automated recognition of damages enables to find

features of microscopic images that indicate a specific

damage. If photos are copied to a folder, the algorithm

created as the result of prompting can help to filter them and

copy the images characterized by existing evidence of the

damage to another folder. The script created in Python

language shall indicate both folders and it ought to describe

the parameters of damages. Fig. 16 presents the

abovementioned automated detection in which corroded

surfaces are filtered from the set of surfaces recorded under

a microscope by using colour settings defined in the code

which are specific for corroded areas. The script recognizes

images that present corroded surfaces and also surfaces

without corrosion. Initial experiments indicate that this low-

cost technique enables to separate images by less

experienced Python users and it may be very useful in

authors opinion to automate damage recognition in existing

manufacturing environments.

Fig. 16. Automated classification of corroded surfaces

4. DISCUSSION

Traditional inspection techniques usually do not require

any damage recognition automation. Microscopic images or

the results from other examination methods (e.g. penetrant,

chemical, ultrasonic, etc.) are the basis for analysis and

drawing final conclusions. For the scope of this study, the

proposed low-cost techniques of damage analysis can

simplify and automate final analysis even for corrosion-

related image-based data sets.

Based on the authors' experience with generative

artificial intelligence conversations, it can be tentatively

stated that prompting is a key area that needs deeper

understanding to obtain good results generated by the

conversation. Chat responses are in fact, unpredictable. At

this stage of development, corrosion recognition still

requires access to high-quality microscopes or cameras and

a PC (hardware), and the verification of the final results of

the Python code, which is run by experienced users.

However, the examples provided show that the detection

was performed, and calculations of quantitative indicators

are also possible. Moreover, the final result depends on the

code construction and specific values that are used for e.g.

colour definition. In the case of manual outlining in the

LibreCAD software they depend on characteristics of the

measurement process linked to inspector’s indications and

software-hardware parameters.

The results of the presented tests may also be

supplemented by the inspection of other mechanical surface

damage. The authors performed several tests on the use of

AI-assistance in the case of mechanical scratches, but the

generated Python algorithm did not produce satisfactory

results (e.g. scratches were not properly labelled).

According to the authors, automatic corrosion

recognition is a very promising and low-cost technique that

can help filter large data sets and help classify damages to

make further decisions regarding part usage. However,

based on existing experience with scratch recognition and

the unpredictable character of chat response, authors

suggest the user to verify the results generated by the chat

and make the final human decisions at this stage of AI

development.

5. CONCLUSIONS

The study concerned the potential application of

selected AI, and Python techniques to analyse microscopic

images of damages of ferrous-metals products. The results

show that artificial intelligence-based methods can

significantly improve the speed of damage detection, with

applications across a variety of industries. Despite some

challenges, including limitations related to image quality

and code adaptation, this method is a promising and low-

cost solution for increasing the efficiency of corrosion

monitoring systems. The appropriate procedures have been

presented and validated for electrochemical corrosion that

can be captured using optical microscopy.

Beyond the technical improvements, the broader

implications of this research are noteworthy. The integration

of AI into corrosion detection systems may contribute to

more efficient predictive maintenance strategies, reduced

operational downtime, and improved safety in industries

that rely on ferrous-metal components. With the

advancement of artificial intelligence (AI) and machine

learning, automated corrosion detection has become a

promising alternative, offering consistent, fast, and scalable

solutions. These findings suggest that AI-based methods

could significantly transform traditional approaches to

materials diagnostics in various industrial contexts.

Further research into expanding the application of

artificial intelligence may be focused on surface geometry

analysis, further scratches analysis, etc. As AI technologies

continue to develop, additional applications may include

real-time corrosion assessment and integration with

industrial Internet of Things (IIoT) platforms for continuous

monitoring.

Acknowledgments

This work was developed within the Erasmus project

Teamwork-based Education and Digitalization as an

Approach for the Interdisciplinary Engineering Training:

https://erasmus-

plus.ec.europa.eu/projects/search/details/2024-1-PL01-

KA220-HED-000257156, funded by the European Union.

Views and opinions expressed are, however, those of

the author(s) only and do not necessarily reflect those of the

European Union or the Foundation for the Development of

the Education System. Neither the European Union nor the

Foundation for the Development of the Education System

can be held responsible for them.

Artificial Intelligence usage statement and software

usage statement

Authors developed the paragraphs within the chapters

and literature analysis without AI assistance. The artificial

intelligence was used for Python code creation in the

ChatGPTTM by the OpenAI company based on prompts

written by authors. Moreover, the exemplary

abovementioned code generated by the ChatGPTTM is

presented in Table 1 and in Table 2. Fig. 3, Fig. 4 and Fig. 5

were recorded by authors by the use of USB microscope.

Figures from Fig. 6 to Fig. 13 were developed based on the

generated Python code run in the Visual Studio CodeTM,

however, the original Fig. 3, Fig. 4 and Fig. 5 were used for

this run. Fig. 15 was developed using the original image

obtained under the USB microscope, and outlines were

created in the LibreCAD software. Other figures were

developed by authors by using CAD software (Fig. 1) or

PowerPointTM (Fig. 2) and WordTM (Fig. 14), also by using

printscreen of the MicrosoftWindowsTM hard drive explorer

(Fig. 16).

REFERENCES

1. Wdowik, R., Świrad, S. Application of Focus-variation

Technique in the Analysis of Ceramic Chips Materials

Science Forum 957 2019: pp. 187 – 194.

https://doi.org/10.4028/www.scientific.net/MSF.957.187

2. Xing, F., Xie, Y., Su, H., Liu, F., Yang, L. Deep Learning in

Microscopy Image Analysis: A Survey In IEEE

Transactions on Neural Networks and Learning Systems

29 (10) 2018: pp. 4550 – 4568.

https://doi.org/10.1109/TNNLS.2017.2766168

3. Cross, S. The Application of Fractal Geometric Analysis to

Microscopic Images Micron 25 (1) 1994: pp. 101 – 113.

https://doi.org/10.1016/0968-4328(94)90057-4

4. Long, F., Zhou, J., Peng, H. Visualization and Analysis of

3D Microscopic Images PLoS Computational Biology 8 (6)

2012: pp. e1002519.

https://doi.org/10.1371/journal.pcbi.1002519

5. Merchant, F., Castleman, K. Microscope Image Processing.

Academic Press, 2022. eBook ISBN: 9780128210505

6. Li, W., Field, K.G., Morgan, D. Automated Defect Analysis

in Electron Microscopic Images NPJ Computational

Materials 4 2018: pp. 36

https://doi.org/10.1038/s41524-018-0093-8

7. Xing, F., Yang, L. Chapter 4 – Machine Learning and its

Application in Microscopic Image Analysis, Editor(s):

Guorong Wu, Dinggang Shen, Mert R. Sabuncu, In The

Elsevier and MICCAI Society Book Series, Machine

Learning and Medical Imaging, Academic Press, 2016: pp.

97 – 127, ISBN 9780128040768.

https://doi.org/10.1016/B978-0-12-804076-8.00004-9

8. Connolly, C. Analysis of Microscopic Images Sensor

Review 29 (1) 2009: pp. 20 – 27.

https://doi.org/10.1108/02602280910926724

9. Sanaei, N., Fatemi, A., Phan, N. Defect Characteristics and

Analysis of their Variability in Metal L-PBF Additive

Manufacturing Materials & Design 182 2019: pp. 108091.

https://doi.org/10.1016/j.matdes.2019.108091

10. Satorres Martínez, S., Gómez Ortega, J.,

Gámez García, J., Sanchez Garcia, A. A Machine Vision

System for Defect Characterization on Transparent Parts with

Non-Plane Surfaces Machine Vision and Applications 23 ()

2012: pp. 1 – 13

https://doi.org/10.1007/s00138-010-0281-0

11. Garcia-Perez, A., Gomez-Silva, M.J., Escalera-Hueso, A.

A Generative AI Approach to Improve In-Situ Vision Tool

Wear Monitoring with Scarce Data Journal of Intelligent

Manufacturing 36 2024: 3165 – 3183.

https://doi.org/10.1007/s10845-024-02379-2

12. Xie, X. A Review of Recent Advances in Surface Defect

Detection using Texture Analysis Techniques ELCVIA:

Electronic Letters on Computer Vision and Image Analysis

7 (3) 2008: pp. 1 – 22.

https://raco.cat/index.php/ELCVIA/article/view/150223

13. Liu, Z., Jin, L., Chen, J., Fang, Q., Ablameyko, S.,

Yin, Z., Xu, Y. A Survey on Applications of Deep Learning

in Microscopy Image Analysis Computers in Biology and

Medicine 134 2021: pp. 104523

https://doi.org/10.1016/j.compbiomed.2021.104523

14. Chen, Y., Ding, Y., Zhao, F., Zhang, E., Wu, Z., Shao, L.

Surface Defect Detection Methods for Industrial Products: A

Review Applied Sciences 11 2021: pp. 7657.

https://doi.org/10.3390/app11167657

15. Wang, M., Li, K., Zhu, X., Zhao, Y. Detection of Surface

Defects on Railway Tracks Based on Deep Learning IEEE

Access 10 2022: 126451 – 126465.

https://doi.org/10.1109/ACCESS.2022.3224594

16. Cavaliere, G. Comparative Use of Systems to Detect Surface

Defects in Die-Cast Components Using Advanced Vision

Systems Applying Artificial Intelligence. Free University of

Bozen-Bolzano, 2024, PhD thesis.

© Wdowik et al. 2025 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://erasmus-plus.ec.europa.eu/projects/search/details/2024-1-PL01-KA220-HED-000257156
https://erasmus-plus.ec.europa.eu/projects/search/details/2024-1-PL01-KA220-HED-000257156
https://erasmus-plus.ec.europa.eu/projects/search/details/2024-1-PL01-KA220-HED-000257156
https://doi.org/10.4028/www.scientific.net/MSF.957.187
https://doi.org/10.1109/TNNLS.2017.2766168
https://doi.org/10.1016/0968-4328(94)90057-4
https://doi.org/10.1371/journal.pcbi.1002519
https://scholar.google.pl/citations?user=fUCDUOoAAAAJ&hl=pl&oi=sra
https://www.google.com/books?hl=pl&lr=&id=IGFlEAAAQBAJ&oi=fnd&pg=PP1&dq=analysis+of+microscopic+images&ots=HK31s0tdKA&sig=BonCy7jDTctaYger3G6agcAmPmU
https://doi.org/10.1038/s41524-018-0093-8
https://doi.org/10.1016/B978-0-12-804076-8.00004-9
https://www.emerald.com/insight/search?q=Christine%20Connolly
https://www.emerald.com/insight/publication/issn/0260-2288
https://www.emerald.com/insight/publication/issn/0260-2288
https://doi.org/10.1108/02602280910926724
https://doi.org/10.1016/j.matdes.2019.108091
https://doi.org/10.1007/s00138-010-0281-0
https://doi.org/10.1007/s10845-024-02379-2
https://raco.cat/index.php/ELCVIA/article/view/150223
https://doi.org/10.1016/j.compbiomed.2021.104523
https://doi.org/10.3390/app11167657
https://doi.org/10.1109/ACCESS.2022.3224594

