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The addition of ceramic nanomaterials has a clear effect on minerals that suffer from ductility, when silica (SiO2) is 

incorporated into nickel metal (Ni) in volume ratios of 2 %, 4 %, 6 %, 8 %, and 10 %. The powder metallurgy process 

involved mixing designated volume ratios, the powders are milled for two hours using a custom electric mixer. 

Subsequently, the powder is placed into a press mold with a diameter of 10 mm, and the pressing operation is executed 

using a hydraulic press at a pressure of (80 MPa) for one minute. The resulting samples were heated at (1100 °C) for two 

hours. Some tests were conducted before and after the thermal sintering process, and the thermal treatments yielded 

significant experimental results, with the Brinell method showing the highest hardness at 770 kg/mm2 and the best 

compressive strength at 68 MPa. Additionally, the lowest porosity recorded was 9 %. Regarding the structural findings, 

the scanning electron microscopy (SEM) and X-ray diffraction provided clear results for the fabricated models in terms of 

how the structural elements were connected and dependent on each other, as well as the characteristics of the reinforcing 

material and its ability to permeate through the surface of the nickel base material. 
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1. INTRODUCTION 

The advanced engineering materials used in industrial 

technological applications varied [1]. Among these, 

advanced ceramics such as SiO₂ and Al₂O₃ are particularly 

noteworthy due to their exceptional hardness [2]. Various 

methods are used to produce these materials, with powder 

technology being the most significant one [3]. The field of 

composite materials is very complex and can't be 

understood just by knowing the basic principles or standard 

conditions [4]. It is important to emphasize that the research 

in this area aims to identify composite materials that can be 

used in various conditions and enhance the properties of 

materials with a weak structure [5]. Moreover, the 

fundamental principles should be complemented by a strong 

emphasis on practical applications [6], reflecting the dual 

objectives of minimizing costs while maximizing material 

specifications [7]. Specifically, the materials under 

investigation are nano-reinforced metals that exhibit high 

strength-to-weight and stiffness-to-weight ratios [8] which 

are now crucial in weight-sensitive industries like aircraft 

and spacecraft [9]. Composite materials now play a major 

role in the construction of modern vehicles and tools [10]. 

They have also expanded into urban construction, including 

tall buildings, bridge bases, and other components [11], 

[12]. Their high resistance to erosion, corrosion, heat, and 

high temperatures has made them an essential part of 

modern life [13]. The key distinguishing factor of composite 

materials is their base phase of metal and a reinforced phase, 

which may consist of a nano-ceramic material. This design 

allows the material to withstand and absorb shocks 
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effectively [16].  The primary phase has continuity and is 

typically longer, more durable, and less rigid. It can be 

composed of metals, plastics, or ceramics. [17 – 19]. Metals 

and plastics can be used as basic phases [20], due to their 

possession of some ductility, which is one of the preferred 

properties [21]. As for the ceramic phase, the added 

reinforcement is in order to improve the crack toughness 

[22]. The primary phase involves one or multiple materials 

[23]. One of its key features is the presence of reinforcement 

phases [24] and the distribution of applied stresses [25]. The 

primary phase may contain either the phase or the supported 

secondary phases, which are commonly referred to as the 

strengthening or reinforcement phase. This phase is known 

for its high strength and hardness [26, 27]. The main 

purpose of the supported phase is to provide the best levels 

of hardness and resistivity of composite materials [28]. 

Many common materials (metallic alloys, ceramics and 

plastics mixed with additives) [29], have small amounts of 

phases dispersed in their structure [30], but are not 

considered composite materials since its physical properties 

are similar to those of the basic phases [31] yet, the physical 

properties of steel are similar to the properties of pure iron 

[32]. 

2. AIM OF THE WORK 

The article aims to improve the mechanical and 

structural properties of nickel by adding nano-silica oxide, 

which has distinctive physical properties. 
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3. BASIC MATERIALS USED 

Nickel metal Ni is used as a base material and 

manufactured by Sulzer Metco (Swiss) with a purity of 

99.5 %, while the nano-support material was silica SiO2 

from Changsha Santech Co.) of (Chinese) origin with a 

purity of 99.8 %. The grain size of Nickel was 75 µm, while 

silica’s was 35 nm. 

4. METHOD 

The electric mixer is used to mix metal-based powders, 

such as nickel (Ni), at varying volumetric ratios (98 %, 

96 %, 94 %, 92 %, 90 %), along with nano-silica material 

SiO2 at volumetric ratios (2 %, 4 %, 6 %, 8 %, 10 %). 

Volumetric ratios are adjusted based on the difference in 

densities between the support material and the base material 

[33]. Once the mixing process is finished, both mixtures 

undergo a brief heat treatment at 100 °C for half an hour. 

The hydraulic press used is a HALIM USTA model of 

Turkish origin, with a maximum load capacity of 20 tons. 

Fig. 1 shows the mold used. The pressure applied to all the 

prepared models is 80 MPa for one minute during the 

pressing process. It usually suffers from softness or the so-

called green density, and therefore it needs a thermal 

sintering process, which was carried out using a type 

(Muffle Furnace) of Korean origin and model 12-MF, with 

a maximum temperature of (1200 °C), where the samples 

were sintered at a temperature (1100 °C) for two hours only. 

The sintering temperature was chosen to ensure that the 

sintering degree falls within the range of 70 – 90 % of the 

base material's melting point [34]. Approximately 76 % of 

nickel's melting point was used, taking into account the 

availability of the laboratory furnace. Once the samples are 

finished in the furnace, they are thoroughly cleaned and 

prepared for mechanical and chemical tests.  

 

Fig. 1. The mold used for pressing powders [1] 

5. STRUCTURAL AND PHYSICAL TESTS 

5.1. Scanning electron microscope 

The scanning electron microscope is a crucial tool for 

evaluating surface topography, examining structure, and 

measuring particle size. Additionally, it can determine the 

proportions of elements within a compound using energy-

dispersive X-ray spectroscopy (EDX). In this study, a 

Belgian-origin scanning electron microscope (MIRA 

TESCAN) was utilized to direct an electron beam onto the 

sample's surface, producing signals that reveal information 

about its shape and topography [35]. The benefit of the EDX 

test is to identify and confirm the elemental composition and 

distribution in the composite, supporting phase verification 

and dispersion assessment. a Belgian-origin EDX (MIRA 

TESCAN). 

5.2. X-ray diffraction 

The purpose of X-ray diffraction analysis is to 

determine the fundamental components of the alloy, as well 

as the phases and crystalline structures that are formed. X-

ray diffraction of the samples was performed using an Aeris 

Research device manufactured by Malvern Panalytical, a 

Dutch company. The tube used was a Cu kα diffract meter, 

and the test was carried out at room temperature. This non-

destructive examination method helps identify the chemical 

and physical properties of the materials used. The angle of 

the X-rays hitting the material is crucial in determining the 

basis of the diffraction work, and it is dependent on a 

specific angle of incidence [36]. Bragg’s equation is used to 

describe the diffraction condition, as shown in the following 

Eq. 1 [37] . 

𝑛𝜆 = 2𝑑 sin 𝜃, (1) 

where n is an integer representing the order of the diffraction 

peak; λ is the wavelength of the x-ray; θ is the diffraction 

angle . 

5.3. Porosity 

Porosity is the preferred measure for analyzing certain 

packing properties of powders. It is defined as the ratio of 

pores in powders to the bulk volume of the sample. Several 

factors, such as granule shape, size and distribution, and 

bonding strength, can influence porosity significantly. An 

increase in the fine granules relative to the coarse granules 

means a decrease in the porosity [39]. The pressure used for 

formation affects the proportion of the pores [40] because 

the use of high pressure will lead to an increase in the 

compaction of the granules and a decrease in the porosity. 

For instance, when the model is sintered at a high 

temperature, materials with low melting points will melt and 

fill the pores in the structure, resulting in a decrease in 

porosity. The percentage of the real porosity can be 

measured through the following relationship Eq. 2 [41]: 

T. P. % =  
T.D.−B.D.

T.D.
× 100 %, (2) 

where T.P. is the total porosity ratio of the sample; B.D. is 

the density of the sample in practice (The density of the 

body); T.D. is the theoretical density in g/cm3. 

5.4. Brinell hardness test 

To measure the hardness of the prepared samples, we 

used a Swedish-made programmed hardness device (type 

(2) Proced Equotip) with the reflux method. The device can 

directly display hardness values on its screen. It is capable 

of converting hardness values from one method to another. 

The device is programmed to provide the specific Brinell 

hardness numbers used in this research. Table 1 displays the 

key features of the device used. Brinell hardness (HB) can 

be determined using the following Eq. 3 [42] : 



HB = F/ (
1

2
) 𝜋𝐷(𝐷 − √(𝐷2 − 𝑑2 ) , (3) 

where D is the diameter of the ball in mm; d is the diameter 

of the circular trace in mm; F is the applied load in kg . 

Table 1. Shows the most important characteristics of the device 

used 

No. Title Values 

1 Maximum hardness 940 HV 

2 Impact energy 11 Nm 

3 Mass of the impact body 5.5 g 

4 Diameter test tip 3 mm 

5 Diameter impact device 20 mm 

6 Length impact service 150 mm 

5.5. Diametral compressive strength 

The compressive strength provides the maximum load 

that the material can bear before failure, and the 

compressive strength is a design factor when manufacturing 

composite materials [43]. The ability of a material to resist 

compression failure is influenced by the way the load is 

applied and the dimensions of the sample being tested. 

According to international standards, the height of the 

sample should not exceed its diameter when testing 

compressive strength. However, producing samples with 

heights close to their diameter can be challenging and 

expensive. The test has some restrictions. It can cause 

flexural stress and friction due to the increased surface area 

of the sample being tested, which can affect the test results. 

As a result, cylindrical composite materials are tested by 

applying continuous loads to the sample's diameter until it 

fails [44]. A resistance value can be found by compression 

σ from the following Eq. 4 [45]: 

𝜎 =
2∗𝐹

𝜋ℎ𝑑𝑠
 , (4) 

where ds is the sample diameter in mm; h is the sample 

height in mm; F is the maximum projected load in N. 

6. RESULTS AND DISCUSSION 

6.1. Scanning electron microscope results 

Encouraging results are obtained from the scanning 

electron microscope, which was carried out at a depth of 

2 µm and with a magnification of 15 KX. Fig. 2 shows SEM 

the thermal sintering process. Fig. 2 a displays a nano-

support ratio of 2, revealing the entanglement and 

crystalline coordination between the base material and 

support material, as well as the distribution of silica across 

the nickel surface. In contrast, Fig.2 b with a nano-support 

rate of 4 % shows an amplified spread of the support 

material, yet it also exhibits some crystalline defects on the 

surface. Regarding Fig. 2 c, when cementing with a 6 % 

nano-silica reinforcement, we observe that the pores and 

crystalline defects remain, but the spread of nano-silica is 

visible in white across the surface. 

   

a b c 
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Fig. 2. Shows electronic images of (Ni-SiO2) composites at different reinforcement ratios: a – 2%; b – 4%; c – 6%; d 8%; e – 10%;  

f – EDX spectrum after the thermal sintering process 
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In Fig. 2 d with an 8 % reinforcement rate, we notice a 

reduction in crystalline defects and an enhancement in the 

mechanical interlocking of the two mixtures. Meanwhile, at 

a 10 % nano reinforcement ratio, Fig. 2 e displays a surface 

that is almost free of pores, cracks, and other crystalline 

defects. We observed silica dispersed throughout the nickel 

base material, suggesting that the optimal mixing ratio 

achieved is 90 % Ni-10 % SiO2. This results in nanomaterial 

properties that enhance hardness, minimize porosity, and 

alleviate stress by disrupting the arrangement of nickel 

atoms. Consequently, a cermet alloy is produced with 

characteristics that blend the strength and cohesion of 

nanomaterials with the ductility and cohesion of metal 

[46, 47]. 

6.2. X-ray diffraction results 

X-ray diffraction patterns are a crucial test in materials 

science for identifying the materials used and determining 

the resulting crystal structures following mixing and 

pressing. Fig. 3 displays the X-ray diffraction of the  

(Ni-SiO2) compounds after the sintering process and at 

various support ratios of nano-silica 2, 4, 6, 8, 10%. 

Fig. 3. X-ray diffraction patterns XRD of Ni-%SiO2 composites at 

different reinforcement ratios 

As shown in Fig. 3, the nano-silica material (SiO2) was 

observed to have a rhombic crystal system (orthorhombic) 

with main angles at 2θ = 37, 44, 53, 77. Meanwhile, the 

base metal nickel exhibited a cubic system (Cubic) with 

crystal angles at 2θ = 45,76. Additionally, due to the 

interaction of oxygen with nickel during thermal sintering 

processes, nickel oxide (NiO) was found to have a cubic 

system (Cubic) with crystal angles at 2θ = 63.5, 80. Nickel 

oxide's presence, along with nanoscale silicon oxide, 

created an alloy with unique mechanical and physical 

properties. This is due to the high hardness of nickel oxide, 

which has various industrial applications such as in ceramic 

materials [48] and casting. It also finds use in nickel alloys 

[49] and fuel cells as an electrode [50]. These applications 

contribute to the mechanical properties of composites, 

especially when a certain percentage of silica support is 

involved. 

6.3. Real porosity results 

Fig. 4 illustrates the correlation between the 

percentages of nano-silica added and the real porosity after 

thermal sintering at 1100 °C for two hours. It is evident that 

there is a significant relationship between porosity and 

hardness. With an increase in the percentage of nickel metal 

support material, the porosity decreases, reaching its lowest 

value of 17 % before sintering with 10 % reinforcement 

material. After sintering, the porosity decreases further to 

9 % at the same reinforcement percentage of 10 %. 

 

Fig. 4. The relationship between the reinforcement volumetric 

ratios and the real porosity before and after thermal 

sintering 

Nickel and silica nanoparticles help to fill voids, 

particularly after the thermal sintering process. The porosity 

decreases after sintering because the atoms are closer 

together, due to the cermet compounds' atoms being close to 

each other. The sintering temperature significantly aids in 

filling the voids formed during the pressing process [51]. 

6.4. Brinell hardness results 

Fig. 5 shows the correlation between the volumetric 

reinforcement ratios of silica and the Brinell hardness before 

and after sintering at 1100 °C for two hours. It is evident that 

the hardness gradually increases with the addition ratios of 

SiO2, demonstrating the significant impact of nanomaterials 

on nickel. The highest hardness, reaching 745 kg/mm2, 

occurs at a reinforcement percentage of 10 %. 

 
Fig. 5. The relationship between the reinforcement volumetric 

ratios and Brinell hardness before and after thermal 

sintering 

This is attributed to agglomeration of the reinforced 

material, which negatively affects hardness and hinders 

mechanical crosslinking between the atoms of the base and 

cementing materials [52]. After sintering, we observe a 
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notable rise in hardness with the addition ratios. The 

maximum hardness of (770 kg/mm2) is achieved at the 10 % 

SiO2 ratio. This increase is primarily due to the heat level, 

which promotes atom bonding and cohesion, leading to 

enhanced fusion strength, reduced porosity, and increased 

hardness and durability of the nickel oxide phase. 

Furthermore, the presence of nickel oxide serves as a 

secondary support phase that contributes to improved 

mechanical properties [53]. 

6.5. Diagonal compressive strength results 

Fig. 6 shows the relationship between the change in the 

volumetric ratios of nano-silica and the compressive 

strength before and after the thermal sintering process. The 

figure shows that as the volumetric ratios increased, the 

compressive strength also increased. For instance, the 

compressive strength rose from 34 – 52 MPa when the silica 

content was 2 % to 10 % before sintering. 

 

Fig. 6. The relationship between the volumetric reinforcement 

ratios and the radial compressive strength before and after 

thermal sintering 

Additionally, after the thermal sintering process, the 

compressive strength of the diameter increased from 

41 – 68 MPa at a silica content of 2 % to 10 %. The higher 

compressive strength is also due to the strong particle 

reinforcement and the mixing of ceramic material with 

metal, resulting in a hard cermet compound [54]. This 

process also leads to the formation of nickel sintering, which 

effectively resists local deformations, and ultimately creates 

cohesive samples with high compressive strength. The high 

sintering temperature for two hours plays a crucial role in 

enhancing the bonding strength between the particles of the 

overlay components. This is achieved through effective 

spreading and distribution, leading to increased density and 

reduced porosity after sintering. Consequently, this supports 

and reinforces the overlay mass by effectively filling the 

voids between the surface atoms, resulting in a cohesive and 

strong overlay [55]. The Young's modulus is influenced by 

the material type and its ability to maintain a constant ratio 

between stress area and strength when subjected to an 

applied load by reducing the Young's modulus, and 

increasing the amount of silica up to 10 % SiO2, we 

achieved a high Young's modulus, indicating low material 

deformation and requiring significant force to change its 

shape. This transformation creates a hard cement compound 

with high load-bearing strength [56 – 58]. 

7. CONCLUSIONS 

The current article suggests the potential for merging 

nano-ceramic powders with nickel metal, resulting in 

strengthened nickel with high mechanical specifications. 

This was achieved through standard thermal sintering at 

1000 °C and a 10 % addition of SiO2, leading to improved 

diagonal hardness and compressive resistance, as well as 

reduced porosity. Additionally, X-ray diffraction 

examination revealed the presence of cubic nickel oxide, 

while scanning electron microscope results showed an 

intertwined crystalline structure with a distinct surface 

under these optimal conditions. 
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