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Taiwan’s urban road infrastructure is increasingly challenged by aging pavements and constrained maintenance budgets. 

Traditional reactive repair strategies, such as milling and overlay, are not only costly but often lead to accelerated structural 

deterioration. To address this, we propose an AI-driven preventive maintenance framework that integrates the YOLOv8 

deep learning algorithm, high-resolution 3D surface imaging, and a Pavement Condition Index (PCI)-based decision 

strategy. The system enables real-time identification of cracks, potholes, and rutting, achieving a mean Average Precision 

(mAP) of 97.2 % and a PCI estimation accuracy with R² = 0.92 and ± 3.5 absolute error compared to manual scoring. Field 

trials conducted across urban, county, and rural roads in New Taipei City over a 12-month period demonstrated significant 

improvements in pavement condition. PMA and OGFC treatments achieved PCI retention rates above 90 %, while fog 

and slurry seals exhibited 10 – 12 % declines, particularly under high traffic and wet conditions. Material performance 

tests confirmed that all sealants and overlays met or exceeded national standards in curing time, abrasion resistance, and 

strength. Furthermore, integration of Multi-Criteria Decision Analysis (MCDA) and Life-Cycle Cost Analysis (LCCA) 

showed that condition-based interventions could reduce long-term maintenance costs by up to 20 % compared to reactive 

strategies. The framework also supports scalable deployment through potential integration with GIS dashboards and cloud-

based pavement management systems. This study validates the feasibility of using AI for real-time pavement condition 

evaluation and strategic maintenance planning. By bridging detection precision, structural analysis, and cost-optimized 

decision-making, it provides a robust foundation for smart, sustainable road asset management. 

Keywords: AI-driven pavement maintenance, YOLOv8-based distress detection, high-resolution 3D imaging, pavement 

condition index, preventive maintenance strategy, polymer-modified asphalt, open-graded friction course, crack sealing 

materials. 

 

1. INTRODUCTION  

Urban traffic volumes continue to climb even as 

maintenance budgets contract, imposing a two-fold 

constraint on roadway agencies. Reactive treatments – 

milling, patching, and full-depth reconstruction – remain 

indispensable, yet they are costly, disruptive, and, when 

deferred, accelerate long-term pavement degradation [1, 2]. 

Even seemingly routine surface treatments require 

meticulous gradation design to forestall premature failure. 

These realities have propelled the profession toward data-

driven, preventive strategies that intervene sooner and at 

lower life-cycle cost. 

The earliest attempts at automation relied on classical 

image processing. In the mid-1990s, edge segmentation of 

35 mm film already achieved ≈ 90 % accuracy for ravelling 

and cracking [3], and a sample-space–interpolation 

algorithm soon improved real-time thresholding still further 

[4]. With the advent of bi-layer connectivity de-noising [5], 

generating high-quality annotations for the deep networks 

that would follow. 

Redmon’s YOLO architecture then unified localisation 

and classification in a single millisecond-scale pass [6]. A 

YOLOv3 system deployed on Indonesian highways yielded 

83 – 89 % mean average precision (mAP) for pothole 

detection [7], and an enhanced backbone later raised multi-

class accuracy under variable illumination [8]. Integrating 
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YOLO outputs with 3-D ground-penetrating-radar voxels 

further improved the localisation of subsurface voids [9]. In 

parallel, Hu et al. combined a lightweight CNN backbone 

with dilated convolutions, achieving 92 % crack-detection 

accuracy on a 10 000-image data set while running at 35 fps 

on an edge GPU [10]. 

The latest YOLOv8 family now exceeds 95 % mAP 

while remaining lightweight [11]; QL-YOLOv8s prunes 

40 % of parameters via structural compression and 

dynamic-head decoding without sacrificing accuracy [12]; 

DepthCrackNet leverages depth cues to boost crack recall in 

back-lit scenes [13]; and SimSPPF plus EMA-Faster blocks 

add 5.8 % mAP@0.5 at negligible computational cost [14]; 

and an improved YOLOv8 variant that inserts coordinate 

attention and a multi-scale bidirectional FPN attains 97 % 

mAP with 15 % fewer FLOPs on the WHU-highway set 

[15]. A transformer-based alternative, Pavement-DETR, 

employs global attention and multi-scale fusion to surpass 

CNN baselines by a further 7 % in F1 score [16]. 

Three-dimensional, multi-sensor data now enrich 

diagnostics. Stereo-photogrammetric point clouds and 

vehicle-mounted LiDAR deliver sub-millimetre 

measurements of rut depth, faulting, and slab tilt [17]; fusing 

these metrics with RGB segmentation balances training sets 

and reveals structural anomalies invisible in 2-D imagery. 

Detection is valuable only if it informs decisions. An 

end-to-end framework already maps YOLO segmentations 



directly to ASTM D6433 PCI ratings, achieving 95 % crack 

detection and ≤ 10 % width-estimation error [18]; on 

regional roads, a direct-classification CNN attains 90 % 

agreement with expert PCI scores while halving survey 

costs [19]. At the network level, Poisson hidden-Markov 

models quantify annual deterioration probabilities [20]; 

incorporating environmental covariates reduces prediction 

error by a further 15 % [21]. 

Materials innovation remains the final pillar. Polymer-

modified asphalt (PMA) is the mainstay of preventive 

maintenance: rheological tests and full-scale trials confirm 

that the internal polymer network markedly enhances rutting 

and thermal-crack resistance [22]. Taken together, progress 

has advanced from early image processing to real-time, 

multi-source deep-learning detection, three-dimensional 

geometric integration, decision-support modelling, and 

high-performance materials – offering road agencies a 

scientifically robust, cost-effective blueprint for proactive 

pavement asset management. 

Despite these advancements, there is a paucity of 

studies that successfully integrate 1) state-of-the-art 

YOLOv8 detection, 2) high-resolution three-dimensional 

sensing, and 3) preventive materials specifically tailored to 

the identified defects. Most existing research tends to focus 

exclusively on detection accuracy or fails to validate 

maintenance outcomes in real-world contexts. Additionally, 

the long-term benefits of polymer-modified asphalt (PMA), 

open-graded friction courses (OGFC), and resin-based 

sealants, well-documented in laboratory environments, have 

yet to be assessed within a comprehensive, AI-driven 

maintenance framework. 

To address this gap, the present study proposes an AI-

driven preventive maintenance system that integrates 

YOLOv8 with co-registered three-dimensional point cloud 

data and a PCI-based decision-making engine. The specific 

objectives are to: 

1. Quantitatively evaluate YOLOv8’s speed and accuracy 

for real-time pavement distress detection across diverse 

illumination and traffic conditions; 

2. Demonstrate the added diagnostic value of fusing 2-D 

imagery with high-resolution 3-D geometry for both 

surface and subsurface assessment; and 

3. Validate the field performance and life-cycle cost 

effectiveness of targeted preventive treatments, PMA 

overlays, OGFC, slurry and fog seals, and optimized 

crack sealants, on urban, county, and rural roads in New 

Taipei City. 

By closing the loop from automated sensing to material-

specific intervention, this research aims to provide 

transportation agencies with a scalable, cost-effective 

blueprint for proactive pavement asset management and, 

ultimately, for healthier, longer-lasting road networks. 

2. AI-BASED PAVEMENT DISTRESS 

DETECTION AND PCI ESTIMATION 

To facilitate the rapid and accurate identification of 

pavement distress and the assessment of the Pavement 

Condition Index (PCI), we integrated YOLOv8 

segmentation with three-dimensional surface reconstruction 

techniques. A sensor suite affixed to a vehicle captured 

synchronized forward-facing RGB images 

(1280 × 280 pixels at a rate of 30 frames per second; refer 

to Fig. 1) in conjunction with LiDAR/laser point clouds. 

 

Fig. 1. Pavement distress identification (forward view, YOLO V8) 

Grayscale intensity frames were aligned with 

corresponding depth maps (Fig. 2 a, b) and subsequently 

combined into dense textured meshes with an approximate 

resolution of 5 mm (Fig. 2 c), thereby improving defect 

localization across varying lighting conditions and surface 

reflectance. 

Although the current training set was primarily curated 

in New Taipei City, the model has been externally piloted 

in other regions such as Mainland China and Singapore, 

where it achieved a pilot mAP₅₀ of approximately 90 %. 

   
a b c 

Fig. 2. Integration of grayscale images and depth information into 3D pavement models: a – grayscale images; b – depth information 

images; c – three-dimensional images 



To improve generalization across different asphalt 

mixes, climates, and traffic environments, we plan to 

expand the dataset geographically and apply transfer 

learning strategies, including unsupervised domain 

adaptation, test-time adaptation, and few-shot fine-tuning. 

Cross-regional hold-out evaluations, comparing mAP and 

PCI accuracy by domain, will be conducted to assess 

adaptation effectiveness. Additional distress categories may 

be appended if region-specific patterns are encountered. 

We developed and annotated a dataset comprising 

2,785 fused 3D images, categorized into five distinct types 

of distress: 3,691 instances of alligator cracks, 2,011 

longitudinal/transverse cracks, 1,771 potholes, 531 patching 

areas, and 274 instances of raveling/cover defects (Fig. 3), 

in accordance with ASTM D6433 standards. The dataset 

was randomly partitioned, allocating 90 % for training 

(n = 2,509) and 10 % for validation (n = 276). 

The YOLOv8m-seg model was trained on an NVIDIA 

RTX 3060 GPU for 300 epochs, utilizing a batch size of 4, 

an initial learning rate of 0.01 with cosine annealing, and a 

weight decay of 0.0005. Data augmentation techniques, 

including adjustments to brightness and contrast, horizontal 

flips, and mixup strategies, were employed to mitigate 

overfitting. The loss curves for bounding box, mask, and 

classification stabilized by the 200th epoch and maintained 

consistency through the 300 epochs (Fig. 4). On the 

validation dataset, the enhanced YOLOv8 model attained a 

mean Average Precision (mAP) of 0.972 at an IoU threshold 

of 0.50, and 0.833 across the range from 0.50 to 0.95 (Fig. 

5). In addition, per-class recall rates all exceeded 0.90, 

reflecting robust and consistent detection performance 

across all distress categories. The class distribution is 

illustrated in Fig. 6. Inference was performed at 

approximately 25 frames per second on an NVIDIA RTX 

3060, with a confidence threshold of 0.5 and an IoU 

threshold of 0.45. 

A sensitivity analysis revealed that increasing the 

confidence threshold to 0.6 enhanced precision by 3 % 

while reducing recall by 2 %, thereby illustrating the 

adjustable performance trade-offs. Post-processing 

involved projecting segmented masks onto the 3D mesh to 

ascertain defect dimensions (width, length, and depth in 

millimeters; Fig. 7). Severity levels (low, moderate, high) 

and density metrics were computed in accordance with 

ASTM guidelines and compiled into section-level PCI 

scores. A comparison with manual surveys (n = 4 sections) 

yielded an R² value of 0.92 and a maximum absolute error 

of ± 3.5 PCI points. To improve interpretability, Grad-CAM 

heatmaps were generated for selected detections, 

consistently highlighting crack edges and pothole rims, 

which corresponded with expert evaluations.  

To further improve edge localization and reduce false 

positives, we integrated coordinate attention modules into 

the YOLOv8 backbone and replaced the original feature 

pyramid with a lightweight bidirectional Bi-FPN structure.  

     
a b c d e 

Fig. 3. Annotated pavement distress samples used for model training, including cracks, potholes, and ravelling: a – longitudinal and 

transverse cracking; b – aligator cracking; c – patching 

 

Fig. 4. Training convergence plots for bounding box loss, mask loss, and classification loss over 300 epochs 



 

 

Fig. 5. Precision-recall curves and mAP metrics for each distress 

class 

 

Fig. 6. Distribution of annotated samples across distress 

categories: a – Category Counts; b – Box Shapes; 

c – Center Positions; d – Box Sizes. 

 

Fig. 7. Three-dimensional visualization of pavement Defects (x: 

width, y: length, z: depth in mm) 

These enhancements incur negligible computational 

overhead and improve the recall of fine cracks and small-

scale defects. A schematic of the updated model architecture 

is provided in Fig. 8. 

Future research will explore the application of thermal 

and UAV-based sensing for moisture detection and 

extensive area monitoring, as well as the on-edge 

deployment of mobile GPUs for real-time, in-field 

assessments. 

3. PCI-DRIVEN MAINTENANCE STRATEGY 

AND MATERIAL SELECTION 

This research presents an artificial intelligence (AI)-

driven framework for pavement maintenance, which is 

informed by the Pavement Condition Index (PCI) obtained 

through the integration of YOLOv8 and high-resolution 

three-dimensional imaging technologies. The proposed 

methodology synthesizes empirical PCI thresholds, 

sensitivity analysis, Multi-criteria Decision Analysis 

(MCDA), Life-Cycle Cost Analysis (LCCA), and cross-

regional case studies to facilitate the selection of optimal 

maintenance treatments and material specifications. While 

current suppliers have not provided specific environmental 

product declarations (EPDs) or life cycle assessment (LCA) 

factors, we prepared the MCDA/LCCA framework to 

accommodate future sustainability indicators. These include 

CO₂ emissions, energy use, and recycled material ratios. 

 

 

Fig. 8. Schematic of the enhanced YOLOv8 architecture used in this study 



When such data become available, weighting scenarios, 

equal weighting, analytic hierarchy process (AHP), and 

policy-specific settings, can be applied. Sensitivity analyses 

will also be conducted to evaluate their influence on the 

final decision scores. 

The established PCI-based maintenance strategy 

classifies pavement sections into four distinct condition 

bands, each associated with a specific primary intervention 

strategy (refer to Table 1). Furthermore, targeted repair 

recommendations are provided regardless of the overall 

PCI, focusing on particular types of distress, including: 

1. Linear cracks measuring ≤ 5 mm: cold-joint sealing 

utilizing a resin-based sealant. 

2. Linear cracks exceeding 5 mm: application of hot-

applied bituminous sealant. 

3. Alligator cracking: joint sealing with either resin or 

modified bitumen. 

4. Rutting and potholes: Adjustment of depressions using 

cold mix or emulsified asphalt. 

The determination of thresholds adheres to ASTM 

D6433 standards, identifying critical PCI values of 85, 70, 

and 50, which trigger preservation measures, surface 

treatments, intermediate overlays, and structural 

rehabilitation, respectively. Sensitivity analysis conducted 

through Monte Carlo simulations (± 5 PCI variations) 

revealed that increasing thresholds could delay overlay 

treatments by up to one year, resulting in approximately an 

8 % increase in interim costs. This finding highlights the 

significance of threshold sensitivity in effective 

maintenance planning. 

To assess the reliability of the framework, a field trial 

in New Taipei City compared manual PCI evaluations with 

automated AI-generated scores across four adjacent 

pavement sections. The results indicated a maximum 

discrepancy of 7.5 %, thereby affirming the robustness and 

applicability of the YOLOv8-based PCI assessments in real-

world maintenance contexts (see Table 2 and Table 3). 

The MCDA approach incorporates an Analytical 

Hierarchy Process (AHP) alongside the Technique for Order 

of Preference by Similarity to Ideal Solution (TOPSIS), 

evaluating various maintenance strategies based on PCI 

scores, average annual daily traffic (AADT), climatic 

conditions, functional classification, and construction 

feasibility. This comprehensive assessment seeks to balance 

technical performance with economic considerations. 

LCCA, conducted in accordance with Federal Highway 

Administration (FHWA) guidelines, calculated the net 

present value of maintenance options by factoring in initial 

construction costs, user-delay costs, and future maintenance 

expenditures. The analysis revealed that cost-effective 

treatments, such as fog sealing (approximately USD 

0.50/m²), resulted in a PCI improvement of 3 – 5 points with 

a benefit-cost ratio ranging from 6 to 10. In contrast, 

polymer-modified asphalt (PMA) overlay (approximately 

USD 3.00/m ² ) yielded an improvement of over 30 PCI 

points, thereby justifying its use in severely deteriorated 

sections. 

Cross-regional case studies further illustrated the 

effectiveness and scalability of the proposed framework. 

For example, Coimbra, Portugal, employed a GIS-based 

Pavement Management System that integrated Markov-

chain forecasting, achieving a 12 % reduction in 20-year 

lifecycle costs. Additionally, cities in the United States, such 

as Bel Aire, KS, and Corydon, IA, implemented interactive 

Web-GIS dashboards that provided real-time PCI heatmaps 

and maintenance records, resulting in a reduction of 

planning lead times by approximately 25 % and enhancing 

transparency for stakeholders. The proposed integrated 

GIS-driven workflow comprises sequential stages. 

 

Table 1. PCI-based maintenance strategy matrix 

PCI range General treatment Specific distress type Repair method Recommended material 

> 85 Fog seal Raveling Fog seal spray Cutback asphalt sealant 

70 – 85 Slurry seal Raveling Slurry seal Emulsified asphalt sealant 

50 – 70 OGFC Minor rutting / moderate cracks Overlay Open-graded friction course 

< 50 PMA overlay Severe cracks, potholes Milling and overlay Polymer-modified asphalt 

Any PCI Crack sealing Linear cracks ≤ 5 mm Joint sealing Resin-based sealant 

Any PCI Crack sealing Linear cracks > 5 mm Joint sealing Hot-applied modified bituminous sealant 

Any PCI Crack sealing Alligator cracking (non-moving) Joint sealing Resin or modified bituminous sealant 

Any PCI Adjustment repair Potholes, rutting Depression adjustment Cold mix or emulsified asphalt mixture 

Table 2. Comparison of manual and automated road scoring data 

 Detection block 

Manual or AI recognition 0K+000~0K+080 0K+080~0K+160 0K+160~0K+240 0K+240~0K+320 

Manual detection of PCI (No.1) 60.4 51.3 60.3 70.3 

Manual detection of PCI (No.2) 61.2 58.2 59.3 72.2 

Automatically detect PCI (YOLO v8) 63.7 55.6 64.3 73.3 

Table 3. Comparison of manual and AI-based pavement condition Index (PCI) detection results 

Detection section Manual PCI (average) AI-detected PCI Absolute difference Percentage difference, % 

0K+000~0K+080 60.8 (avg. of 60.4 and 61.2) 63.7 2.9 4.77% 

0K+080~0K+160 54.75 (avg. of 51.3 and 58.2) 55.6 0.85 1.55% 

0K+160~0K+240 59.8 (avg. of 60.3 and 59.3) 64.3 4.5 7.53% 

0K+240~0K+320 71.25 (avg. of 70.3 and 72.2) 73.3 2.05 2.88% 



The proposed framework for pavement condition index 

(PCI) detection utilizes an AI-based approach, which 

encompasses PCI threshold classification and multi-criteria 

decision analysis (MCDA), followed by life cycle cost 

analysis (LCCA) evaluation, geographic information 

system (GIS) dashboard visualization, and field 

implementation. Future advancements should prioritize the 

integration of supplementary diagnostic methodologies, 

such as ground-penetrating radar (GPR) and seismic 

analysis, to enhance the detection of subsurface distress. 

Additionally, the application of transfer learning utilizing 

localized datasets is recommended to optimize the YOLOv8 

model for specific regional asphalt mixtures. Furthermore, 

the establishment of automated platform updates is essential 

for facilitating continuous data ingestion, adaptive model 

retraining, and dynamic recalibration of MCDA based on 

real-time feedback. 

In summary, this study presents a comprehensive, 

scalable, and transparent approach to proactive urban 

pavement maintenance management by integrating AI-

driven PCI evaluations with robust decision-support 

frameworks, economic modeling, and dynamic GIS 

visualization. 

4. FIELD IMPLEMENTATION AND SHORT-

TO-LONG-TERM EVALUATION 

In order to evaluate the feasibility and efficacy of the 

proposed AI-driven maintenance strategy, this study 

undertook extensive field validations across various urban, 

county, and rural roadways in New Taipei City and its 

adjacent areas. The implementation process involved site 

selection, the application of treatments informed by AI-

analyzed Pavement Condition Index (PCI) data, and 

systematic evaluations following treatment. 

4.1. Selection of test sections and assignment of 

treatments 

Test road segments were selected to represent diverse 

real-world conditions, including varying traffic volumes 

and environmental exposures. The AI-generated PCI scores, 

along with identified distress types, guided the selection of 

appropriate maintenance strategies as outlined in Table 1. 

For instance, segments with PCI scores above 85 were 

preserved using fog seals, whereas sections scoring below 

50 received structural rehabilitation via Polymer-Modified 

Asphalt (PMA) overlays. 

4.2. Evaluation timeline and monitoring schedule 

Performance was monitored over a 12-month period, 

divided into three phases:  

1. short-term (0 – 3 months): immediate post-treatment 

PCI measurements were collected to assess initial 

treatment effectiveness. 

2. mid-term (4 – 6 months): periodic inspections were 

conducted to monitor early signs of degradation and 

treatment stability. 

3. long-term (7 – 12 months): final evaluations were used 

to determine the durability and cost-effectiveness of 

each treatment. 

4.3. Performance metrics and observations 

During the short-term phase, all treated sections 

demonstrated significant improvements in PCI. The PMA 

and Open-Graded Friction Course (OGFC) treatments 

resulted in PCI increases of 12 % and 15 %, respectively, 

while slurry seal and fog seal treatments yielded more 

modest improvements of 8 % and 6 %. Additionally, 

reductions in International Roughness Index (IRI) values 

were noted, particularly in segments treated with PMA. 

In the mid-term phase, both PMA and OGFC treatments 

sustained relatively high PCI values with only minor 

reductions, whereas the performance of slurry and fog seals 

began to decline, particularly in high-traffic areas.  

By the long-term phase (7 – 12 months), pavements 

treated with PMA exhibited the highest durability, with only 

a 3 % decrease in PCI. OGFC sections experienced a 

moderate decline of 6 %, while slurry and fog seal 

treatments showed more significant degradation, with PCI 

reductions ranging from 10 % to 12 %, especially in regions 

subjected to heavy traffic or wet seasonal conditions. 

4.4. Statistical evaluation and material 

performance comparison 

To enhance the analytical rigor of the evaluation, a 

statistical comparison was conducted to quantify 

performance differences among materials and over time. As 

illustrated in Fig. 9 and Fig. 10, PCI trends for PMA, 

OGFC, slurry seal, and fog seal were tracked at 0, 6, and 12 

months. 

 

Fig. 9. PCI variation of different maintenance materials over time 

 

Fig. 10. PCI variation trends over 12 months by maintenance 

material type 

PMA exhibited the best retention of PCI, with only a 3-

point decrease over 12 months (from 88 to 85), followed by 



OGFC with a 5-point decline. In contrast, slurry and fog 

seals both experienced a 10-point reduction, confirming 

their relatively lower durability. These results are consistent 

with literature emphasizing the long-term effectiveness of 

high-performance overlays under moderate to heavy traffic 

conditions. 

To verify the significance of these differences, a two-

way repeated-measures ANOVA (material × period) was 

performed. The results indicated significant main effects for 

material (p < 0.01) and time period (p < 0.01), as well as a 

significant interaction effect (material × period, p < 0.05). 

Bonferroni-adjusted post-hoc comparisons further revealed 

that PMA significantly outperformed both slurry and fog 

seals at the 6- and 12-month marks (p < 0.01). The 

difference between PMA and OGFC, however, was not 

statistically significant (p > 0.1), indicating similar mid- to 

long-term performance. 

These findings reinforce the superior longevity of PMA 

and OGFC in preventive maintenance applications. In 

contrast, the rapid deterioration of slurry and fog seals after 

six months underscores the need to match maintenance 

treatments with traffic demands and environmental 

conditions. While slurry and fog seals remain economically 

viable for low-volume or short-duration applications, their 

effectiveness diminishes quickly, necessitating more 

frequent reapplications to sustain pavement functionality. 

5. PREVENTIVE MAINTENANCE MATERIAL 

PERFORMANCE EVALUATION 

To ascertain the reliability and longevity of preventive 

maintenance treatments, a series of material performance 

tests were conducted on various repair and sealant products 

utilized in this investigation. All assessments adhered to the 

specifications outlined by the Chinese National Standards 

(CNS) or equivalent standards to confirm their 

appropriateness for field applications. 

Initially, the resin-based crack sealant designated for 

fine crack repairs underwent testing for workability time, 

initial curing time, density, elongation at break, and 

penetration. The results, as presented in Table 4, indicated 

commendable workability (9 minutes), rapid curing 

(18 minutes), and substantial elongation (112 ), suggesting 

its effective adaptability for sealing fine cracks across a 

range of environmental conditions. 

Table 4. Resin-based crack sealant test results 

Test item Test method 
Recommended 

range 

Test 

result 

Workability 

time 
CNS 10756 7 – 10 minutes 9.0 

Initial curing 

time 
CNS 10756 15 – 20 minutes 18.0 

Density CNS 5341 1.10 – 1.17 g/cm³ 1.15 

Elongation at 

break 
CNS 3553 ≥ 100 % 112.0 

Penetration 
Pavement survey 

method 
75 – 100 % 93.0 

For the treatment of larger cracks, a hot-applied 

modified bituminous crack sealant was evaluated (Table 5). 

This material demonstrated a high softening point (86 °C), 

commendable ductility (38 cm), and exceptional elastic 

recovery (92 %), thereby affirming its suitability for sealing 

wider cracks in areas subject to significant temperature 

fluctuations. 

Table 5. Hot-applied modified bitumen sealant test results 

Test item Test method 
Recommended 

range 

Test 

result 

Softening point CNS 314 ≥ 80 °C 86.0 

Ductility, cm CNS 4331 ≥ 30 38.0 

Resilience, % CNS 13778 ≥ 85 % 92.0 

Density, g/cm³ CNS 5341 1.0 – 1.2 1.14 

Penetration, 

1/10 mm 
CNS 4301 ≥ 80 88.0 

In the context of pothole and block cracking repairs, the 

performance of cold-patch all-weather modified asphalt 

concrete was assessed (Table 6). This material exhibited 

high Marshall stability (315 kgf), optimal flow values 

(3.2 mm), and minimal Cantabro abrasion loss (21 %), 

ensuring robust performance for rapid repairs even under 

adverse weather conditions. 

Table 6. Cold-applied modified asphalt concrete test results 

Test item Test method 
Recommended 

range 

Test 

result 

Marshall 

stability 
CNS 3563 > 250 kgf 315.0 

Flow value CNS 3563 2 – 4 mm 3.2 

Cantabro loss CNS 14981 < 25 % 21.0 

Density CNS 1124 2.2 – 2.4 g/cm³ 2.36 

For addressing rutting and surface depressions, a cold-

hardened emulsified asphalt concrete was analyzed 

(Table 7). It achieved a compressive strength of  

28.5 kgf/cm² within a 24-hour period, alongside controlled 

flow values (4.1 mm) and appropriate density (2.32 g/cm³), 

thereby supporting its application for urgent rehabilitation 

efforts necessitating swift traffic reopening. 

Table 7. Cold-hardening emulsified asphalt concrete test results 

Test item Test method 
Recommended 

range 

Test 

result 

Compressive 

strength 24 h 
CNS 8491 > 25 kgf/cm² 28.5 

Flow value CNS 3563 3 – 5 mm 4.1 

Density CNS 1124 2.2 – 2.4 g/cm³ 2.32 

Furthermore, the fog seal spray material (Table 8) 

employed for surface preservation demonstrated 

satisfactory residual binder content (61 %), adequate 

penetration (78 at 25 °C), and viscosity (210 cP at 60 °C), 

confirming its efficacy in rejuvenating slightly aged 

pavements and mitigating oxidative damage. 

Lastly, the slurry seal material (Table 9) was assessed 

for its effectiveness in surface wear mitigation. It exhibited 

excellent consistency (30 cm), low wet track abrasion loss 

(620 g/m ² ), and a rapid set time for traffic reopening 

(1.5 hours), indicating its practicality for prompt preventive 

treatments on moderately aged roadways. 

Overall, these material performance evaluations 

confirmed that all preventive maintenance materials met or 

exceeded the required technical specifications. The use of 

high-quality sealants, overlays, and cold-mix asphalts in 

conjunction with AI-driven PCI detection can significantly 



enhance the durability and cost-effectiveness of pavement 

maintenance operations, thereby improving service life and 

optimizing lifecycle investments. 

Table 8. Fog seal spray material test results 

Test item Test method 
Recommended 

range 

Test 

result 

Residual 

binder content 
ASTM D244 > 50 % 61  % 

Penetration, 

25 °C 
ASTM D5 ≥ 70 78 

Viscosity, 

60 °C 
ASTM D2171 150 – 300 cP 210 

Table 9. Slurry seal material test results 

Test item Test method 
Recommended 

range 

Test 

result 

Consistency ASTM D3910 25 – 35 cm 30 cm 

Wet track 

abrasion loss 
ASTM D3910 < 800 g/m² 

620 

g/m² 

Traffic 

ppening time 
ASTM D3910 < 2 hours 

1.5 

hours 

In addition to mechanical performance and long-term 

durability, the operational feasibility of each preventive 

maintenance method was also evaluated. As summarized in 

Table 10, substantial differences exist in typical traffic 

reopening times and the associated levels of traffic 

disruption among the investigated treatments. Cold-applied 

asphalt mixtures and emulsified cold-mix OGFC enable 

immediate traffic reopening, resulting in minimal disruption 

to road users. In contrast, fog seal and slurry seal treatments 

require extended curing periods, typically ranging from 2 to 

8 h, which often necessitate partial or full lane closures. 

Although these operational considerations are not 

directly captured by PCI measurements, they play a critical 

role in treatment selection under time-sensitive or high-

traffic conditions. Particularly in urban environments or 

short-duration maintenance windows, the ability to 

minimize traffic delay is a key determinant of practical 

applicability. Therefore, Table 10 complements the 

performance-based evaluation by providing a realistic 

perspective on construction-related constraints and traffic 

impacts. 

In conjunction with laboratory performance 

evaluations, an on-site application of preventive repair 

materials was conducted to assess their practical 

applicability and effectiveness in real-world contexts. 

Fig. 11 illustrates the field demonstration process, which 

includes surface preparation, material application, and 

compaction techniques. The successful implementation of 

resin-based sealants, slurry seals, fog seals, and cold-applied 

asphalt mixtures on actual roadway segments corroborates 

the laboratory findings and validates the suitability of these 

materials for preventive maintenance strategies. To 

exemplify the visual results of the selected surface 

treatments, Fig. 12 displays the post-application appearance 

of a fog seal, emphasizing the material's uniform coverage 

and enhanced surface quality, which aids in sealing micro-

cracks and mitigating oxidation. 

Table 10. Traffic-reopening times and disruption levels for 

common preventive pavement treatments 

Preventive 

material/method 

Typical time until 

road can reopen to 

traffic 

Indicative traffic 

disruption† 

Resin-based crack 

sealant 

(epoxy/urethane) 

≈ 4 h at 21 °C 

Moderate – lane 

held until resin 

cures 

Hot-applied 

modified-bitumen 

sealant 

20 – 40 min cool-

down (often 

< 30 min) 

Low – short 

rolling closure 

Cold-applied 

modified asphalt 

concrete (bagged 

cold patch) 

Immediate traffic 

once compacted 

(≤ 0.1 h) 

Very low – patch 

is drive-over 

ready 

Cold-hardening 

emulsified asphalt 

concrete / cold-

mix OGFC 

“Drive-on 

immediately” 
Very low 

Fog-seal spray 
2 – 8 h surface cure 

(temp-dependent) 

Moderate/High – 

one-lane closure, 

flagging 

Slurry-seal 

surfacing 

4 – 8 h hardening 

(test strip must 

carry traffic ≤ 1 h) 

High – full lane 

closure until set 

  
a b 

  
c d 

Fig. 11. Demonstration of on-site application of preventive repair 

materials 

 

Fig. 12. Image after fog seal application 



Additionally, Fig. 13 presents the outcome of the slurry 

seal application, where the enhanced surface texture and 

skid resistance are clearly observable. 

 

Fig. 13. Image after slurry seal application 

These follow-up images further substantiate the 

effectiveness of the treatments under typical environmental 

and traffic conditions, thereby reinforcing their 

appropriateness for condition-based, short-to-medium-term 

maintenance. 

To visually synthesize the performance characteristics 

of preventive maintenance materials, Fig. 13 presents a 

comparative radar chart that integrates both laboratory test 

results and real-world field evaluations. The chart compares 

four materials, Polymer-Modified Asphalt (PMA), Open-

Graded Friction Course (OGFC), slurry seal, and fog seal, 

across six key indicators: initial curing time, wet track 

abrasion loss, traffic reopening time, 12-month PCI 

retention, abrasion resistance, and overall durability index. 

A broader span toward the outer perimeter denotes stronger 

performance in that category. 

Among the materials, PMA exhibits the most well-

balanced and optimal performance profile, especially 

excelling in PCI retention and abrasion resistance. OGFC 

closely follows, offering robust surface performance and 

long-term durability. In contrast, slurry seal and fog seal, 

while effective for quick deployment due to shorter curing 

times and faster reopening, demonstrate weaker resistance 

to wear and lower PCI retention after one year. 

The radar visualization in Fig. 14 highlights the 

inherent trade-offs between short-term constructability and 

long-term functional resilience. While slurry and fog seals 

remain practical choices for low-volume or budget-

constrained applications, PMA and OGFC are preferable for 

high-traffic roadways and long-service-life requirements. 

6. DISCUSSION AND CONCLUSIONS 

This study introduces an AI-driven preventive 

maintenance framework that combines YOLOv8-based 

pavement distress detection, high-resolution 3D surface 

imaging, and PCI-oriented maintenance decision-making. 

Through systematic field implementation and laboratory 

performance verification, the framework demonstrates 

strong potential to enhance the efficiency, accuracy, and 

sustainability of pavement maintenance operations. 

 

Fig. 14. Comparative radar chart illustrating key performance 

metrics for four preventive maintenance materials: PMA, 

OGFC, slurry seal, and fog seal 

Compared to conventional manual inspections or earlier 

vision-based approaches (e.g., YOLOv5 or traditional CNN 

classifiers), the proposed system achieved substantial 

improvements in both detection accuracy and real-time 

applicability. Specifically, the YOLOv8 model, enhanced 

with 3D depth data, yielded a mean Average Precision 

(mAP) of 97.2 % and maintained a high correlation with 

manually assessed PCI values (R² = 0.92, MAE < ±3.5). 

This confirms that integrating 3D geometry with semantic 

segmentation improves localization and severity 

quantification of defects such as rutting, potholes, and 

cracking, challenges that prior 2D-only systems struggled to 

address. 

Beyond detection, this research advances a full-cycle 

strategy by linking distress identification to tailored material 

selection using a PCI-based matrix. Materials such as 

Polymer-Modified Asphalt (PMA) and Open-Graded 

Friction Course (OGFC) proved significantly more durable 

in long-term field trials, retaining over 90% of initial PCI 

after 12 months. In contrast, fog and slurry seals, while cost-

effective and rapidly deployable, exhibited accelerated 

degradation under heavier traffic and wet conditions. A 

comparative radar analysis further validated that PMA and 

OGFC offer more balanced performance across durability, 

curing efficiency, and field resilience dimensions. 

This study also contributes to practical decision-making 

by incorporating Multi-Criteria Decision Analysis (MCDA) 

and Life-Cycle Cost Analysis (LCCA), ensuring that 

treatment selection accounts not only for technical 

suitability but also economic feasibility. Simulation results 

indicate that condition-driven application of fog and slurry 

seals on lightly aged roads, and structural overlays on 

severely distressed segments, can reduce long-term 

maintenance costs by up to 20 % when compared to reactive 

rehabilitation strategies. 

Nevertheless, the system still presents some limitations. 

Current detection capabilities are confined to surface-level 

defects, leaving subsurface failures, such as base layer 

disintegration or moisture-induced stripping, unaddressed. 



Integrating Ground Penetrating Radar (GPR), infrared 

thermography, or FWD measurements could expand 

diagnostic depth. Additionally, the AI model, trained on 

datasets specific to New Taipei City, may face regional 

generalization issues when applied to roads with different 

asphalt compositions or climatic patterns. Future 

enhancements should prioritize transfer learning strategies 

and multi-region dataset incorporation to broaden model 

adaptability. 

While nondestructive testing (NDT) methods such as 

ground-penetrating radar (GPR), infrared thermography, or 

falling weight deflectometers (FWD) offer valuable insights 

into subsurface defects, their integration is not 

recommended at the network-wide PCI estimation stage. 

This is due to high equipment costs, limited availability of 

trained personnel, and the incompatibility of NDT outputs 

with surface-focused PCI scoring. As a practical 

compromise, we propose a two-tier policy: using AI-based 

PCI scores for screening at the network level, followed by 

optional project-level NDT surveys for critical or 

ambiguous road segments. This preserves system-wide 

comparability while enabling deeper diagnosis when 

necessary. 

From a broader perspective, the integration of AI 

detection, PCI quantification, and material optimization 

offers a replicable and scalable solution for cities facing 

increasing infrastructure demands and limited maintenance 

budgets. The framework supports data-informed 

scheduling, targeted interventions, and transparent 

performance tracking. When paired with a cloud-based AI 

Pavement Management System (AI-PMS), this system can 

facilitate real-time inspections and proactive maintenance 

across urban road networks, supporting both sustainability 

and lifecycle value maximization. 

In conclusion, this research confirms that an AI-guided 

preventive maintenance strategy, grounded in deep learning, 

3D imaging, and PCI-based decision-making, can deliver 

substantial benefits in both performance and cost. It 

provides a pathway toward smarter, more resilient road 

infrastructure and lays a solid foundation for future 

development of intelligent, multi-sensor-integrated 

pavement management systems. 

At present, the absence of supplier-specific EPDs or 

consistent carbon footprint data prevents us from 

implementing full quantitative sustainability scoring in 

MCDA/LCCA. Nonetheless, placeholders for 

environmental metrics (unit definitions, weight structures) 

have been defined in the framework, allowing 

straightforward integration once reliable data become 

available. 
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