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Taiwan’s urban road infrastructure is increasingly challenged by aging pavements and constrained maintenance budgets.
Traditional reactive repair strategies, such as milling and overlay, are not only costly but often lead to accelerated structural
deterioration. To address this, we propose an Al-driven preventive maintenance framework that integrates the YOLOv8
deep learning algorithm, high-resolution 3D surface imaging, and a Pavement Condition Index (PClI)-based decision
strategy. The system enables real-time identification of cracks, potholes, and rutting, achieving a mean Average Precision
(mAP) of 97.2 % and a PCI estimation accuracy with R2 = 0.92 and + 3.5 absolute error compared to manual scoring. Field
trials conducted across urban, county, and rural roads in New Taipei City over a 12-month period demonstrated significant
improvements in pavement condition. PMA and OGFC treatments achieved PCI retention rates above 90 %, while fog
and slurry seals exhibited 10—-12 % declines, particularly under high traffic and wet conditions. Material performance
tests confirmed that all sealants and overlays met or exceeded national standards in curing time, abrasion resistance, and
strength. Furthermore, integration of Multi-Criteria Decision Analysis (MCDA) and Life-Cycle Cost Analysis (LCCA)
showed that condition-based interventions could reduce long-term maintenance costs by up to 20 % compared to reactive
strategies. The framework also supports scalable deployment through potential integration with GIS dashboards and cloud-
based pavement management systems. This study validates the feasibility of using Al for real-time pavement condition
evaluation and strategic maintenance planning. By bridging detection precision, structural analysis, and cost-optimized
decision-making, it provides a robust foundation for smart, sustainable road asset management.

Keywords: Al-driven pavement maintenance, YOLOV8-based distress detection, high-resolution 3D imaging, pavement
condition index, preventive maintenance strategy, polymer-modified asphalt, open-graded friction course, crack sealing
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1. INTRODUCTION

Urban traffic volumes continue to climb even as
maintenance budgets contract, imposing a two-fold
constraint on roadway agencies. Reactive treatments —
milling, patching, and full-depth reconstruction — remain
indispensable, yet they are costly, disruptive, and, when
deferred, accelerate long-term pavement degradation [1, 2].
Even seemingly routine surface treatments require
meticulous gradation design to forestall premature failure.
These realities have propelled the profession toward data-
driven, preventive strategies that intervene sooner and at
lower life-cycle cost.

The earliest attempts at automation relied on classical
image processing. In the mid-1990s, edge segmentation of
35 mm film already achieved = 90 % accuracy for ravelling
and cracking [3], and a sample-space—interpolation
algorithm soon improved real-time thresholding still further
[4]. With the advent of bi-layer connectivity de-noising [5],
generating high-quality annotations for the deep networks
that would follow.

Redmon’s YOLO architecture then unified localisation
and classification in a single millisecond-scale pass [6]. A
YOLOv3 system deployed on Indonesian highways yielded
83-89 % mean average precision (mAP) for pothole
detection [7], and an enhanced backbone later raised multi-
class accuracy under variable illumination [8]. Integrating
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YOLO outputs with 3-D ground-penetrating-radar voxels
further improved the localisation of subsurface voids [9]. In
parallel, Hu et al. combined a lightweight CNN backbone
with dilated convolutions, achieving 92 % crack-detection
accuracy on a 10 000-image data set while running at 35 fps
on an edge GPU [10].

The latest YOLOV8 family now exceeds 95 % mAP
while remaining lightweight [11]; QL-YOLOvVS8s prunes
40 % of parameters via structural compression and
dynamic-head decoding without sacrificing accuracy [12];
DepthCrackNet leverages depth cues to boost crack recall in
back-lit scenes [13]; and SimSPPF plus EMA-Faster blocks
add 5.8 % mAP@0.5 at negligible computational cost [14];
and an improved YOLOvV8 variant that inserts coordinate
attention and a multi-scale bidirectional FPN attains 97 %
mAP with 15 % fewer FLOPs on the WHU-highway set
[15]. A transformer-based alternative, Pavement-DETR,
employs global attention and multi-scale fusion to surpass
CNN baselines by a further 7 % in F1 score [16].

Three-dimensional, multi-sensor data now enrich
diagnostics. Stereo-photogrammetric point clouds and
vehicle-mounted LiDAR deliver sub-millimetre
measurements of rut depth, faulting, and slab tilt [17]; fusing
these metrics with RGB segmentation balances training sets
and reveals structural anomalies invisible in 2-D imagery.

Detection is valuable only if it informs decisions. An
end-to-end framework already maps YOLO segmentations



directly to ASTM D6433 PCI ratings, achieving 95 % crack

detection and <10 % width-estimation error [18]; on

regional roads, a direct-classification CNN attains 90 %
agreement with expert PCI scores while halving survey
costs [19]. At the network level, Poisson hidden-Markov

models quantify annual deterioration probabilities [20];

incorporating environmental covariates reduces prediction

error by a further 15 % [21].

Materials innovation remains the final pillar. Polymer-
modified asphalt (PMA) is the mainstay of preventive
maintenance: rheological tests and full-scale trials confirm
that the internal polymer network markedly enhances rutting
and thermal-crack resistance [22]. Taken together, progress
has advanced from early image processing to real-time,
multi-source deep-learning detection, three-dimensional
geometric integration, decision-support modelling, and
high-performance materials — offering road agencies a
scientifically robust, cost-effective blueprint for proactive
pavement asset management.

Despite these advancements, there is a paucity of
studies that successfully integrate 1) state-of-the-art
YOLOV8 detection, 2) high-resolution three-dimensional
sensing, and 3) preventive materials specifically tailored to
the identified defects. Most existing research tends to focus
exclusively on detection accuracy or fails to validate
maintenance outcomes in real-world contexts. Additionally,
the long-term benefits of polymer-modified asphalt (PMA),
open-graded friction courses (OGFC), and resin-based
sealants, well-documented in laboratory environments, have
yet to be assessed within a comprehensive, Al-driven
maintenance framework.

To address this gap, the present study proposes an Al-
driven preventive maintenance system that integrates
YOLOV8 with co-registered three-dimensional point cloud
data and a PCl-based decision-making engine. The specific
objectives are to:

1. Quantitatively evaluate YOLOVS8’s speed and accuracy
for real-time pavement distress detection across diverse
illumination and traffic conditions;

2. Demonstrate the added diagnostic value of fusing 2-D
imagery with high-resolution 3-D geometry for both
surface and subsurface assessment; and

3. Validate the field performance and life-cycle cost
effectiveness of targeted preventive treatments, PMA

overlays, OGFC, slurry and fog seals, and optimized

a

crack sealants, on urban, county, and rural roads in New

Taipei City.

By closing the loop from automated sensing to material-
specific intervention, this research aims to provide
transportation agencies with a scalable, cost-effective
blueprint for proactive pavement asset management and,
ultimately, for healthier, longer-lasting road networks.

2. AI-BASED PAVEMENT DISTRESS
DETECTION AND PCI ESTIMATION

To facilitate the rapid and accurate identification of
pavement distress and the assessment of the Pavement
Condition Index (PCI), we integrated YOLOvV8
segmentation with three-dimensional surface reconstruction
techniques. A sensor suite affixed to a vehicle captured
synchronized forward-facing RGB images
(1280 x 280 pixels at a rate of 30 frames per second; refer
to Fig. 1) in conjunction with LiDAR/laser point clouds.

Fig. 1. Pavement distress identification (forward view, YOLO V8)

Grayscale intensity frames were aligned with
corresponding depth maps (Fig. 2 a, b) and subsequently
combined into dense textured meshes with an approximate
resolution of 5 mm (Fig. 2 c), thereby improving defect
localization across varying lighting conditions and surface
reflectance.

Although the current training set was primarily curated
in New Taipei City, the model has been externally piloted
in other regions such as Mainland China and Singapore,
where it achieved a pilot mAPso of approximately 90 %.

C

Fig. 2. Integration of grayscale images and depth information into 3D pavement models: a—grayscale images; b—depth information

images; ¢ —three-dimensional images



To improve generalization across different asphalt
mixes, climates, and traffic environments, we plan to
expand the dataset geographically and apply transfer
learning strategies, including unsupervised domain
adaptation, test-time adaptation, and few-shot fine-tuning.
Cross-regional hold-out evaluations, comparing mAP and
PCl accuracy by domain, will be conducted to assess
adaptation effectiveness. Additional distress categories may
be appended if region-specific patterns are encountered.

We developed and annotated a dataset comprising
2,785 fused 3D images, categorized into five distinct types
of distress: 3,691 instances of alligator cracks, 2,011
longitudinal/transverse cracks, 1,771 potholes, 531 patching
areas, and 274 instances of raveling/cover defects (Fig. 3),
in accordance with ASTM D6433 standards. The dataset
was randomly partitioned, allocating 90 % for training
(n =2,509) and 10 % for validation (n = 276).

The YOLOv8m-seg model was trained on an NVIDIA
RTX 3060 GPU for 300 epochs, utilizing a batch size of 4,
an initial learning rate of 0.01 with cosine annealing, and a
weight decay of 0.0005. Data augmentation techniques,
including adjustments to brightness and contrast, horizontal
flips, and mixup strategies, were employed to mitigate
overfitting. The loss curves for bounding box, mask, and
classification stabilized by the 200th epoch and maintained
consistency through the 300 epochs (Fig.4). On the
validation dataset, the enhanced YOLOV8 model attained a
mean Average Precision (mAP) of 0.972 at an loU threshold

a b

of 0.50, and 0.833 across the range from 0.50 to 0.95 (Fig.
5). In addition, per-class recall rates all exceeded 0.90,
reflecting robust and consistent detection performance
across all distress categories. The class distribution is
illustrated in Fig. 6. Inference was performed at
approximately 25 frames per second on an NVIDIA RTX
3060, with a confidence threshold of 0.5 and an loU
threshold of 0.45.

A sensitivity analysis revealed that increasing the
confidence threshold to 0.6 enhanced precision by 3 %
while reducing recall by 2%, thereby illustrating the
adjustable  performance trade-offs.  Post-processing
involved projecting segmented masks onto the 3D mesh to
ascertain defect dimensions (width, length, and depth in
millimeters; Fig. 7). Severity levels (low, moderate, high)
and density metrics were computed in accordance with
ASTM qguidelines and compiled into section-level PCI
scores. A comparison with manual surveys (n = 4 sections)
yielded an R* value of 0.92 and a maximum absolute error
of £ 3.5 PCI points. To improve interpretability, Grad-CAM
heatmaps were generated for selected detections,
consistently highlighting crack edges and pothole rims,
which corresponded with expert evaluations.

To further improve edge localization and reduce false
positives, we integrated coordinate attention modules into
the YOLOV8 backbone and replaced the original feature
pyramid with a lightweight bidirectional Bi-FPN structure.

c d e

Fig. 3. Annotated pavement distress samples used for model training, including cracks, potholes, and ravelling: a—longitudinal and

transverse cracking; b —aligator cracking; c—patching
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Fig. 4. Training convergence plots for bounding box loss, mask loss, and classification loss over 300 epochs
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Fig. 7. Three-dimensional visualization of pavement Defects (x:
width, y: length, z: depth in mm)

These enhancements incur negligible computational
overhead and improve the recall of fine cracks and small-
scale defects. A schematic of the updated model architecture
is provided in Fig. 8.

Future research will explore the application of thermal
and UAV-based sensing for moisture detection and
extensive area monitoring, as well as the on-edge
deployment of mobile GPUs for real-time, in-field
assessments.

3. PCI-DRIVEN MAINTENANCE STRATEGY
AND MATERIAL SELECTION

This research presents an artificial intelligence (Al)-
driven framework for pavement maintenance, which is
informed by the Pavement Condition Index (PCI) obtained
through the integration of YOLOV8 and high-resolution
three-dimensional imaging technologies. The proposed
methodology synthesizes empirical PCI thresholds,
sensitivity analysis, Multi-criteria Decision Analysis
(MCDA), Life-Cycle Cost Analysis (LCCA), and cross-
regional case studies to facilitate the selection of optimal
maintenance treatments and material specifications. While
current suppliers have not provided specific environmental
product declarations (EPDs) or life cycle assessment (LCA)
factors, we prepared the MCDA/LCCA framework to
accommodate future sustainability indicators. These include
CO: emissions, energy use, and recycled material ratios.
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Fig. 8. Schematic of the enhanced YOLOVS architecture used in this study



When such data become available, weighting scenarios,
equal weighting, analytic hierarchy process (AHP), and
policy-specific settings, can be applied. Sensitivity analyses
will also be conducted to evaluate their influence on the
final decision scores.

The established PCl-based maintenance strategy
classifies pavement sections into four distinct condition
bands, each associated with a specific primary intervention
strategy (refer to Table 1). Furthermore, targeted repair
recommendations are provided regardless of the overall
PCI, focusing on particular types of distress, including:

1. Linear cracks measuring <5 mm: cold-joint sealing
utilizing a resin-based sealant.

2. Linear cracks exceeding 5mm: application of hot-
applied bituminous sealant.

3. Alligator cracking: joint sealing with either resin or
modified bitumen.

4. Rutting and potholes: Adjustment of depressions using
cold mix or emulsified asphalt.

The determination of thresholds adheres to ASTM
D6433 standards, identifying critical PCI values of 85, 70,
and 50, which trigger preservation measures, surface
treatments, intermediate  overlays, and structural
rehabilitation, respectively. Sensitivity analysis conducted
through Monte Carlo simulations (x5 PCI variations)
revealed that increasing thresholds could delay overlay
treatments by up to one year, resulting in approximately an
8 % increase in interim costs. This finding highlights the
significance of threshold sensitivity in effective
maintenance planning.

To assess the reliability of the framework, a field trial
in New Taipei City compared manual PCI evaluations with
automated Al-generated scores across four adjacent
pavement sections. The results indicated a maximum
discrepancy of 7.5 %, thereby affirming the robustness and

Table 1. PCl-based maintenance strategy matrix

applicability of the YOLOv8-based PCI assessments in real-
world maintenance contexts (see Table 2 and Table 3).

The MCDA approach incorporates an Analytical
Hierarchy Process (AHP) alongside the Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS),
evaluating various maintenance strategies based on PCI
scores, average annual daily traffic (AADT), climatic
conditions, functional classification, and construction
feasibility. This comprehensive assessment seeks to balance
technical performance with economic considerations.

LCCA, conducted in accordance with Federal Highway
Administration (FHWA) guidelines, calculated the net
present value of maintenance options by factoring in initial
construction costs, user-delay costs, and future maintenance
expenditures. The analysis revealed that cost-effective
treatments, such as fog sealing (approximately USD
0.50/m?), resulted in a PCI improvement of 3 —5 points with
a benefit-cost ratio ranging from 6 to 10. In contrast,
polymer-modified asphalt (PMA) overlay (approximately
USD 3.00/m?) yielded an improvement of over 30 PCI
points, thereby justifying its use in severely deteriorated
sections.

Cross-regional case studies further illustrated the
effectiveness and scalability of the proposed framework.
For example, Coimbra, Portugal, employed a GIS-based
Pavement Management System that integrated Markov-
chain forecasting, achieving a 12 % reduction in 20-year
lifecycle costs. Additionally, cities in the United States, such
as Bel Aire, KS, and Corydon, 1A, implemented interactive
Web-GIS dashboards that provided real-time PCI heatmaps
and maintenance records, resulting in a reduction of
planning lead times by approximately 25 % and enhancing
transparency for stakeholders. The proposed integrated
GIS-driven workflow comprises sequential stages.

PCI range | General treatment Specific distress type Repair method Recommended material
>85 Fog seal Raveling Fog seal spray Cutback asphalt sealant
70-85 Slurry seal Raveling Slurry seal Emulsified asphalt sealant
50-70 OGFC Minor rutting / moderate cracks Overlay Open-graded friction course
<50 PMA overlay Severe cracks, potholes Milling and overlay Polymer-modified asphalt
Any PCI Crack sealing Linear cracks <5 mm Joint sealing Resin-based sealant
Any PCI Crack sealing Linear cracks > 5 mm Joint sealing Hot-applied modified bituminous sealant
Any PCI Crack sealing | Alligator cracking (non-moving) Joint sealing Resin or modified bituminous sealant
Any PCI | Adjustment repair Potholes, rutting Depression adjustment | Cold mix or emulsified asphalt mixture

Table 2. Comparison of manual and automated road scoring data

Detection block

Manual or Al recognition 0K+000~0K+080 0K+080~0K+160 0K+160~0K+240 0K+240~0K+320
Manual detection of PCI (No.1) 60.4 51.3 60.3 70.3
Manual detection of PCI (No.2) 61.2 58.2 59.3 72.2

Automatically detect PC1 (YOLO v8) 63.7 55.6 64.3 73.3

Table 3. Comparison of manual and Al-based pavement condition Index (PCI) detection results

Detection section Manual PCI (average) Al-detected PCI Absolute difference Percentage difference, %
0K+000~0K+080 60.8 (avg. of 60.4 and 61.2) 63.7 2.9 4.77%
0K+080~0K+160 54.75 (avg. of 51.3 and 58.2) 55.6 0.85 1.55%
0K+160~0K+240 59.8 (avg. of 60.3 and 59.3) 64.3 4.5 7.53%
0K+240~0K+320 71.25 (avg. of 70.3 and 72.2) 73.3 2.05 2.88%




The proposed framework for pavement condition index
(PCI) detection utilizes an Al-based approach, which
encompasses PCI threshold classification and multi-criteria
decision analysis (MCDA), followed by life cycle cost
analysis (LCCA) evaluation, geographic information
system (GIS) dashboard visualization, and field
implementation. Future advancements should prioritize the
integration of supplementary diagnostic methodologies,
such as ground-penetrating radar (GPR) and seismic
analysis, to enhance the detection of subsurface distress.
Additionally, the application of transfer learning utilizing
localized datasets is recommended to optimize the YOLOV8
model for specific regional asphalt mixtures. Furthermore,
the establishment of automated platform updates is essential
for facilitating continuous data ingestion, adaptive model
retraining, and dynamic recalibration of MCDA based on
real-time feedback.

In summary, this study presents a comprehensive,
scalable, and transparent approach to proactive urban
pavement maintenance management by integrating Al-

driven PCI evaluations with robust decision-support
frameworks, economic modeling, and dynamic GIS
visualization.

4. FIELD IMPLEMENTATION AND SHORT-
TO-LONG-TERM EVALUATION

In order to evaluate the feasibility and efficacy of the
proposed Al-driven maintenance strategy, this study
undertook extensive field validations across various urban,
county, and rural roadways in New Taipei City and its
adjacent areas. The implementation process involved site
selection, the application of treatments informed by Al-
analyzed Pavement Condition Index (PCI) data, and
systematic evaluations following treatment.

4.1. Selection of test sections and assignment of
treatments

Test road segments were selected to represent diverse
real-world conditions, including varying traffic volumes
and environmental exposures. The Al-generated PCI scores,
along with identified distress types, guided the selection of
appropriate maintenance strategies as outlined in Table 1.
For instance, segments with PCI scores above 85 were
preserved using fog seals, whereas sections scoring below
50 received structural rehabilitation via Polymer-Modified
Asphalt (PMA) overlays.

4.2. Evaluation timeline and monitoring schedule

Performance was monitored over a 12-month period,
divided into three phases:

1. short-term (0-3 months): immediate post-treatment
PCI measurements were collected to assess initial
treatment effectiveness.

2. mid-term (4—6 months): periodic inspections were
conducted to monitor early signs of degradation and
treatment stability.

3. long-term (7 — 12 months): final evaluations were used
to determine the durability and cost-effectiveness of
each treatment.

4.3. Performance metrics and observations

During the short-term phase, all treated sections
demonstrated significant improvements in PCIl. The PMA
and Open-Graded Friction Course (OGFC) treatments
resulted in PCI increases of 12 % and 15 %, respectively,
while slurry seal and fog seal treatments yielded more
modest improvements of 8% and 6 %. Additionally,
reductions in International Roughness Index (IRI) values
were noted, particularly in segments treated with PMA.

In the mid-term phase, both PMA and OGFC treatments
sustained relatively high PCI values with only minor
reductions, whereas the performance of slurry and fog seals
began to decline, particularly in high-traffic areas.

By the long-term phase (7—12 months), pavements
treated with PMA exhibited the highest durability, with only
a 3% decrease in PCl. OGFC sections experienced a
moderate decline of 6%, while slurry and fog seal
treatments showed more significant degradation, with PCI
reductions ranging from 10 % to 12 %, especially in regions
subjected to heavy traffic or wet seasonal conditions.

4.4, Statistical evaluation and material
performance comparison

To enhance the analytical rigor of the evaluation, a
statistical comparison was conducted to quantify
performance differences among materials and over time. As
illustrated in Fig. 9 and Fig. 10, PCI trends for PMA,
OGFC, slurry seal, and fog seal were tracked at 0, 6, and 12
months.
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PMA exhibited the best retention of PCI, with only a 3-
point decrease over 12 months (from 88 to 85), followed by



OGFC with a 5-point decline. In contrast, slurry and fog
seals both experienced a 10-point reduction, confirming
their relatively lower durability. These results are consistent
with literature emphasizing the long-term effectiveness of
high-performance overlays under moderate to heavy traffic
conditions.

To verify the significance of these differences, a two-
way repeated-measures ANOVA (material x period) was
performed. The results indicated significant main effects for
material (p < 0.01) and time period (p < 0.01), as well as a
significant interaction effect (material x period, p < 0.05).
Bonferroni-adjusted post-hoc comparisons further revealed
that PMA significantly outperformed both slurry and fog
seals at the 6- and 12-month marks (p <0.01). The
difference between PMA and OGFC, however, was not
statistically significant (p > 0.1), indicating similar mid- to
long-term performance.

These findings reinforce the superior longevity of PMA
and OGFC in preventive maintenance applications. In
contrast, the rapid deterioration of slurry and fog seals after
six months underscores the need to match maintenance
treatments with traffic demands and environmental
conditions. While slurry and fog seals remain economically
viable for low-volume or short-duration applications, their
effectiveness diminishes quickly, necessitating more
frequent reapplications to sustain pavement functionality.

5. PREVENTIVE MAINTENANCE MATERIAL
PERFORMANCE EVALUATION

To ascertain the reliability and longevity of preventive
maintenance treatments, a series of material performance
tests were conducted on various repair and sealant products
utilized in this investigation. All assessments adhered to the
specifications outlined by the Chinese National Standards
(CNS) or equivalent standards to confirm their
appropriateness for field applications.

Initially, the resin-based crack sealant designated for
fine crack repairs underwent testing for workability time,
initial curing time, density, elongation at break, and
penetration. The results, as presented in Table 4, indicated
commendable workability (9 minutes), rapid curing
(18 minutes), and substantial elongation (112 ), suggesting
its effective adaptability for sealing fine cracks across a
range of environmental conditions.

Table 4. Resin-based crack sealant test results

Test item Test method Recommended Test
range result
Workability | N5 10756 7-10 minutes 9.0
time
:{‘r::éa' euning | ons 10756 15-20 minutes | 18.0
Density CNS 5341 110117 glem® | 1.15
Elongation at f -\ 3553 > 100 % 112.0
break
Penetration | LAVEMeNtsurvey | 25 1600 93.0
method

For the treatment of larger cracks, a hot-applied
modified bituminous crack sealant was evaluated (Table 5).
This material demonstrated a high softening point (86 °C),
commendable ductility (38 cm), and exceptional elastic

recovery (92 %), thereby affirming its suitability for sealing
wider cracks in areas subject to significant temperature
fluctuations.

Table 5. Hot-applied modified bitumen sealant test results

Test item Test method Recommended Test
range result
Softening point CNS 314 >80°C 86.0
Ductility, cm CNS 4331 >30 38.0
Resilience, % CNS 13778 >85% 92.0
Density, g/cm? CNS 5341 1.0-1.2 1.14
Penetration, CNS 4301 >80 88.0
1/10 mm

In the context of pothole and block cracking repairs, the
performance of cold-patch all-weather modified asphalt
concrete was assessed (Table 6). This material exhibited
high Marshall stability (315 kgf), optimal flow values
(3.2 mm), and minimal Cantabro abrasion loss (21 %),
ensuring robust performance for rapid repairs even under
adverse weather conditions.

Table 6. Cold-applied modified asphalt concrete test results

Test item Test method Recommended Test
range result
Marshall
stability CNS 3563 > 250 kgf 315.0
Flow value CNS 3563 2—4 mm 3.2
Cantabro loss | CNS 14981 <25% 21.0
Density CNS 1124 2.2-24 g/cm? 2.36

For addressing rutting and surface depressions, a cold-
hardened emulsified asphalt concrete was analyzed
(Table 7). It achieved a compressive strength of
28.5 kgf/cm? within a 24-hour period, alongside controlled
flow values (4.1 mm) and appropriate density (2.32 g/cm?),
thereby supporting its application for urgent rehabilitation
efforts necessitating swift traffic reopening.

Table 7. Cold-hardening emulsified asphalt concrete test results

Test item Test method Recommended Test
range result
Compressive N
strength 24 h CNS 8491 > 25 kegf/em 28.5
Flow value CNS 3563 3-5mm 4.1
Density CNS 1124 2.2-2.4 g/cm? 2.32

Furthermore, the fog seal spray material (Table 8)
employed for surface preservation demonstrated
satisfactory residual binder content (61 %), adequate
penetration (78 at 25 °C), and viscosity (210 cP at 60 °C),
confirming its efficacy in rejuvenating slightly aged
pavements and mitigating oxidative damage.

Lastly, the slurry seal material (Table 9) was assessed
for its effectiveness in surface wear mitigation. It exhibited
excellent consistency (30 cm), low wet track abrasion loss
(620 g/m?), and a rapid set time for traffic reopening
(1.5 hours), indicating its practicality for prompt preventive
treatments on moderately aged roadways.

Overall, these material performance evaluations
confirmed that all preventive maintenance materials met or
exceeded the required technical specifications. The use of
high-quality sealants, overlays, and cold-mix asphalts in
conjunction with Al-driven PCI detection can significantly



enhance the durability and cost-effectiveness of pavement
maintenance operations, thereby improving service life and
optimizing lifecycle investments.

Table 8. Fog seal spray material test results

Test item Test method Recommended Test
range result
Residual
. ASTM D244 > 50 % 61 %
binder content
Penetration,
5500 ASTM D5 >70 78
g’(‘ffgs‘ty’ ASTM D2171 | 150300 cP 210

Table 9. Slurry seal material test results

Test item Test method Recommended Test
range result
Consistency ASTM D3910 25-35cm 30 cm
Wet track ASTM D3910 | <800 g/m? 620
abrasion loss g/m
Traffic ASTMD3910 | <2 hours 15
ppening time hours

In addition to mechanical performance and long-term
durability, the operational feasibility of each preventive
maintenance method was also evaluated. As summarized in
Table 10, substantial differences exist in typical traffic
reopening times and the associated levels of traffic
disruption among the investigated treatments. Cold-applied
asphalt mixtures and emulsified cold-mix OGFC enable
immediate traffic reopening, resulting in minimal disruption
to road users. In contrast, fog seal and slurry seal treatments
require extended curing periods, typically ranging from 2 to
8 h, which often necessitate partial or full lane closures.

Although these operational considerations are not
directly captured by PCI measurements, they play a critical
role in treatment selection under time-sensitive or high-
traffic conditions. Particularly in urban environments or
short-duration maintenance windows, the ability to
minimize traffic delay is a key determinant of practical
applicability. Therefore, Table 10 complements the
performance-based evaluation by providing a realistic
perspective on construction-related constraints and traffic
impacts.

In  conjunction with laboratory  performance
evaluations, an on-site application of preventive repair
materials was conducted to assess their practical
applicability and effectiveness in real-world contexts.
Fig. 11 illustrates the field demonstration process, which
includes surface preparation, material application, and
compaction techniques. The successful implementation of
resin-based sealants, slurry seals, fog seals, and cold-applied
asphalt mixtures on actual roadway segments corroborates
the laboratory findings and validates the suitability of these
materials for preventive maintenance strategies. To
exemplify the visual results of the selected surface
treatments, Fig. 12 displays the post-application appearance
of a fog seal, emphasizing the material's uniform coverage
and enhanced surface quality, which aids in sealing micro-
cracks and mitigating oxidation.

Table 10. Traffic-reopening times and disruption levels for

common preventive pavement treatments

Typical time until

(epoxy/urethane)

Preventive Indicative traffic
. road can reopen to . .
material/method disruptiont
traffic
Resin-based crack Moderate — lane
sealant ~4hat2l °C held until resin

cures

Hot-applied
modified-bitumen
sealant

20—40 min cool-
down (often
<30 min)

Low — short
rolling closure

Cold-applied

Immediate traffic

Very low — patch

modified asphalt I
concrete (bagged once compacted is drive-over
cold patch) (£0.1h) ready
Cold-hardening
emulsified asphalt “Drive-on Verv low
concrete / cold- immediately” vy
mix OGFC
Moderate/High —
og-seal spray N one-lane closure,
F | 2 —8 h surface cure ) )
(temp-dependent) .
flagging

Slurry-seal
surfacing

4 —8 h hardening
(test strip must
carry traffic <1 h)

High — full lane
closure until set

d

Fig. 11. Demonstration of on-site application of preventive repair

materials

Fig. 12. Image after fog seal application

)



Additionally, Fig. 13 presents the outcome of the slurry
seal application, where the enhanced surface texture and
skid resistance are clearly observable.

Fig. 13. Image after slurry seal application

These follow-up images further substantiate the
effectiveness of the treatments under typical environmental
and traffic conditions, thereby reinforcing their
appropriateness for condition-based, short-to-medium-term
maintenance.

To visually synthesize the performance characteristics
of preventive maintenance materials, Fig. 13 presents a
comparative radar chart that integrates both laboratory test
results and real-world field evaluations. The chart compares
four materials, Polymer-Modified Asphalt (PMA), Open-
Graded Friction Course (OGFC), slurry seal, and fog seal,
across six key indicators: initial curing time, wet track
abrasion loss, traffic reopening time, 12-month PCI
retention, abrasion resistance, and overall durability index.
A broader span toward the outer perimeter denotes stronger
performance in that category.

Among the materials, PMA exhibits the most well-
balanced and optimal performance profile, especially
excelling in PCI retention and abrasion resistance. OGFC
closely follows, offering robust surface performance and
long-term durability. In contrast, slurry seal and fog seal,
while effective for quick deployment due to shorter curing
times and faster reopening, demonstrate weaker resistance
to wear and lower PCI retention after one year.

The radar visualization in Fig. 14 highlights the
inherent trade-offs between short-term constructability and
long-term functional resilience. While slurry and fog seals
remain practical choices for low-volume or budget-
constrained applications, PMA and OGFC are preferable for
high-traffic roadways and long-service-life requirements.

6. DISCUSSION AND CONCLUSIONS

This study introduces an Al-driven preventive
maintenance framework that combines YOLOv8-based
pavement distress detection, high-resolution 3D surface
imaging, and PCl-oriented maintenance decision-making.
Through systematic field implementation and laboratory
performance verification, the framework demonstrates
strong potential to enhance the efficiency, accuracy, and
sustainability of pavement maintenance operations.

—— PMA
~—— OGFC

—— Slurry seal
—— Fog seal

Performance Radar Chart - Preventive Maintenance Materials
Initial Curing Time (1)

Wet Time Abrasjén Loss (4) Skid Rasistance (1)

Traffic Opening\Delay ()

12-Mo PCI Retention (1)

Fig. 14. Comparative radar chart illustrating key performance
metrics for four preventive maintenance materials: PMA,
OGFC, slurry seal, and fog seal

Compared to conventional manual inspections or earlier
vision-based approaches (e.g., YOLOVS5 or traditional CNN
classifiers), the proposed system achieved substantial
improvements in both detection accuracy and real-time
applicability. Specifically, the YOLOv8 model, enhanced
with 3D depth data, yielded a mean Average Precision
(mAP) of 97.2 % and maintained a high correlation with
manually assessed PCI values (R2=0.92, MAE < £3.5).
This confirms that integrating 3D geometry with semantic
segmentation  improves localization and  severity
quantification of defects such as rutting, potholes, and
cracking, challenges that prior 2D-only systems struggled to
address.

Beyond detection, this research advances a full-cycle
strategy by linking distress identification to tailored material
selection using a PCl-based matrix. Materials such as
Polymer-Modified Asphalt (PMA) and Open-Graded
Friction Course (OGFC) proved significantly more durable
in long-term field trials, retaining over 90% of initial PCI
after 12 months. In contrast, fog and slurry seals, while cost-
effective and rapidly deployable, exhibited accelerated
degradation under heavier traffic and wet conditions. A
comparative radar analysis further validated that PMA and
OGFC offer more balanced performance across durability,
curing efficiency, and field resilience dimensions.

This study also contributes to practical decision-making
by incorporating Multi-Criteria Decision Analysis (MCDA)
and Life-Cycle Cost Analysis (LCCA), ensuring that
treatment selection accounts not only for technical
suitability but also economic feasibility. Simulation results
indicate that condition-driven application of fog and slurry
seals on lightly aged roads, and structural overlays on
severely distressed segments, can reduce long-term
maintenance costs by up to 20 % when compared to reactive
rehabilitation strategies.

Nevertheless, the system still presents some limitations.
Current detection capabilities are confined to surface-level
defects, leaving subsurface failures, such as base layer
disintegration or moisture-induced stripping, unaddressed.



Integrating Ground Penetrating Radar (GPR), infrared
thermography, or FWD measurements could expand
diagnostic depth. Additionally, the Al model, trained on
datasets specific to New Taipei City, may face regional
generalization issues when applied to roads with different
asphalt compositions or climatic patterns. Future
enhancements should prioritize transfer learning strategies
and multi-region dataset incorporation to broaden model
adaptability.

While nondestructive testing (NDT) methods such as
ground-penetrating radar (GPR), infrared thermography, or
falling weight deflectometers (FWD) offer valuable insights
into subsurface defects, their integration is not
recommended at the network-wide PCI estimation stage.
This is due to high equipment costs, limited availability of
trained personnel, and the incompatibility of NDT outputs
with surface-focused PCl scoring. As a practical
compromise, we propose a two-tier policy: using Al-based
PCI scores for screening at the network level, followed by
optional project-level NDT surveys for critical or
ambiguous road segments. This preserves system-wide
comparability while enabling deeper diagnosis when
necessary.

From a broader perspective, the integration of Al
detection, PCI quantification, and material optimization
offers a replicable and scalable solution for cities facing
increasing infrastructure demands and limited maintenance
budgets. The framework supports data-informed
scheduling, targeted interventions, and transparent
performance tracking. When paired with a cloud-based Al
Pavement Management System (Al-PMS), this system can
facilitate real-time inspections and proactive maintenance
across urban road networks, supporting both sustainability
and lifecycle value maximization.

In conclusion, this research confirms that an Al-guided
preventive maintenance strategy, grounded in deep learning,
3D imaging, and PCl-based decision-making, can deliver
substantial benefits in both performance and cost. It
provides a pathway toward smarter, more resilient road
infrastructure and lays a solid foundation for future
development of intelligent, multi-sensor-integrated
pavement management systems.

At present, the absence of supplier-specific EPDs or
consistent carbon footprint data prevents us from
implementing full quantitative sustainability scoring in
MCDA/LCCA. Nonetheless, placeholders for
environmental metrics (unit definitions, weight structures)
have been defined in the framework, allowing
straightforward integration once reliable data become
available.
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