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This article presents studies of the morphology and structure of ZnO nanoparticles synthesized by the electrochemical 
method. Colloidal solutions of the nanoparticles are obtained by an anodic dissolution of metallic zinc in alcohol 
solutions of lithium chloride containing a small amount of water (5 % vol.). The parameters chosen for the synthesis are 
based on Zn polarization curves(obtained using the the potentiokinetic (Linear Sweep Voltammetry – LSV) and the 
chronoamperometric method. The synthesis of zinc oxide nanoparticles is carried out in 0.05m LiCl + 5 % H2O alcohol 
(methanol or propanol) solutions during galvanostatic polarization of Zn at 3 mA/cm2 current density. The process is 
performed in a two-electrode system, where both electrodes (the working anode and cathode) are made of zinc. Optical 
properties, morphology and structure of the colloidal solutions and powders (obtained after evaporating the solvent) 
were studied using the following spectroscopic and microscopic techniques: UltraViolet and Visible Spectroscopy  
(UV-VIS), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Transmission 
Electron Microscopy (TEM). 
Keywords: ZnO nanoparticles, ZnO electrochemical synthesis, structure of colloidal ZnO. 

 

1. INTRODUCTION
∗

 

Due to unique electrical, photo-optical properties and 

chemical activity, ZnO nanoparticles have several 

applications, among others, including: production of 

catalysts, electrodes for photoelectrochemical cells, gas 

sensors, ultraviolet filters, and various nanocomposites. 

There are several methods of obtaining nanoparticles, 

namely: by thermal decomposition of precursors (salts) in 

a solid state, Chemical Vapor Deposition (CVD) 

technique, laser evaporation [1, 2], solution deposition or 

in a solvothermal way from over-saturated salt solutions in 

various solvents in the precipitated and/or hydrolysis 

process [3 – 5]. In recent times electrochemical methods 

have often been applied. [6 – 17]. The electrochemical 

method used by the authors, is based on an anodic 

dissolution of zinc in alcohol electrolytes [7]. 

Electrochemical behavior of zinc in alcohol solutions of 

salt [7, 10, 12, 15 – 17] indicated that Zn – at high anodic 

potentials – dissolves passing through the electrolyte in the 

form of soluble complexes with the participation of anion 

and solvent. The process takes place in two stages: 

Zn + OR + A– →  [Zn(A)(OR)]–
ads + e;    

[Zn(A)(OR)]–
ads + (x–1)A + (y–1)OR→[Zn(A)x(OR)y]

2– + e; 
for  x + y = 4; 
A – anion, OR – alcoholate groups.   (1) 

In electrolytes containing water, the decomposition 

(hydrolysis) of these complexes may occur with formation 

of ZnO nanoparticles, according to the following reaction: 

{Zn[(A)x(OR)y]} + (x + y)H2O = ZnO + xHA + yROH.  (2) 

Process pathways, both anodic dissolution and 

hydrolysis, depend mainly on the environment (the type of 

solvent, concentration of salt and water). Our study shows 

the morphology and structure of ZnO nanoparticles 
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obtained in 0.05m solution of LiCl in methanol and 

propanol containing 5 % vol. water.  

2. METHODOLOGY OF INVESTIGATIONS 

The synthesis of zinc oxide (ZnO) nanoparticles is 

carried out in 0.05m LiCl + 5 % H2O alcohol solutions 

during anodic dissolution of metallic zinc under 

galvanostatic polarization – at a current density of 

3 mA/cm2. The synthesis is performed in a two-electrode 

system, where both electrodes (the working anode and 

cathode) are made of zinc. The parameters for the process 

are chosen based on polarization curves obtained using both 

the potentiokinetic (Linear Sweep Voltammetry – LSV) 

and the chronoamperometric method. 

Before polarization the surfaces of samples 

(electrodes) are cleaned with a grade P800 to P1200 

sandpaper, then rinsed with distilled water and alcohol. 

Structure and properties of colloidal solutions of 

nanoparticles are investigated by means of  UV-VIS – 

Ultra-Violet and Visible Spectroscope – Perkin Elmer 

Lambda 25 UV-VIS Spectroscope, FTIR – Fourier 

Transform Infrared spectroscope – Thermo Scientific 

Nicolet 6700 and Zetasizer Nano ZS nanosizer. 

Composition, size and structures of nanopowders 

(after solvent evaporation) were investigated by means of 

electron microscope: JEOL JSM 5500 LV SEM with 

Energy Dispersive X-ray (EDX) microanalyser, ECNAI 

FEG SUPERTWIN (200kV) TEM and High-Resolution 

TEM (HRTEM).  

3. RESULTS  

3.1. Synthesis, morphology and structure of ZnO 

nanoparticles  

Fig. 1 presents LSV polarization curves of zinc in 

methanol solutions of lithium chloride. There are two 
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characteristic sections visible on the curves which confirm 

the two-phase course of the anodic process. There is the 

first low anodic potential region and the second steep one – 

above –1.0 V. Intensive dissolution of zinc in the form of 

complexes [Zn(A)xOR)y]
2– occurs in the second section 

[15, 17]. The density of the anodic current increases in this 

region with the rise of concentration of chloride anions. 

The fractional order of reaction in relation to chloride 

anions [17] confirms that apart from Cl– anions it is also 

the solvent that takes part in an anodic dissolution process. 

Zn polarization curves in the propanol solution (Fig. 2) 

take a similar course as in the methanol one. They only 

differ with respect to the values of the anodic current. 

Much lower current density in the LiCl propanol solution 

is related to conductivity of this solution and its higher 

polarization resistance. The addition of water induces the 

increase of the dissolution rate of zinc in the propanol 

electrolyte, Fig. 2. The influence of water content on the 

anodic current density at constant potential, –0.5 V (during 

chronoamperometric polarization of Zn) in methanol and 

propanol electrolyte is shown in Fig. 3 and Fig. 4, 

respectively.  

 

Fig. 1. LSV polarization curves of zinc in methanol solutions of 
lithium chloride 

  

Fig. 2. LSV polarization curves of zinc in propanol solutions of 
lithium chloride 

One can see irregular changes of current density (i) for 

Zn in the methanol electrolyte with increasing water 

concentration from 1 % vol. to 10 % vol., Fig. 3. It 

indicates a change of structure with regards to the 

properties of the products of anodic oxidation with a 

change of water concentration in the methanol solvent. A 

more regular dependence of the anodic current density on 

water concentration can be observed in the case of 

propanol electrolyte (Fig. 4). This density increases with 

an increased water content at cH2O > 1 %. It suggests that 

the increase of the zinc dissolution rate with the increase of 

water content in propanol electrolyte is caused by the rise 

of solubility of the products of anodic oxidation of zinc. 

 

Fig. 3. Chronoamperometric polarization curves for zinc in 
methanol electrolytes, influence the concentration of water  

 

Fig. 4. Chronoamperometric polarization curves for zinc in 
propanol electrolytes, influence the concentration of water 

Concentrations of chloride ions and water do not only 

influence the anodic dissolution rate of Zn, but also the 

chemical composition and structure of oxidation products 

as well as the hydrolysis of these products. This is 

confirmed by the examination of the absorption spectra 

(UV-VIS) of colloidal solutions (Fig. 5, a, b) and by the 

results of nanopowders tested after solvent evaporation, by 
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means of microscopic techniques (SEM/EDX, TEM, 

HRTM) and electron diffraction. 

 

a 

 

b 

Fig. 5. Absorption spectrum of anolyte, E = –0.4 V, t = 0.5 h;  
a – in methanol; b – in propanol 

According to literature, the absorption peak at wave 

length of app. 320 nm – 360 nm corresponds to colloidal 

ZnO solutions [5, 18]. This peak is clearly visible in both 

alcohols in 0.05m LiCl containing 5 %. The presence of 

zinc oxide (ZnO) in electrolytes containing 5 % vol. H2O 

in colloidal solutions is confirmed by X-ray diffraction 

results (XRD) [12], SEM/EDX (Figs. 6, 7), HRTM 

analysis (Figs. 8, 9),and electron diffraction (Figs. 10, 11). 

The microanalysis of chemical composition of both 

powders indicate that the material contains mainly zinc and 

oxygen with a small amount of chlorine. Copper, which is 

also visible, originates from a net on which a drop was 

placed. TEM investigations, high resolution TEM and 

electro-diffraction pointed out that ZnO particles of plate-

agglomerate shape of dimensions < 50 nm in methanol 

electrolyte and < 20 nm in propanol electrolyte have 

crystalline structures (Figs. 8 – 9, Figs. 10 – 11). Interplanar 

distances corresponding to ring radii seen in diffractions 

are relatively well matched with ZnO phases. 

Table 1 show dimensions of ZnO (powders) observed 

by the transmission microscope (TEM) and colloidal 

solution determined by means of the ZetaSizer. 

 

 

a 

 

b 

Fig. 6. Scanning-transmission microstructure ZnO nanopowder 
obtained in a methanol electrolyte (a), EDX spectrum of 
point ‘1’ (b) 

Table1. Complete list of the investigation results obtained for 
colloidal solutions in methanol and propanol 

Zn 0.05m LiCl methanol + 5 % H2O, i = 3 mA/cm2 
(crystalline ZnO) 

 methanol propanol 

Size ZnO (powder) 
TEM [nm] 

< 50 mn < 20 nm 

Size ZnO 
(in colloidal) 

ZetaSizer [nm] 
∼ 400 nm ∼ 200 nm 

Electrokinetic potential
ζ [mV] 

–9.45 ±0.75 –13.65 ±1.25 

Dimensions of nanoparticles determined by means of 

the ZetaSizer are of one order of magnitude larger than 

dimensions  observed by a transmission microscope (TEM) 
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a 

 

b 

Fig. 7. Scanning-transmission microstructure ZnO nanopowder 
obtained in a propanol electrolyte (a); EDX spectrum of 
point ‘1’ (b) 

 

Fig. 8. HRTEM nanograph of the powder obtained in methanol  
electrolyte 

 

Fig. 9. HRTEM nanograph of the powder obtained in propanol 
electrolyte 

 

a 

Sample (5 % H2O) 
ZnO 

d (Å) hkl 

d (Å) 

2.829 2.817 100 

2.517 2.478 101 

1.914 1.913 102 

1.635 1.626 110 

1.482 1.478 103 

1.375 1.380 112 

1.242 1.239 202 

1.092 1.090 203 

b 

Fig. 10. Electron diffraction of ZnO obtained in methanol 
electrolyte (a) and tabular values of interplanar distances 
corresponding to these rings (b) 

(Table 1). Several effects can be the reasons of the 

following differences: different structures of powder and 

particles in a colloidal system (ZnO nucleus and micelle) 

and, among others, limited accuracy of the DLS (Dynamic 

Light Scattering) measuring technique in the ZetaSizer. 
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a 

 

b 

Fig. 11. Electron diffraction of ZnO obtained in propanol 
electrolyte (a) and tabular values of interplanar distances 
corresponding to these rings (b) 

3.2. Characteristic by means of infrared 

spectroscopy – FTIR of colloidal ZnO 

solutions 

Fig. 12. presents the absorption FTIR spectra of the 

colloidal solution of zinc oxide in methanol. 

Nanocrystalline zinc oxide, has a characteristic absorption 

band at wave numbers: (435 – 544) cm–1, related to 

stretching vibrations in Zn–O [18 – 20]. For pure ZnO this 

band shifts in the direction of higher wave numbers, to 

app. 600 cm–1 [21]. In the IR spectrum of colloidal 

suspension in methanol the band originated from ZnO is 

overlapped by a weak and broad absorption band 

originated from alcohol: 880 cm–1
 – 400 cm–1, assigned to 

bending vibrations in OH group (with a maximum at app. 

660 cm–1) [22].  

In the case of colloidal solutions (Fig. 12), certain 

differences between spectra of alcohol and of colloidal 

solution of nanoparticles in alcohol are seen. These 

differences mainly concern zones related to OH groups in 

alcohol and water particles (taking part in hydrogen bonds, 

–OH - - O–H). 

The band characteristic for alcohol, (3600 – 3100) cm–1 

with a maximum at 3352 cm–1, becomes wider and shifts in 

the direction of lower wave numbers, Fig. 12, Table 2. 

This indicates the formation of hydrogen bonds at the 

interface between alcohol and oxide. 

 

Fig. 12. FTIR spectra: a – ZnO in methanol,  b – methanol 

Table 2. Characteristic bands (peaks) in the FT-IR spectra for 
alcohols and water  

Wave number 
[cm–1] 

Group, kind of vibrations Reference 

3600 – 3200 
3500 – 3000 

νOH, νH2O (stretching 
vibrations), ν OH bound 
with hydrogen bridges 

νOH in alcohols 

[23] [24] 
[25] 

[26][34 

1595 ν 2, H2O [21] 

1630 
H2O deformation vibrations 

of water inside complex 
[27] 

1642 Chemically bound water [28] 

3000 – 2850 
C–H, stretching vibrations 

in alkanes 
[24] 

2922, 2854 
νs , νas symmetric and 

asymmetric  CH3  groups 
[29] 

1480 – 1350 
–C–H, various deformation 

vibrations in alkanes 
[24] 

1300 – 1000 C–O in alcohols [24] 

2850, 2940 CH3 νs, νa [26] 

1033 ν CO in methanol [30] 

1115 OCH3 [31] 

2570 – 2100 
Various bonds related to 

absorption X–H,  
where X– can be C 

[32] 

In addition, a more intensive band at wave number 

1115 cm–1, originated from the OCH3 methoxyl group and 

the remaining bands originated from bending vibrations of 

the CH3 and CO group in the (2045 – 2950) cm–1 range, as 

well as the band at 1658 cm–1 being in the vicinity of 

1642 cm–1 corresponding to chemically bonded water 

(Fig. 12, Table 2) [23 – 32] – are all worth mentioning. 

According to [29], the shifting of the band originated from 

stretching vibrations in OH group, in the direction of lower 

wave numbers and especially the intensive increase of the 

band originated from OCH3 indicates weakening of the  

O–H bond and the alcohol dissociation.  

Sample 
(5 % H2O) 

ZnO 

d (Å) hkl 

d (Å) 

2.817 2.817 100 

2.482 2.478 101 

1.904 1.913 102 

1.619 1.626 110 

1.473 1.478 103 

1.371 1.380 112 

1.230 1.239 202 

1.089 1.090 203 



 

8 

The observed changes in the analyzed spectra are 

mainly due to the alcohol adsorption on the surface of 

oxide nanoparticles, acid-base interaction (Lewis), alcohol 

– oxide interactions and the alcohol dissociation on ZnO 

nanoparticles surfaces followed by the adsorption of the 

products of this dissociation. 

Smaller changes in spectra are seen in the case of ZnO 

suspension in propanol electrolyte (Fig. 13). It only 

indicates the alcohol adsorption on oxide nanoparticles. 

This is understandable, since propanol is a weaker protonic 

acid, (pKs: 16.7 and 19.3 for methanol and propanol 

respectively) [33].  

 

 

Fig. 13. Spectral FTIR analysis of colloidal ZnO in propanol (a) 
and spectra of propanol (b) 

The FTIR spectra analysis of colloidal solutions of 

zinc oxide nanoparticles indicates the structure reorganiza-

tion on the interface boundary: alcohol-oxide, caused by 

alcohol adsorption, and interactions of acid-base type 

(Lewis) [31, 33, 35]. As a consequence of these 

interactions is dissociation of alcohols, alcoxide formation 

or/and rehydrogenation of the oxide surface.  

The degree and direction of surface structure changes 

depends on donor acceptor (acid-base) oxides as well as on 

alcohols properties. From the investigated colloidal ZnO 

suspensions larger changes in surface structures are 

observed in methanol colloids due to the solvent. 

CONCLUSIONS 

ZnO nanoparticles obtained by electrochemical 

dissolution of zinc in electrolytes (0.05m LiCl + 5 % vol. 

H2O) with alcohol solvents have a crystalline structure. 

Nanoparticle dimensions depend on the type of alcohol. 

The sizes of nanoparticles after solvent evaporation are 

∼50 nm (in methanol) and 20 nm (in propanol). Colloidal 

micelles (in nanoparticle solutions) determined by the 

nanosizer method are equal to approximately 600 nm and 

400 nm – respectively. 

These particles in colloidal solutions obtain small 

negative electrokinetic potential ς, caused by adsorption of 

alcohol and alkoxide group OR–. Methanol undergoes 

dissociation to a higher degree than propanol. Apart from 

methanol, OCH3 groups are also strongly adsorbed on 

ZnO. This is confirmed by stronger absorption bands in the 

FT-IR spectra within zones: (1000 – 1120) cm–1 and  

(1600 – 2600) cm–1 and a significantly broader band in the 

zone corresponding to OH groups (bonded by hydrogen 

bonds (3000 – 3600) cm–1). 
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