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This paper presents a numerical method developed to find propagation constants of planar waveguide localized modes. 

The method is based on both the Fourier transform application and the wave equation solution in a frequency domain. As 

a result, integral equation is obtained where integral is replaced by sum. Finally, a task to find propagation constants and 

field Fourier transforms in a discrete form is led to the eigenvalue/eigenvector problem. This method provides high 

accuracy subject to the conditions of the Whittaker-Shannon sampling theorem, and it is characterized by high numerical 

stability. The method is tested on many examples. 
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1. INTRODUCTION
∗

 

Planar waveguides are widely used in many modern 
optoelectronic devices, such as semiconductor lasers [1], 
distributed feedback lasers [2, 3], various devices of 
integrated optics [4]. Moreover, a planar waveguide may 
consist of many layers, and a permittivity can be changed 
according to certain function on coordinate – it is so-called 
gradient waveguides. If permittivity is constant within each 
layer, transcendental dispersion equation is obtained which 
can be solved by numerical method [5, 6]. However, this 
method is too cumbersome, and one has to write new 
transcendental equation when number of layers increases. 
In [5 – 7], analytical solutions for some planar gradient 
waveguides are presented with the usage of methods 
developed in quantum mechanics to solve one-dimensional 
stationary Schrödinger equation [8]. Besides, to find 
propagation constants and appropriate electromagnetic 
fields of gradient waveguide modes the WKB-approxima-
tion technique is used [9], which is also taken from 
quantum mechanics. For finding propagation constants 
direct numerical solutions of Maxwell's equation [9] and 
many other methods are used: a method formulated using 
the four-sheeted Riemann surface of the analytic function 
that defines the waveguide dispersion relation [10]; 
transfer matrix method [11]; matrix approach [12], where 
matrix multiplication is used. Propagation constants of 
waveguide modes can be also determined with the 
resonance phenomena [13, 14]. 

For analysis of multilayer waveguides a numerical 
method is proposed [15, 16], where in wave differential 
equation the second derivative of field is replaced by 
appropriate difference operator. Writing difference equation 
for many coordinates, we obtain well-known eigenvalue/ 
/eigenvector problem of matrix algebra. Eigenvalues 
obtained correspond to waveguide mode propagation 
constants and eigenvectors – to field distribution in 
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waveguide. This method can also be applied to the gradient 
waveguides. However, it is effective only for TE 
polarization waves, whose wave equation contains only the 
second derivative of coordinate. For TM polarization waves 
in wave equation the first derivative of permittivity is 
present. Thus, for planar waveguides in which permittivity is 
changed of the coordinate skipping, the first derivative tends 
to infinity, making this method difficult to usage. Perhaps, 
for this reason a numerical analysis in [15, 16] was carried 
out only for TE polarization modes. It is obviously, if 
permittivity is a continuous function, this method is also 
suitable for TM polarization waves. However, accuracy of 
analysis can be reduced due to the presence of the first 
derivative of field [5]. In this method, differential equation is 
replaced by difference one. For achievement of high 
accuracy it is necessary to take a small step along coordinate 
axis. As a result, in order to determine propagation constants 
one needs to search eigenvalues of large size matrix. 
However, in was shown according to numerical experiments 
that error increases in this case as numerical differentiation 
is a source of noise due to rounding in a numerical process. 
The results of [16] show low accuracy of this method. 

Wave equation for planar waveguides of TE 
polarization waves [5] is identical to one-dimensional 
stationary Schrödinger equation [8]. For this reason, to 
determine propagation constants of gradient planar 
waveguide modes many approximate methods are used, for 
example, those which were initially developed for problems 
of quantum mechanics [9]. It should be noted, that even at 
present a search of problems in quantum mechanics with 
exact analytical solutions continues [17 – 19]. Therefore, an 
effective numerical method for solving the Schrödinger 
equation can help to find and verify exact analytical 
solutions. A numerical method can be also used to verify the 
approximate methods in quantum mechanics. That’s why, 
the numerical method of its high accuracy and simplicity 
could find applications in waveguide technology and 
quantum mechanics. The current state of computer technol-
ogy and  software sophistication allows applying numerical 
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Fig. 1. The simplest planar waveguides: symmetric planar waveguide ε0 = ε2 < ε1 (a); asymmetric planar waveguide ε0 < ε2 < ε1 (b); 

symmetric gradient waveguide ε(–∞) = ε(∞) < ε(0) (c) 
 

methods to find propagation constants and field 
distributions of gradient planar waveguides. Samples of the 
simplest planar waveguides are presented in Fig. 1. 

It should be noted that known methods to search 
waveguide mode propagation constants (discrete energy 
levels) are based on wave equation solution in coordinate 
area. For localized waveguide modes field intensity and the 
first derivatives of coordinate x in ± ∞ are zero. Thus, for 
field distribution the Fourier transform exists [20], and 
appropriate wave equation can be converted into frequency 
domain using the Fourier transform. As a result, we obtain 
integral equation which can also be solved by numerical 
methods. 

The purpose of this study is to develop a new 
numerical method to solve one-dimensional wave equation 
for planar waveguides using the Fourier transform and to 
demonstrate some of its advantages in comparison with the 
methods exist. 

In section 2 the essence of the method proposed is 
described. In section 3 the results of numerical analysis of 
planar waveguides for TE and TM polarization waves are 
presented. 

2. ONE-DIMENSIONAL WAVE EQUATIONS 

AND THEIR FOURIER TRANSFORMS 

A structure of the simplest planar symmetric 
waveguide is shown in Fig. 2. If, in this waveguide ε1 > ε0, 
propagation of localized waveguide mode of propagation 
constant β is possible. Moreover, electric field intensity of 
electromagnetic wave can be described as: 

( ) ( ) ( ).exp, zixEzxE β−=   (1) 

However, even in this simplest case a search of 
propagation constant is reduced to solution of transcendental 
algebraic equation [5]. The problem becomes more difficult 
if permittivity is changed according to complex function 
along coordinate axis x. 

If, in a waveguide mode, electric field intensity is 
perpendicular to plane xz (TE polarization), wave equation 
has following form [21]: 
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where λ is wavelength. 
If, in a waveguide, TM polarization wave propagates, 

appropriate wave equation according to magnetic field 
intensity can be written as: 
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Fig. 2. Symmetric planar waveguide of two fixed values of 

permittivity 

Functions E(x), H(x) that describe fields in localized 
waveguide modes and their first derivatives tend towards 
zero if x → ± ∞. That’s why, for these functions, their first 
and second derivatives the Fourier transform exists. One 
can write appropriate equations for E(x). Therefore, 
Fourier transforms for E(x), first and second derivatives of 
E(x) are [20]: 
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where u is the spatial frequency. 
Besides, for functions for which Fourier transforms 

exist, i. e., F{g(x)} = G(u), F{h(x)} = H(u), next equation 
is yet right: 

( ) ( ){ } ( ) ( ) ,∫
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−= dvvHvuGxhxgF   (7) 

where F{...} is the Fourier transform, v is spatial frequency 
too. Equation (7) expresses the essence of the convolution 
theorem [20]. 

Let’s consider Fourier transforms of left and right parts 
of (2, 3), taking into account (4 – 7). As a result we obtain: 
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Thus, we have moved from differential equations 
(2, 3) to integral ones (8, 9). In these last equations we can 
replace integral by sum. For example, if we take (8), 
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resulting in a replacement of continuous values u and v by 
discrete ones we obtain: 
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where Δ = umax/N, us = sΔ, vk = kΔ;   
–(N–1)/2 ≤ s, k ≤ (N–1)/2. umax is a value of interval in a 
frequency domain –umax/2 ≤ u ≤ umax/2; N is a set of points, 
in which function E(us) is sought. Beyond this interval it is 
assumed that E(us) = 0. A value of N should be taken large 
enough and unpaired. 

Let’s write (10) for all discrete frequencies us = sΔ. 
Moreover, s is changing from –(N–1)/2 to (N–1)/2. Then a 
set of these equations will be written as matrix equation 
while β2 is common to all values of s: 

( ) ,

2
EEUP β=+    (11) 

where P is the diagonal matrix of elements –4(πsΔ)2, U is 
the square matrix of elements (2π/λ)2

 ε(sΔ–kΔ)Δ, E is the 
vector-column of elements E(sΔ). 

Thus, in the final case, the problem was led to the 
eigenvalue (square propagation constant) problem and the 
eigenvector (the discrete Fourier transform E(x)) problem 
which corresponds to preset value β. We can have few 
eigenvalues and appropriate eigenvectors which are 
orthogonal. By carrying out the inverse discrete Fourier 
transform of eigenvector we obtain field distribution E(x). 

In our numerical calculations, the results of which are 
shown below, we have used the simplest way to replace 
integral by sum according to second term of (10). 

3. RESULTS 

In this section analysis of planar waveguides by the 
method proposed was carried out for wavelength λ = 1 µm 
and thickness of waveguide middle layer d = 2 µm of per-
mittivity ε1 = 2.25. For symmetric waveguide ε0 = ε2 = 1.96. 
For asymmetric waveguide calculations were carried out at 
following values of permittivity: ε0 = 1, ε1 = 2.25, 
ε2 = 1.96. Permittivity of gradient waveguide is described 
by Gaussian function, where ε0 = 1.96, ε1 = 2.25, d = 2 µm.  

A.  Symmetric  planar  waveguide  for  TE polarization 

waves. For the simplest symmetric planar waveguide 
permittivity can be written as: 
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The Fourier transform of (12) has a form [20]: 
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where δ(u) is Dirac delta function. 
Taking into account filtering properties of Dirac delta 

function, one can write (8) in a form: 
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Using a replacement integral by sum in (14), we can 
obtain equation in a discrete form (10) and, consequently, 
matrix equation to find eigenvalues and eigenvectors in a 
form (11). Propagation constants of localized modes βj 
from the totality of eigenvalues of matrix equation must 
satisfy following correlation 2π√ε2/λ < βj < 2π√ε1/λ [5]. For 
symmetric waveguide of above-mentioned data by solving 
dispersion equation [1, 5] next propagation constants were 
found: β1 = 9.347264 µm–1, β2 = 9.122738 µm–1, 
β3 = 8.818346 µm–1. All these decimal values are accurate. 
Propagation constants calculated by the method proposed 
for N = 1001 and umax = 40 µm–1 are: β1 = 9.347264 µm–1, 
β2 = 9.122737 µm–1, β3 = 8.818345 µm–1. We see a good 
calculation accuracy of propagation constants by the 
method proposed. Propagation constants calculated 
according to the method described in [15] for N = 1001 and 
xmax = 7.5 µm are: β1 = 9.34730 µm–1, β2 = 9.12286 µm–1, 
β3 = 8.81654 µm–1. A value of xmax = 7.5 µm provides the 
best accuracy in this method at N = 1001. Apparently, to 
improve calculation accuracy of this method we have to 
significantly increase N and xmax that will inevitably lead to 
increasing of computation time. The results of numerical 
analysis of our method are shown in Fig. 3. 

 

Fig. 3. Propagation constant dependence on umax at N = 1001 (a); propagation constant dependence on N at umax = 40 μm–1 (b); I(umax) 
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According to results of numerical analysis it is shown 
that reasonably accurate values of propagation constants at 
N = 1001 are obtained in a range of umax from 10 µm–1 to 
200 µm–1. Bottom boundary of umax can be explained by 
the fact that integral I(umax) according to Fig. 3, c, is almost 
the maximum at umax/2 = 5 µm–1. Top boundary of umax can 
be explained in the way that at oscillation half-period (1/d) 
of function sin(πud) it should be no less than two samples, 
i. e., 1/d = 0.5 µm–1

 >2Δ = 2umax/N = 2×200/1001 ≈ 0.4 µm–1, 
that is agreed with Fig. 3, a. According to Fig. 3, b, 
inaccuracy of analysis significantly increases at N < 200. 
In other words, following ratio should be implemented 
again: 1/d = 0.5 µm–1

 > 2Δ = 2umax/N = 2×40/201 ≈ 0.4 µm–1. 
B. Asymmetric planar waveguide for TE polarization 

waves. Usage of the method directly for numerical analysis 
of asymmetric waveguide does not provide a satisfactory 
accuracy to determine propagation constants, as in 
functional dependence of permittivity such component 
appears, which is proportional to function sgn(x). It causes 
the Hilbert transform in integral equation, i. e., in integral 
singular kernel such as 1/(u – v) exists. Therefore, 
asymmetric waveguide must be modified, as it is shown by 
dashed lines in Fig. 1, b. Thus, for modified waveguide 
ε(–∞) = ε(∞) = ε2. Then the question arises: what value 
would b have? Probably, b would be such, that field of 
localized mode at x = –b would be much smaller than at 
x = 0, i. e., its value can be equated to zero. However, b 
would not be too large, because such a waveguide will 
approach to non-modified. The next analysis will give 
answer to this question. 

Permittivity of modified waveguide can be written as: 
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The Fourier transform of (15) has a form [20]: 
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Further, we act such as in the case of symmetric 
waveguide,  i. e.,  we substitute  (16)  into  (8)  and  replace 

integral by sum. Exact values of propagation constants are 
β1 = 9.336874 µm–1 and β2 = 9.077763 µm–1. Numerical 
values of propagation constants obtained by the method 
proposed at N = 1001, umax = 40 μm–1 and b = 10 μm are 
β1 = 9.3368736 µm–1 and β2 = 9.0777634 µm–1. We see a 
good match of numerical values of propagation constants 
obtained by two methods. The results of analysis for 
asymmetric modified waveguide are shown in Fig. 4. 

We see that at N = 1001 and umax = 40 μm–1 according 
to Fig. 4, b, value of b can vary widely from 2 μm to 
23 μm. Outside these boundaries an error in calculation of 
propagation constants increases dramatically. Bottom 
boundary of b is consistent with Fig. 4, c, i. e., at x < –2 
field is almost zero. That is, bottom boundary of b should 
be selected from condition b >> d/2. It is impractical to 
take too big value of b, because it requires taking big value 
of N at numerical calculations that leads to increasing of 
analysis time. It is seen in Fig. 4, a, under which error 
increases dramatically at N < 500. According to Fig. 3, a, 
for boundary value N < 500, umax = 40 μm–1 and b = 10 μm 
or umaxb/N = 0.8. According to Fig. 3, b, values of 
N = 1001 and umax = 40 μm–1 correspond to boundary value 
b = 23 μm or umaxb/N = 0.86. That is, top boundary of b 
can be selected from condition b < 0.8N/umax. In general, a 
choice of b can be defined as: 

,/8.02/
max

uNbd <<<    (17) 

i. e., in this example value of b = 10 μm is quite acceptable. 
Propagation constants calculated according to finite 

difference method [15, 16] at N = 1001 and xmax = 7.5 μm 
are β1 = 9.33692 µm–1 and β2 = 9.07792 µm–1, i. e., 
propagation constants are calculated with less accuracy 
than in our method. 

C. Symmetric planar gradient waveguide for TE 

polarization waves. For example, let’s consider waveguide, 
which permittivity is described by Gaussian distribution: 
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The Fourier transform of this function is [20]: 

( ){ } ( ) ( ) ( )[ ]2
010

πexp duduxF −−+= εεδεε  .  (19) 

Further, we substitute (19) into (8) and replace 
integration by summation. Fig. 5 shows the results of 
analysis of gradient symmetric waveguide. The results of 
calculation of propagation constants depending on umax at 
N = 1001 are given in Table 1. 

 

 

Fig. 4. Propagation constant dependence on N at umax = 40 μm–1 and b = 10 μm (a); propagation constant dependence on b at N = 1001 

and umax = 40 μm–1 (b); square modulus of electric field intensity dependence on x (c). Number 1 refers to waveguide mode 

β1 = 9.3368736 µm–1, number 2 to β2 = 9.0777634 µm–1. In Fig. 3, a, b, horizontal lines correspond to exact values of 

propagation constants, points to calculated ones by the method proposed 
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Fig. 5. Propagation constant dependence on umax at N = 1001 (a); I(umax) dependence on umax/2, where 
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dududuI  (b); electric field intensity dependence on x (c) 

 

Table 1. Propagation constant dependence on maximum spatial 

frequency 

Maximum 

spatial 

frequency, 

μm–1 

Propagation 

constant β1, 

μm–1 

Propagation 

constant β2, 

μm–1 

Propagation 

constant β3, 

μm–1 

2 9.28031898 9.02219297 8.84490965 

3 9.28032187 9.02220908 8.84493647 

4 9.28032187 9.02220908 8.84493647 

32 9.28032187 9.02220908 8.84493647 

47 9.28032187 9.02220908 8.84493647 

64 9.28032187 9.02220908 8.84493722 

 

A peculiarity of Table 1 and Fig. 5, a, is that when umax 
is changing from 3 μm–1 to 47 μm–1 calculated propagation 
constants are unchanged, and that’s why has values: 
β1 = 9.28032187 µm–1, β2 = 9.02220908 µm–1 and 
β3 = 8.84493647 µm–1. Therefore, these values can be 
considered as accurate ones. Bottom boundary of umax can 
be explained by the fact that integral I(umax) in Fig. 5, b, is 
almost the maximum at umax = 1 µm–1. Significant 
deviations from exact values appear only at 
umax = 200 µm–1, and they are only for β3. Propagation 
constants calculated by the finite difference method [15] at 
xmax = 7.5 µm are β1 = 9.280323 µm–1, β2 = 9.022207 µm–1, 
β3 = 8.843480 µm–1, and at xmax = 14 µm they are 
β1 = 9.280326 µm–1, β2 = 9.022224 µm–1 and 
β3 = 8.844950 µm–1. 

D. Symmetric planar waveguide for TM polarization 

waves. Previous examples concern planar waveguides 
where TE polarization waves propagate. These examples 
feature such values of permittivity ε(x), for which it is easy 
to find the Fourier transform analytically. At the same 
time, for gradient waveguides it is difficult to do it for 
expression ε'(x)/ε(x) (see equation 3), that is necessary for 
TM polarization waves. However, it can be done for 
symmetric waveguide according to Fig. 1, a. Therefore, we 
can express ε'(x)/ε(x) as: 
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Carrying out the Fourier transform of (20), we obtain: 
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Thus, equation (9) for given permittivity dependence 
on x has a form: 
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According to calculations three localized modes can 
propagate in this waveguide. Exact values of propagation 
constants obtained by solving the dispersion equation [1, 5] 
are: β1 = 9.3428215 µm–1, β2 = 9.1099993 µm–1, 
β3 = 8.8148978 µm–1. At computing process parameters 
N = 1001 and umax = 60 μm–1 following propagation 
constants are: β1 = 9.342825 µm–1, β2 = 9.110037 µm–1, 
β3 = 8.814998 µm–1. We can see a satisfactory accuracy of 
calculations, but it is worse than regarding TE polarization 
waves. This can be explained by the fact that the Fourier 
transform of ε'(x) / ε(x) doesn’t decrease to zero (due to 
first type discontinuity of function ε(x)) at u → ± ∞. Due to 
such discontinuity of function ε(x) it is impossible to 
determine propagation constants of this waveguide by the 
finite difference method described in [15, 16]. 

However, apparently, we can expect that for 
continuous functions ε(x) calculation accuracy of 
propagation constants will increase significantly. It is 
confirmed by next example: 
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Permittivity according to (23) is a continuous function, 
but its derivative has first type discontinuity. As a result, 
the Fourier transform of ε'(x)/ε(x) is a continuous function 
which has oscillations, and it tends to zero at x → ± ∞. This 
waveguide has two propagation constants. When 
maximum spatial frequency umax is changing from 20 μm–1 
to 60 μm–1 propagation constant β1 = 9.2390569 µm–1, and 
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when it is doing from 10 μm–1 to 35 μm–1 propagation 
constant β2 = 8.9028720 µm–1. Calculation of these 
propagation constants was held at N = 401. We can see 
high calculation accuracy by the method proposed. 

4. CONCLUSIONS 

A new numerical method to determine propagation 
constants of gradient planar waveguide modes and their 
appropriate fields is developed. The method is based on 
fact that for planar waveguide modes appropriate functions 
describing fields are completely integrated. Hence, the 
Fourier transform can be applied to wave equations to 
enable the move from differential wave equations to 
integral ones. Finally, we obtain the eigenvalue/ 
eigenvector problem where eigenvalues are square 
propagation constants, and corresponding eigenvectors are 
discrete field Fourier transforms of waveguide modes. 
Using the inverse Fourier transform we obtain field 
distribution for appropriate waveguide modes. 

At sufficiently large values of N (> 500) propagation 
constants don’t practically change while frequency varies 
within certain limits (Table 1). It can be explained by fact 
that not only a field tends rapidly to zero at x → ± ∞, but 
also the Fourier transform do it rapidly at u → ± ∞. 
Therefore, at right choice of values of N and umax the 
Whittaker-Shannon sampling theorem is performed of high 
accuracy. This method is characterized by good numerical 
stability. 
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